extracellular solute-binding protein [Hungatella effluvii]
type 2 periplasmic-binding domain-containing protein( domain architecture ID 229383)
type 2 periplasmic-binding protein (PBP2) is typically comprised of two globular subdomains connected by a flexible hinge; it binds its ligand in the cleft between these domains in a manner resembling a Venus flytrap; similar to the ligand-binding domains found in solute binding proteins that serve as initial receptors in the transport, signal transduction and channel gating
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||
Periplasmic_Binding_Protein_Type_2 super family | cl21456 | Type 2 periplasmic binding fold superfamily; This evolutionary model and hierarchy represent ... |
64-543 | 1.33e-113 | ||||||||
Type 2 periplasmic binding fold superfamily; This evolutionary model and hierarchy represent the ligand-binding domains found in solute binding proteins that serve as initial receptors in the transport, signal transduction and channel gating. The PBP2 proteins share the same architecture as periplasmic binding proteins type 1 (PBP1), but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The origin of PBP module can be traced across the distant phyla, including eukaryotes, archebacteria, and prokaryotes. The majority of PBP2 proteins are involved in the uptake of a variety of soluble substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. The substrate binding domain of the LysR transcriptional regulators and the oligopeptide-like transport systems also contain the type 2 periplasmic binding fold and thus they are significantly homologous to that of the PBP2; however, these two families are grouped into a separate hierarchy of the PBP2 superfamily due to the large number of protein sequences. The actual alignment was detected with superfamily member cd13581: Pssm-ID: 473866 [Multi-domain] Cd Length: 490 Bit Score: 346.23 E-value: 1.33e-113
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
PBP2_AlgQ_like_2 | cd13581 | Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 ... |
64-543 | 1.33e-113 | ||||||||
Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold; This subgroup includes uncharacterized periplasmic-binding proteins that are closely related to high molecular weight (HMW) alginate bining proteins (AlgQ1 and AlgQ2) found in gram-negative soil bacteria. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. Pssm-ID: 270299 [Multi-domain] Cd Length: 490 Bit Score: 346.23 E-value: 1.33e-113
|
||||||||||||
UgpB | COG1653 | ABC-type glycerol-3-phosphate transport system, periplasmic component [Carbohydrate transport ... |
1-384 | 4.66e-27 | ||||||||
ABC-type glycerol-3-phosphate transport system, periplasmic component [Carbohydrate transport and metabolism]; Pssm-ID: 441259 [Multi-domain] Cd Length: 363 Bit Score: 112.44 E-value: 4.66e-27
|
||||||||||||
SBP_bac_1 | pfam01547 | Bacterial extracellular solute-binding protein; This family also includes the bacterial ... |
89-384 | 1.63e-11 | ||||||||
Bacterial extracellular solute-binding protein; This family also includes the bacterial extracellular solute-binding protein family POTD/POTF. Pssm-ID: 460248 [Multi-domain] Cd Length: 294 Bit Score: 65.13 E-value: 1.63e-11
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
PBP2_AlgQ_like_2 | cd13581 | Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 ... |
64-543 | 1.33e-113 | ||||||||
Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold; This subgroup includes uncharacterized periplasmic-binding proteins that are closely related to high molecular weight (HMW) alginate bining proteins (AlgQ1 and AlgQ2) found in gram-negative soil bacteria. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. Pssm-ID: 270299 [Multi-domain] Cd Length: 490 Bit Score: 346.23 E-value: 1.33e-113
|
||||||||||||
PBP2_AlgQ_like | cd13521 | Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 ... |
64-542 | 7.36e-58 | ||||||||
Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold; This family represents the periplasmic-binding component of high molecular weight (HMW) alginate uptake system found in gram-negative soil bacteria and related proteins. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. In Sphingomonas sp. A1, the transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins AlgQ1 and AlgQ2. Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. Pssm-ID: 270239 [Multi-domain] Cd Length: 483 Bit Score: 200.37 E-value: 7.36e-58
|
||||||||||||
PBP2_AlgQ1_2 | cd13584 | Periplasmic-binding component of alginate-specific ABC uptake system; contains the type 2 ... |
79-542 | 1.69e-56 | ||||||||
Periplasmic-binding component of alginate-specific ABC uptake system; contains the type 2 periplasmic binding fold; This group represents the periplasmic-binding component of high molecular weight (HMW) alginate uptake system found in gram-negative soil bacteria such as Sphingomonas sp. A1. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that includes alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. Pssm-ID: 270302 [Multi-domain] Cd Length: 481 Bit Score: 196.50 E-value: 1.69e-56
|
||||||||||||
PBP2_AlgQ_like_1 | cd13580 | Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 ... |
64-529 | 7.80e-56 | ||||||||
Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold; This subgroup includes uncharacterized periplasmic-binding proteins that are closely related to high molecular weight (HMW) alginate bining proteins (AlgQ1 and AlgQ2) found in gram-negative soil bacteria. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. Pssm-ID: 270298 [Multi-domain] Cd Length: 471 Bit Score: 194.47 E-value: 7.80e-56
|
||||||||||||
PBP2_AlgQ_like_3 | cd13582 | Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 ... |
89-542 | 6.54e-41 | ||||||||
Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold; This subgroup includes uncharacterized periplasmic-binding proteins that are closely related to high molecular weight (HMW) alginate bining proteins (AlgQ1 and AlgQ2) found in gram-negative soil bacteria. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. Pssm-ID: 270300 [Multi-domain] Cd Length: 504 Bit Score: 154.40 E-value: 6.54e-41
|
||||||||||||
PBP2_AlgQ_like_4 | cd13583 | Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 ... |
64-541 | 1.58e-30 | ||||||||
Periplasmic-binding component of alginate-specific ABC uptake system-like; contains the type 2 periplasmic binding fold; This subgroup includes uncharacterized periplasmic-binding proteins that are closely related to high molecular weight (HMW) alginate bining proteins (AlgQ1 and AlgQ2) found in gram-negative soil bacteria. The HMW alginate uptake system is composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by periplasmic HMW alginate-binding proteins (AlgQ1 and AlgQ2). Alginate is an anionic polysaccharide that is made up of alpha-L-mannuronate and its 5'-epimer, alpha-L-guluronate. Alginate is present in the cell walls of brown seaweeds, where it forms a viscous gum by binding water. Alginate is also produced by two bacteria genera Pseudomonas and Azotobacter. AlgQ1 and AlgQ2 belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. However, unlike other bacterial periplasmic-binding proteins that deliver small solutes to ABC transporters, AlgQ1/2 can bind a macromolecule and may have specificity for either sugar or a certain type of polysaccharide. Pssm-ID: 270301 [Multi-domain] Cd Length: 478 Bit Score: 124.39 E-value: 1.58e-30
|
||||||||||||
UgpB | COG1653 | ABC-type glycerol-3-phosphate transport system, periplasmic component [Carbohydrate transport ... |
1-384 | 4.66e-27 | ||||||||
ABC-type glycerol-3-phosphate transport system, periplasmic component [Carbohydrate transport and metabolism]; Pssm-ID: 441259 [Multi-domain] Cd Length: 363 Bit Score: 112.44 E-value: 4.66e-27
|
||||||||||||
PBP2_TMBP_like | cd13585 | The periplasmic-binding component of ABC transport systems specific for trehalose/maltose and ... |
64-382 | 9.74e-20 | ||||||||
The periplasmic-binding component of ABC transport systems specific for trehalose/maltose and similar oligosaccharides; possess type 2 periplasmic binding fold; This family includes the periplasmic trehalose/maltose-binding component of an ABC transport system and related proteins from archaea and bacteria. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270303 [Multi-domain] Cd Length: 383 Bit Score: 91.31 E-value: 9.74e-20
|
||||||||||||
MalE | COG2182 | Maltose-binding periplasmic protein MalE [Carbohydrate transport and metabolism]; |
1-313 | 5.87e-13 | ||||||||
Maltose-binding periplasmic protein MalE [Carbohydrate transport and metabolism]; Pssm-ID: 441785 [Multi-domain] Cd Length: 410 Bit Score: 70.75 E-value: 5.87e-13
|
||||||||||||
SBP_bac_1 | pfam01547 | Bacterial extracellular solute-binding protein; This family also includes the bacterial ... |
89-384 | 1.63e-11 | ||||||||
Bacterial extracellular solute-binding protein; This family also includes the bacterial extracellular solute-binding protein family POTD/POTF. Pssm-ID: 460248 [Multi-domain] Cd Length: 294 Bit Score: 65.13 E-value: 1.63e-11
|
||||||||||||
PBP2_XBP1_like | cd14749 | The periplasmic-binding component of ABC transport systems specific for xylo-oligosaccharides; ... |
93-384 | 1.22e-09 | ||||||||
The periplasmic-binding component of ABC transport systems specific for xylo-oligosaccharides; possesses type 2 periplasmic binding fold; This group represents the periplasmic component of an ABC transport system XBP1 that shows preference for xylo-oligosaccharides in the order of xylotriose > xylobiose > xylotetraose. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270452 [Multi-domain] Cd Length: 388 Bit Score: 60.09 E-value: 1.22e-09
|
||||||||||||
PBP2_UgpB | cd14748 | The periplasmic-binding component of ABC transport system specific for sn-glycerol-3-phosphate; ... |
89-382 | 2.11e-09 | ||||||||
The periplasmic-binding component of ABC transport system specific for sn-glycerol-3-phosphate; possesses type 2 periplasmic binding fold; This group includes the periplasmic component of an ABC transport system specific for sn-glycerol-3-phosphate (G3P) and closely related proteins from archaea and bacteria. Under phophate starvation conditions, Escherichia coli can utilize G3P as phosphate source when exclusively imported by an ATP-binding cassette (ABC) transporter composed of the periplasmic binding protein, UgpB, the transmembrane subunits, UgpA and UgpE, and a homodimer of the nucleotide binding subunit, UgpC. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270451 [Multi-domain] Cd Length: 385 Bit Score: 59.61 E-value: 2.11e-09
|
||||||||||||
PBP2_MalE | cd14747 | Maltose-binding protein MalE; possesses type 2 periplasmic binding fold; This group includes ... |
88-309 | 1.34e-08 | ||||||||
Maltose-binding protein MalE; possesses type 2 periplasmic binding fold; This group includes the periplasmic maltose-binding component of an ABC transport system from the phytopathogen Xanthomonas citri and its related bacterial proteins. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270450 [Multi-domain] Cd Length: 386 Bit Score: 56.94 E-value: 1.34e-08
|
||||||||||||
SBP_bac_8 | pfam13416 | Bacterial extracellular solute-binding protein; This family includes bacterial extracellular ... |
89-222 | 4.04e-06 | ||||||||
Bacterial extracellular solute-binding protein; This family includes bacterial extracellular solute-binding proteins. Pssm-ID: 433189 [Multi-domain] Cd Length: 281 Bit Score: 48.56 E-value: 4.04e-06
|
||||||||||||
PBP2_TMBP | cd14750 | The periplasmic-binding component of ABC transport systems specific for trehalose/maltose; ... |
93-381 | 5.00e-06 | ||||||||
The periplasmic-binding component of ABC transport systems specific for trehalose/maltose; possesses type 2 periplasmic binding fold; This group represents the periplasmic trehalose/maltose-binding component of an ABC transport system and related proteins from archaea and bacteria. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270453 [Multi-domain] Cd Length: 385 Bit Score: 48.83 E-value: 5.00e-06
|
||||||||||||
PBP2_GacH | cd14751 | The periplasmic-binding component of the putative oligosacchride ABC transporter GacHFG; ... |
93-296 | 8.67e-06 | ||||||||
The periplasmic-binding component of the putative oligosacchride ABC transporter GacHFG; possesses type 2 periplasmic binding fold; This group represents the periplasmic component GacH of an ABC import system. GacH is identified as a maltose/maltodextrin-binding protein with a low affinity for acarbose. Members of this group belong to the type 2 periplasmic-binding fold superfamily. PBP2 proteins are comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 270454 [Multi-domain] Cd Length: 376 Bit Score: 48.14 E-value: 8.67e-06
|
||||||||||||
Blast search parameters | ||||
|