threonine/serine ThrE exporter family protein similar to Escherichia coli succinate transporter subunit YjjP and threonine/serine exporter ThrE, a membrane protein involved in the export of threonine and serine
Putative threonine/serine exporter; ThrE is a family of bacterial and Archaeal proteins that ...
174-416
4.16e-64
Putative threonine/serine exporter; ThrE is a family of bacterial and Archaeal proteins that catalyze the export of L-threonine from the cell. UniProtKB:Q79VD1 has been characterized as being necessary for this export. The domain exhibits 10 putative TMs and catalyzes the proton-motive-force-dependent efflux of threonine and serine.
Pssm-ID: 461997 Cd Length: 241 Bit Score: 210.46 E-value: 4.16e-64
Putative threonine/serine exporter; ThrE is a family of bacterial and Archaeal proteins that ...
174-416
4.16e-64
Putative threonine/serine exporter; ThrE is a family of bacterial and Archaeal proteins that catalyze the export of L-threonine from the cell. UniProtKB:Q79VD1 has been characterized as being necessary for this export. The domain exhibits 10 putative TMs and catalyzes the proton-motive-force-dependent efflux of threonine and serine.
Pssm-ID: 461997 Cd Length: 241 Bit Score: 210.46 E-value: 4.16e-64
Threonine/Serine exporter, ThrE; ThrE_2 is a family of membrane proteins involved in the ...
450-562
3.14e-16
Threonine/Serine exporter, ThrE; ThrE_2 is a family of membrane proteins involved in the export of threonine and serine. L-threonine, L-serine are both substrates for the exporter. The exporter exhibits nine-ten predicted transmembrane-spanning helices with long charged C and N termini and an amphipathic helix present within the N terminus. L-Threonine can be made by the amino acid-producing bacterium Corynebacterium glutamicum, but the potential for amino acid formation can be considerably improved by reducing its intracellular degradation into glycine and increasing its export by this exporter. Members of the family are found in Bacteria, Archaea, and the fungal kingdoms, and the family can exist either as a single long polypeptide chain or as two short polypeptides. All family members show an extended hydrophilic N-terminal domain with weak sequence similarity to portions of hydrolases (proteases, peptidases, and glycosidases); this suggests that since this region is cytoplasmic to the membrane it may be generating the transport substrate, so may imply that threonine may not be the primary substrate and the ThrE has a subsidiary function.
Pssm-ID: 432807 Cd Length: 129 Bit Score: 75.25 E-value: 3.14e-16
Voltage gated chloride channel; This family of ion channels contains 10 or 12 transmembrane ...
277-426
8.60e-03
Voltage gated chloride channel; This family of ion channels contains 10 or 12 transmembrane helices. Each protein forms a single pore. It has been shown that some members of this family form homodimers. In terms of primary structure, they are unrelated to known cation channels or other types of anion channels. Three ClC subfamilies are found in animals. ClC-1 is involved in setting and restoring the resting membrane potential of skeletal muscle, while other channels play important parts in solute concentration mechanisms in the kidney. These proteins contain two pfam00571 domains.
Pssm-ID: 425802 [Multi-domain] Cd Length: 344 Bit Score: 38.68 E-value: 8.60e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options