3-deoxy-D-manno-octulosonic acid kinase [Stenotrophomonas sp. JAG2]
3-deoxy-D-manno-octulosonic acid kinase( domain architecture ID 10011713)
3-deoxy-D-manno-octulosonic acid kinase catalyzes the ATP-dependent phosphorylation of the 3-deoxy-D-manno-octulosonic acid (Kdo) residue in Kdo-lipid IV(A) at the 4-OH position
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
PRK01723 | PRK01723 | 3-deoxy-D-manno-octulosonic-acid kinase; Reviewed |
11-247 | 1.62e-110 | ||||
3-deoxy-D-manno-octulosonic-acid kinase; Reviewed : Pssm-ID: 234975 Cd Length: 239 Bit Score: 317.60 E-value: 1.62e-110
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
PRK01723 | PRK01723 | 3-deoxy-D-manno-octulosonic-acid kinase; Reviewed |
11-247 | 1.62e-110 | ||||
3-deoxy-D-manno-octulosonic-acid kinase; Reviewed Pssm-ID: 234975 Cd Length: 239 Bit Score: 317.60 E-value: 1.62e-110
|
||||||||
Kdo | pfam06293 | Lipopolysaccharide kinase (Kdo/WaaP) family; These lipopolysaccharide kinases are related to ... |
42-241 | 6.21e-65 | ||||
Lipopolysaccharide kinase (Kdo/WaaP) family; These lipopolysaccharide kinases are related to protein kinases pfam00069. This family includes waaP (rfaP) gene product is required for the addition of phosphate to O-4 of the first heptose residue of the lipopolysaccharide (LPS) inner core region. It has previously been shown that WaaP is necessary for resistance to hydrophobic and polycationic antimicrobials in E. coli and that it is required for virulence in invasive strains of S. enterica. Pssm-ID: 428872 Cd Length: 206 Bit Score: 200.69 E-value: 6.21e-65
|
||||||||
RIO2 | COG0478 | RIO-like serine/threonine protein kinase fused to N-terminal HTH domain [Signal transduction ... |
60-242 | 1.86e-54 | ||||
RIO-like serine/threonine protein kinase fused to N-terminal HTH domain [Signal transduction mechanisms]; Pssm-ID: 440246 [Multi-domain] Cd Length: 183 Bit Score: 173.17 E-value: 1.86e-54
|
||||||||
RIO2_C | cd05144 | C-terminal catalytic domain of the atypical protein serine kinase, RIO2 kinase; RIO2 is ... |
70-194 | 4.02e-13 | ||||
C-terminal catalytic domain of the atypical protein serine kinase, RIO2 kinase; RIO2 is present in archaea and eukaryotes. It contains an N-terminal winged helix (wHTH) domain and a C-terminal RIO kinase catalytic domain. The wHTH domain is primarily seen in DNA-binding proteins, although some wHTH domains may be involved in RNA recognition. RIO2 is essential for survival and is necessary for rRNA cleavage during 40S ribosomal subunit maturation. RIO kinases are atypical protein serine kinases containing a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. The RIO2 kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270695 [Multi-domain] Cd Length: 183 Bit Score: 65.60 E-value: 4.02e-13
|
||||||||
arch_bud32 | TIGR03724 | Kae1-associated kinase Bud32; Members of this protein family are the Bud32 protein associated ... |
93-194 | 6.09e-07 | ||||
Kae1-associated kinase Bud32; Members of this protein family are the Bud32 protein associated with Kae1 (kinase-associated endopeptidase 1) in the Archaea. In many Archaeal genomes, Kae1 and Bud32 are fused. The complex is homologous to the Kae1 and Bud32 subunits of the eukaryotic KEOPS complex, an apparently ancient protein kinase-containing molecular machine. [Unknown function, General] Pssm-ID: 274749 [Multi-domain] Cd Length: 199 Bit Score: 48.36 E-value: 6.09e-07
|
||||||||
RIO | smart00090 | RIO-like kinase; |
99-194 | 5.30e-06 | ||||
RIO-like kinase; Pssm-ID: 214511 [Multi-domain] Cd Length: 237 Bit Score: 46.14 E-value: 5.30e-06
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
PRK01723 | PRK01723 | 3-deoxy-D-manno-octulosonic-acid kinase; Reviewed |
11-247 | 1.62e-110 | ||||
3-deoxy-D-manno-octulosonic-acid kinase; Reviewed Pssm-ID: 234975 Cd Length: 239 Bit Score: 317.60 E-value: 1.62e-110
|
||||||||
Kdo | pfam06293 | Lipopolysaccharide kinase (Kdo/WaaP) family; These lipopolysaccharide kinases are related to ... |
42-241 | 6.21e-65 | ||||
Lipopolysaccharide kinase (Kdo/WaaP) family; These lipopolysaccharide kinases are related to protein kinases pfam00069. This family includes waaP (rfaP) gene product is required for the addition of phosphate to O-4 of the first heptose residue of the lipopolysaccharide (LPS) inner core region. It has previously been shown that WaaP is necessary for resistance to hydrophobic and polycationic antimicrobials in E. coli and that it is required for virulence in invasive strains of S. enterica. Pssm-ID: 428872 Cd Length: 206 Bit Score: 200.69 E-value: 6.21e-65
|
||||||||
RIO2 | COG0478 | RIO-like serine/threonine protein kinase fused to N-terminal HTH domain [Signal transduction ... |
60-242 | 1.86e-54 | ||||
RIO-like serine/threonine protein kinase fused to N-terminal HTH domain [Signal transduction mechanisms]; Pssm-ID: 440246 [Multi-domain] Cd Length: 183 Bit Score: 173.17 E-value: 1.86e-54
|
||||||||
Bud32 | COG3642 | tRNA A-37 threonylcarbamoyl transferase component Bud32 [Translation, ribosomal structure and ... |
94-241 | 4.73e-28 | ||||
tRNA A-37 threonylcarbamoyl transferase component Bud32 [Translation, ribosomal structure and biogenesis]; tRNA A-37 threonylcarbamoyl transferase component Bud32 is part of the Pathway/BioSystem: tRNA modification Pssm-ID: 442859 [Multi-domain] Cd Length: 159 Bit Score: 104.66 E-value: 4.73e-28
|
||||||||
RIO2_C | cd05144 | C-terminal catalytic domain of the atypical protein serine kinase, RIO2 kinase; RIO2 is ... |
70-194 | 4.02e-13 | ||||
C-terminal catalytic domain of the atypical protein serine kinase, RIO2 kinase; RIO2 is present in archaea and eukaryotes. It contains an N-terminal winged helix (wHTH) domain and a C-terminal RIO kinase catalytic domain. The wHTH domain is primarily seen in DNA-binding proteins, although some wHTH domains may be involved in RNA recognition. RIO2 is essential for survival and is necessary for rRNA cleavage during 40S ribosomal subunit maturation. RIO kinases are atypical protein serine kinases containing a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. The RIO2 kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270695 [Multi-domain] Cd Length: 183 Bit Score: 65.60 E-value: 4.02e-13
|
||||||||
PRK14879 | PRK14879 | Kae1-associated kinase Bud32; |
93-194 | 1.11e-08 | ||||
Kae1-associated kinase Bud32; Pssm-ID: 237847 [Multi-domain] Cd Length: 211 Bit Score: 53.76 E-value: 1.11e-08
|
||||||||
RIO1 | pfam01163 | RIO1 family; This is a family of atypical serine kinases which are found in archaea, bacteria ... |
70-194 | 1.37e-08 | ||||
RIO1 family; This is a family of atypical serine kinases which are found in archaea, bacteria and eukaryotes. Activity of Rio1 is vital in Saccharomyces cerevisiae for the processing of ribosomal RNA, as well as for proper cell cycle progression and chromosome maintenance. The structure of RIO1 has been determined. Pssm-ID: 460091 [Multi-domain] Cd Length: 184 Bit Score: 53.01 E-value: 1.37e-08
|
||||||||
RIO1 | COG1718 | Serine/threonine-protein kinase RIO1 [Signal transduction mechanisms]; |
98-194 | 4.71e-07 | ||||
Serine/threonine-protein kinase RIO1 [Signal transduction mechanisms]; Pssm-ID: 441324 Cd Length: 252 Bit Score: 49.42 E-value: 4.71e-07
|
||||||||
arch_bud32 | TIGR03724 | Kae1-associated kinase Bud32; Members of this protein family are the Bud32 protein associated ... |
93-194 | 6.09e-07 | ||||
Kae1-associated kinase Bud32; Members of this protein family are the Bud32 protein associated with Kae1 (kinase-associated endopeptidase 1) in the Archaea. In many Archaeal genomes, Kae1 and Bud32 are fused. The complex is homologous to the Kae1 and Bud32 subunits of the eukaryotic KEOPS complex, an apparently ancient protein kinase-containing molecular machine. [Unknown function, General] Pssm-ID: 274749 [Multi-domain] Cd Length: 199 Bit Score: 48.36 E-value: 6.09e-07
|
||||||||
PRK09605 | PRK09605 | bifunctional N(6)-L-threonylcarbamoyladenine synthase/serine/threonine protein kinase; |
93-194 | 8.37e-07 | ||||
bifunctional N(6)-L-threonylcarbamoyladenine synthase/serine/threonine protein kinase; Pssm-ID: 236586 [Multi-domain] Cd Length: 535 Bit Score: 49.50 E-value: 8.37e-07
|
||||||||
SrkA | COG2334 | Ser/Thr protein kinase RdoA involved in Cpx stress response, MazF antagonist [Signal ... |
99-195 | 2.97e-06 | ||||
Ser/Thr protein kinase RdoA involved in Cpx stress response, MazF antagonist [Signal transduction mechanisms]; Ser/Thr protein kinase RdoA involved in Cpx stress response, MazF antagonist is part of the Pathway/BioSystem: Threonine biosynthesis Pssm-ID: 441905 [Multi-domain] Cd Length: 297 Bit Score: 47.23 E-value: 2.97e-06
|
||||||||
APH_ChoK_like | cd05120 | Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ... |
99-196 | 4.40e-06 | ||||
Aminoglycoside 3'-phosphotransferase and Choline Kinase family; This family is composed of APH, ChoK, ethanolamine kinase (ETNK), macrolide 2'-phosphotransferase (MPH2'), an unusual homoserine kinase, and uncharacterized proteins with similarity to the N-terminal domain of acyl-CoA dehydrogenase 10 (ACAD10). The members of this family catalyze the transfer of the gamma-phosphoryl group from ATP (or CTP) to small molecule substrates such as aminoglycosides, macrolides, choline, ethanolamine, and homoserine. Phosphorylation of the antibiotics, aminoglycosides and macrolides, leads to their inactivation and to bacterial antibiotic resistance. Phosphorylation of choline, ethanolamine, and homoserine serves as precursors to the synthesis of important biological compounds, such as the major phospholipids, phosphatidylcholine and phosphatidylethanolamine and the amino acids, threonine, methionine, and isoleucine. The APH/ChoK family is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270690 [Multi-domain] Cd Length: 158 Bit Score: 45.37 E-value: 4.40e-06
|
||||||||
RIO | smart00090 | RIO-like kinase; |
99-194 | 5.30e-06 | ||||
RIO-like kinase; Pssm-ID: 214511 [Multi-domain] Cd Length: 237 Bit Score: 46.14 E-value: 5.30e-06
|
||||||||
RIO1_like | cd05145 | Catalytic domain of the atypical protein serine kinases, RIO1 and RIO3 kinases and similar ... |
98-194 | 2.22e-05 | ||||
Catalytic domain of the atypical protein serine kinases, RIO1 and RIO3 kinases and similar proteins; RIO1 is present in archaea, bacteria and eukaryotes. In addition, RIO3 is present in multicellular eukaryotes. Both RIO1 and RIO3 are associated with precursors of 40S ribosomal subunits, just like RIO2. RIO1 is essential for survival and is required for 18S rRNA processing, proper cell cycle progression and chromosome maintenance. Although depletion of either RIO1 and RIO2 results in similar effects, the two kinases are not fully interchangeable. The specific function of RIO3 is unknown. RIO kinases are atypical protein serine kinases containing a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. The RIO kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270696 [Multi-domain] Cd Length: 189 Bit Score: 43.69 E-value: 2.22e-05
|
||||||||
ACAD10_11_N-like | cd05154 | N-terminal domain of Acyl-CoA dehydrogenase (ACAD) 10 and 11, and similar proteins; This ... |
45-176 | 2.24e-05 | ||||
N-terminal domain of Acyl-CoA dehydrogenase (ACAD) 10 and 11, and similar proteins; This subfamily is composed of the N-terminal domains of vertebrate ACAD10 and ACAD11, and similar uncharacterized bacterial and eukaryotic proteins. ACADs are a family of flavoproteins that are involved in the beta-oxidation of fatty acyl-CoA derivatives. ACAD deficiency can cause metabolic disorders including muscle fatigue, hypoglycemia, and hepatic lipidosis. There are at least 11 distinct ACADs, some of which show distinct substrate specificities to either straight-chain or branched-chain fatty acids. ACAD10 is widely expressed in human tissues and highly expressed in liver, kidney, pancreas, and spleen. ACAD10 and ACAD11 are both significantly expressed in human brain tissues. They contain a long N-terminal domain with similarity to phosphotransferases with a Protein Kinase fold, which is absent in other ACADs. They may exhibit multiple functions in acyl-CoA oxidation pathways. ACAD11 utilizes substrates with carbon chain lengths of 20 to 26, with optimal activity towards C22CoA. ACAD10 may be associated with an increased risk in type II diabetes. The ACAD10/11-like subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270703 [Multi-domain] Cd Length: 254 Bit Score: 44.53 E-value: 2.24e-05
|
||||||||
CotI | COG5881 | Spore coat protein CotI/CotS, protein kinase superfamily [Cell cycle control, cell division, ... |
173-232 | 3.25e-05 | ||||
Spore coat protein CotI/CotS, protein kinase superfamily [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 444583 [Multi-domain] Cd Length: 331 Bit Score: 44.11 E-value: 3.25e-05
|
||||||||
APH | pfam01636 | Phosphotransferase enzyme family; This family consists of bacterial antibiotic resistance ... |
46-176 | 4.52e-05 | ||||
Phosphotransferase enzyme family; This family consists of bacterial antibiotic resistance proteins, which confer resistance to various aminoglycosides they include: aminoglycoside 3'-phosphotransferase or kanamycin kinase / neomycin-kanamycin phosphotransferase and streptomycin 3''-kinase or streptomycin 3''-phosphotransferase. The aminoglycoside phosphotransferases inactivate aminoglycoside antibiotics via phosphorylation. This family also includes homoserine kinase. This family is related to fructosamine kinase pfam03881. Pssm-ID: 426359 [Multi-domain] Cd Length: 239 Bit Score: 43.26 E-value: 4.52e-05
|
||||||||
STKc_PknB_like | cd14014 | Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs ... |
78-194 | 5.18e-05 | ||||
Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 270916 [Multi-domain] Cd Length: 260 Bit Score: 43.34 E-value: 5.18e-05
|
||||||||
ChoK-like | cd05151 | Choline Kinase and similar proteins; This subfamily is composed of bacterial and eukaryotic ... |
85-195 | 1.13e-04 | ||||
Choline Kinase and similar proteins; This subfamily is composed of bacterial and eukaryotic choline kinases, as well as eukaryotic ethanolamine kinase. ChoK catalyzes the transfer of the gamma-phosphoryl group from ATP (or CTP) to its substrate, choline, producing phosphorylcholine (PCho), a precursor to the biosynthesis of two major membrane phospholipids, phosphatidylcholine (PC), and sphingomyelin (SM). Although choline is the preferred substrate, ChoK also shows substantial activity towards ethanolamine and its N-methylated derivatives. Bacterial ChoK is also referred to as licA protein. ETNK catalyzes the transfer of the gamma-phosphoryl group from CTP to ethanolamine (Etn), the first step in the CDP-Etn pathway for the formation of the major phospholipid, phosphatidylethanolamine (PtdEtn). Unlike ChoK, ETNK shows specific activity for its substrate and displays negligible activity towards N-methylated derivatives of Etn. ChoK plays an important role in cell signaling pathways and the regulation of cell growth. The ChoK subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270700 [Multi-domain] Cd Length: 152 Bit Score: 41.39 E-value: 1.13e-04
|
||||||||
ABC1_ADCK3-like | cd05121 | Activator of bc1 complex (ABC1) kinases (also called aarF domain containing kinase 3) and ... |
134-240 | 4.04e-04 | ||||
Activator of bc1 complex (ABC1) kinases (also called aarF domain containing kinase 3) and similar proteins; This family is composed of the atypical yeast protein kinase Abc1p, its human homolog ADCK3 (also called CABC1), and similar proteins. Abc1p (also called Coq8p) is required for the biosynthesis of Coenzyme Q (ubiquinone or Q), which is an essential lipid component in respiratory electron and proton transport. It is necessary for the formation of a multi-subunit Q-biosynthetic complex and may also function in the regulation of Q synthesis. Human ADCK3 is able to rescue defects in Q synthesis and the phosphorylation state of Coq proteins in yeast Abc1 (or Coq8) mutants. Mutations in ADCK3 cause progressive cerebellar ataxia and atrophy due to Q10 deficiency. Eukaryotes contain at least two more ABC1/ADCK3-like proteins: in humans, these are the putative atypical protein kinases named ADCK1 and ADCK2. In algae and higher plants, ABC1 kinases have proliferated to more than 15 subfamilies, most of which are located in plastids or mitochondria. Eight of these plant ABC1 kinase subfamilies (ABC1K1-8) are specific for photosynthetic organisms. ABC1 kinases are not related to the ATP-binding cassette (ABC) membrane transporter family. Pssm-ID: 270691 [Multi-domain] Cd Length: 247 Bit Score: 40.56 E-value: 4.04e-04
|
||||||||
HomoserineK_II | cd05153 | Type II Homoserine Kinase; This subfamily is composed of unusual homoserine kinases, from a ... |
58-195 | 4.98e-04 | ||||
Type II Homoserine Kinase; This subfamily is composed of unusual homoserine kinases, from a subset of bacteria, which have a Protein Kinase fold. These proteins do not bear any similarity to the GHMP family homoserine kinases present in most bacteria and eukaryotes. Homoserine kinase catalyzes the transfer of the gamma-phosphoryl group from ATP to L-homoserine producing L-homoserine phosphate, an intermediate in the production of the amino acids threonine, methionine, and isoleucine. The Type II homoserine kinase subfamily is part of a larger superfamily that includes the catalytic domains of other kinases, such as the typical serine/threonine/tyrosine protein kinases (PKs), RIO kinases, actin-fragmin kinase (AFK), and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270702 [Multi-domain] Cd Length: 300 Bit Score: 40.70 E-value: 4.98e-04
|
||||||||
PRK05231 | PRK05231 | homoserine kinase; Provisional |
102-174 | 1.63e-03 | ||||
homoserine kinase; Provisional Pssm-ID: 235369 [Multi-domain] Cd Length: 319 Bit Score: 39.01 E-value: 1.63e-03
|
||||||||
AarF | COG0661 | Predicted protein kinase regulating ubiquinone biosynthesis, AarF/ABC1/UbiB family [Coenzyme ... |
134-245 | 1.67e-03 | ||||
Predicted protein kinase regulating ubiquinone biosynthesis, AarF/ABC1/UbiB family [Coenzyme transport and metabolism, Signal transduction mechanisms]; Predicted protein kinase regulating ubiquinone biosynthesis, AarF/ABC1/UbiB family is part of the Pathway/BioSystem: Ubiquinone biosynthesis Pssm-ID: 440425 [Multi-domain] Cd Length: 487 Bit Score: 39.42 E-value: 1.67e-03
|
||||||||
SPS1 | COG0515 | Serine/threonine protein kinase [Signal transduction mechanisms]; |
78-194 | 1.73e-03 | ||||
Serine/threonine protein kinase [Signal transduction mechanisms]; Pssm-ID: 440281 [Multi-domain] Cd Length: 482 Bit Score: 39.23 E-value: 1.73e-03
|
||||||||
STKc_PIM1 | cd14100 | Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) ... |
132-199 | 3.42e-03 | ||||
Catalytic domain of the Serine/Threonine kinase, Proviral Integration Moloney virus (PIM) kinase 1; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. The PIM gene locus was discovered as a result of the cloning of retroviral intergration sites in murine Moloney leukemia virus, leading to the identification of PIM kinases. They are constitutively active STKs with a broad range of cellular targets and are overexpressed in many haematopoietic malignancies and solid cancers. Vertebrates contain three distinct PIM kinase genes (PIM1-3); each gene may result in mutliple protein isoforms. There are two PIM1 isoforms resulting from alternative translation initiation sites. PIM1 is the founding member of the PIM subfamily. It is involved in regulating cell growth, differentiation, and apoptosis. It promotes cancer development when overexpressed by inhibiting apoptosis, promoting cell proliferation, and promoting genomic instability. The PIM1 subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271002 [Multi-domain] Cd Length: 254 Bit Score: 38.03 E-value: 3.42e-03
|
||||||||
STKc_TSSK4-like | cd14162 | Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins; STKs ... |
163-207 | 3.87e-03 | ||||
Catalytic domain of testis-specific serine/threonine kinase 4 and similar proteins; STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. TSSK proteins are almost exclusively expressed postmeiotically in the testis and play important roles in spermatogenesis and/or spermiogenesis. There are five mammalian TSSK proteins which show differences in their localization and timing of expression. TSSK4, also called TSSK5, is expressed in testis from haploid round spermatids to mature spermatozoa. It phosphorylates Cre-Responsive Element Binding protein (CREB), facilitating the binding of CREB to the specific cis cAMP responsive element (CRE), which is important in activating genes related to germ cell differentiation. Mutations in the human TSSK4 gene is associated with infertile Chinese men with impaired spermatogenesis. The TSSK4-like subfamily is part of a larger superfamily that includes the catalytic domains of other STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase. Pssm-ID: 271064 [Multi-domain] Cd Length: 259 Bit Score: 37.66 E-value: 3.87e-03
|
||||||||
RIO | cd05119 | Catalytic domain of the atypical protein serine kinases, RIO kinases; RIO kinases are atypical ... |
99-220 | 4.19e-03 | ||||
Catalytic domain of the atypical protein serine kinases, RIO kinases; RIO kinases are atypical protein serine kinases present in archaea, bacteria and eukaryotes. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. RIO kinases contain a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. Most organisms contain at least two RIO kinases, RIO1 and RIO2. A third protein, RIO3, is present in multicellular eukaryotes. In yeast, RIO1 and RIO2 are essential for survival. They function as non-ribosomal factors necessary for late 18S rRNA processing. RIO1 is also required for proper cell cycle progression and chromosome maintenance. The biological substrates for RIO kinases are still unknown. The RIO kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). Pssm-ID: 270689 Cd Length: 192 Bit Score: 37.31 E-value: 4.19e-03
|
||||||||
Blast search parameters | ||||
|