phenylacetate--CoA ligase family protein [Brachymonas denitrificans]
phenylacetate--CoA ligase family protein( domain architecture ID 11446184)
phenylacetate--CoA ligase family protein similar to Staphylococcus aureus CapK, which is required for the biosynthesis of type 1 capsular polysaccharide
List of domain hits
Name | Accession | Description | Interval | E-value | |||||||
PaaK | COG1541 | Phenylacetate-coenzyme A ligase PaaK, adenylate-forming domain family [Coenzyme transport and ... |
1-410 | 1.89e-174 | |||||||
Phenylacetate-coenzyme A ligase PaaK, adenylate-forming domain family [Coenzyme transport and metabolism]; : Pssm-ID: 441150 [Multi-domain] Cd Length: 423 Bit Score: 493.90 E-value: 1.89e-174
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
PaaK | COG1541 | Phenylacetate-coenzyme A ligase PaaK, adenylate-forming domain family [Coenzyme transport and ... |
1-410 | 1.89e-174 | |||||||
Phenylacetate-coenzyme A ligase PaaK, adenylate-forming domain family [Coenzyme transport and metabolism]; Pssm-ID: 441150 [Multi-domain] Cd Length: 423 Bit Score: 493.90 E-value: 1.89e-174
|
|||||||||||
PaaK | cd05913 | Phenylacetate-CoA ligase (also known as PaaK); PaaK catalyzes the first step in the aromatic ... |
6-412 | 1.71e-107 | |||||||
Phenylacetate-CoA ligase (also known as PaaK); PaaK catalyzes the first step in the aromatic degradation pathway, by converting phenylacetic acid (PA) into phenylacetyl-CoA (PA-CoA). Phenylacetate-CoA ligase has been found in proteobacteria as well as gram positive prokaryotes. The enzyme is specifically induced after aerobic growth in a chemically defined medium containing PA or phenylalanine (Phe) as the sole carbon source. PaaKs are members of the adenylate-forming enzyme (AFE) family. However, sequence comparison reveals divergent features of PaaK with respect to the superfamily, including a novel N-terminal sequence. Pssm-ID: 341239 [Multi-domain] Cd Length: 425 Bit Score: 323.42 E-value: 1.71e-107
|
|||||||||||
AMP-binding | pfam00501 | AMP-binding enzyme; |
110-279 | 2.01e-12 | |||||||
AMP-binding enzyme; Pssm-ID: 459834 [Multi-domain] Cd Length: 417 Bit Score: 68.49 E-value: 2.01e-12
|
|||||||||||
AA-adenyl-dom | TIGR01733 | amino acid adenylation domain; This model represents a domain responsible for the specific ... |
123-349 | 1.36e-07 | |||||||
amino acid adenylation domain; This model represents a domain responsible for the specific recognition of amino acids and activation as adenylyl amino acids. The reaction catalyzed is aa + ATP -> aa-AMP + PPi. These domains are usually found as components of multi-domain non-ribosomal peptide synthetases and are usually called "A-domains" in that context. A-domains are almost invariably followed by "T-domains" (thiolation domains, pfam00550) to which the amino acid adenylate is transferred as a thiol-ester to a bound pantetheine cofactor with the release of AMP (these are also called peptide carrier proteins, or PCPs. When the A-domain does not represent the first module (corresponding to the first amino acid in the product molecule) it is usually preceded by a "C-domain" (condensation domain, pfam00668) which catalyzes the ligation of two amino acid thiol-esters from neighboring modules. This domain is a subset of the AMP-binding domain found in Pfam (pfam00501) which also hits substrate--CoA ligases and luciferases. Sequences scoring in between trusted and noise for this model may be ambiguous as to whether they activate amino acids or other molecules lacking an alpha amino group. Pssm-ID: 273779 [Multi-domain] Cd Length: 409 Bit Score: 53.42 E-value: 1.36e-07
|
|||||||||||
PRK06334 | PRK06334 | long chain fatty acid--[acyl-carrier-protein] ligase; Validated |
150-299 | 2.33e-07 | |||||||
long chain fatty acid--[acyl-carrier-protein] ligase; Validated Pssm-ID: 180533 [Multi-domain] Cd Length: 539 Bit Score: 52.90 E-value: 2.33e-07
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
PaaK | COG1541 | Phenylacetate-coenzyme A ligase PaaK, adenylate-forming domain family [Coenzyme transport and ... |
1-410 | 1.89e-174 | |||||||
Phenylacetate-coenzyme A ligase PaaK, adenylate-forming domain family [Coenzyme transport and metabolism]; Pssm-ID: 441150 [Multi-domain] Cd Length: 423 Bit Score: 493.90 E-value: 1.89e-174
|
|||||||||||
PaaK | cd05913 | Phenylacetate-CoA ligase (also known as PaaK); PaaK catalyzes the first step in the aromatic ... |
6-412 | 1.71e-107 | |||||||
Phenylacetate-CoA ligase (also known as PaaK); PaaK catalyzes the first step in the aromatic degradation pathway, by converting phenylacetic acid (PA) into phenylacetyl-CoA (PA-CoA). Phenylacetate-CoA ligase has been found in proteobacteria as well as gram positive prokaryotes. The enzyme is specifically induced after aerobic growth in a chemically defined medium containing PA or phenylalanine (Phe) as the sole carbon source. PaaKs are members of the adenylate-forming enzyme (AFE) family. However, sequence comparison reveals divergent features of PaaK with respect to the superfamily, including a novel N-terminal sequence. Pssm-ID: 341239 [Multi-domain] Cd Length: 425 Bit Score: 323.42 E-value: 1.71e-107
|
|||||||||||
AFD_class_I | cd04433 | Adenylate forming domain, Class I, also known as the ANL superfamily; This family is known as ... |
116-407 | 5.17e-21 | |||||||
Adenylate forming domain, Class I, also known as the ANL superfamily; This family is known as the ANL (acyl-CoA synthetases, the NRPS adenylation domains, and the Luciferase enzymes) superfamily. It includes acyl- and aryl-CoA ligases, as well as the adenylation domain of nonribosomal peptide synthetases and firefly luciferases.The adenylate-forming enzymes catalyze an ATP-dependent two-step reaction to first activate a carboxylate substrate as an adenylate and then transfer the carboxylate to the pantetheine group of either coenzyme A or an acyl-carrier protein. The active site of the domain is located at the interface of a large N-terminal subdomain and a smaller C-terminal subdomain. Pssm-ID: 341228 [Multi-domain] Cd Length: 336 Bit Score: 93.12 E-value: 5.17e-21
|
|||||||||||
AMP-binding | pfam00501 | AMP-binding enzyme; |
110-279 | 2.01e-12 | |||||||
AMP-binding enzyme; Pssm-ID: 459834 [Multi-domain] Cd Length: 417 Bit Score: 68.49 E-value: 2.01e-12
|
|||||||||||
A_NRPS | cd05930 | The adenylation domain of nonribosomal peptide synthetases (NRPS); The adenylation (A) domain ... |
182-385 | 2.58e-11 | |||||||
The adenylation domain of nonribosomal peptide synthetases (NRPS); The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. Pssm-ID: 341253 [Multi-domain] Cd Length: 444 Bit Score: 64.86 E-value: 2.58e-11
|
|||||||||||
MenE/FadK | COG0318 | O-succinylbenzoic acid-CoA ligase MenE or related acyl-CoA synthetase (AMP-forming) [Lipid ... |
168-385 | 6.78e-11 | |||||||
O-succinylbenzoic acid-CoA ligase MenE or related acyl-CoA synthetase (AMP-forming) [Lipid transport and metabolism]; O-succinylbenzoic acid-CoA ligase MenE or related acyl-CoA synthetase (AMP-forming) is part of the Pathway/BioSystem: Menaquinone biosynthesis Pssm-ID: 440087 [Multi-domain] Cd Length: 452 Bit Score: 63.68 E-value: 6.78e-11
|
|||||||||||
AAS_C | cd05909 | C-terminal domain of the acyl-acyl carrier protein synthetase (also called ... |
150-283 | 2.48e-10 | |||||||
C-terminal domain of the acyl-acyl carrier protein synthetase (also called 2-acylglycerophosphoethanolamine acyltransferase, Aas); Acyl-acyl carrier protein synthase (Aas) is a membrane protein responsible for a minor pathway of incorporating exogenous fatty acids into membrane phospholipids. Its in vitro activity is characterized by the ligation of free fatty acids between 8 and 18 carbons in length to the acyl carrier protein sulfydryl group (ACP-SH) in the presence of ATP and Mg2+. However, its in vivo function is as a 2-acylglycerophosphoethanolamine (2-acyl-GPE) acyltransferase. The reaction occurs in two steps: the acyl chain is first esterified to acyl carrier protein (ACP) via a thioester bond, followed by a second step where the acyl chain is transferred to a 2-acyllysophospholipid, thus completing the transacylation reaction. This model represents the C-terminal domain of the enzyme, which belongs to the class I adenylate-forming enzyme family, including acyl-CoA synthetases. Pssm-ID: 341235 [Multi-domain] Cd Length: 490 Bit Score: 61.96 E-value: 2.48e-10
|
|||||||||||
A_NRPS_AB3403-like | cd17646 | Peptide Synthetase; The adenylation (A) domain of NRPS recognizes a specific amino acid or ... |
183-361 | 5.34e-09 | |||||||
Peptide Synthetase; The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. Pssm-ID: 341301 [Multi-domain] Cd Length: 488 Bit Score: 58.06 E-value: 5.34e-09
|
|||||||||||
AA-adenyl-dom | TIGR01733 | amino acid adenylation domain; This model represents a domain responsible for the specific ... |
123-349 | 1.36e-07 | |||||||
amino acid adenylation domain; This model represents a domain responsible for the specific recognition of amino acids and activation as adenylyl amino acids. The reaction catalyzed is aa + ATP -> aa-AMP + PPi. These domains are usually found as components of multi-domain non-ribosomal peptide synthetases and are usually called "A-domains" in that context. A-domains are almost invariably followed by "T-domains" (thiolation domains, pfam00550) to which the amino acid adenylate is transferred as a thiol-ester to a bound pantetheine cofactor with the release of AMP (these are also called peptide carrier proteins, or PCPs. When the A-domain does not represent the first module (corresponding to the first amino acid in the product molecule) it is usually preceded by a "C-domain" (condensation domain, pfam00668) which catalyzes the ligation of two amino acid thiol-esters from neighboring modules. This domain is a subset of the AMP-binding domain found in Pfam (pfam00501) which also hits substrate--CoA ligases and luciferases. Sequences scoring in between trusted and noise for this model may be ambiguous as to whether they activate amino acids or other molecules lacking an alpha amino group. Pssm-ID: 273779 [Multi-domain] Cd Length: 409 Bit Score: 53.42 E-value: 1.36e-07
|
|||||||||||
PRK06334 | PRK06334 | long chain fatty acid--[acyl-carrier-protein] ligase; Validated |
150-299 | 2.33e-07 | |||||||
long chain fatty acid--[acyl-carrier-protein] ligase; Validated Pssm-ID: 180533 [Multi-domain] Cd Length: 539 Bit Score: 52.90 E-value: 2.33e-07
|
|||||||||||
A_NRPS_ACVS-like | cd17648 | N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase; This family contains ACV ... |
181-360 | 4.17e-07 | |||||||
N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase; This family contains ACV synthetase (ACVS, EC 6.3.2.26; also known as N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase or delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase) is involved in medically important antibiotic biosynthesis. ACV synthetase is active in an early step in the penicillin G biosynthesis pathway which involves the formation of the tripeptide 6-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV); each of the constituent amino acids of the tripeptide ACV are activated as aminoacyl-adenylates with peptide bonds formed through the participation of amino acid thioester intermediates. ACV is then cyclized by the action of isopenicillin N synthase. Pssm-ID: 341303 [Multi-domain] Cd Length: 453 Bit Score: 52.02 E-value: 4.17e-07
|
|||||||||||
A_NRPS_GliP_like | cd17653 | nonribosomal peptide synthase GliP-like; This family includes the adenylation (A) domain of ... |
182-356 | 7.35e-07 | |||||||
nonribosomal peptide synthase GliP-like; This family includes the adenylation (A) domain of nonribosomal peptide synthases (NRPS) gliotoxin biosynthesis protein P (GliP), thioclapurine biosynthesis protein P (tcpP) and Sirodesmin biosynthesis protein P (SirP). In the filamentous fungus Aspergillus fumigatus, NRPS GliP is involved in the biosynthesis of gliotoxin, which is initiated by the condensation of serine and phenylalanine. Studies show that GliP is not required for invasive aspergillosis, suggesting that the principal targets of gliotoxin are neutrophils or other phagocytes. SirP is a phytotoxin produced by the fungus Leptosphaeria maculans, which causes blackleg disease of canola (Brassica napus). In the fungus Claviceps purpurea, NRPS tcpP catalyzes condensation of tyrosine and glycine, part of biosynthesis of an unusual class of epipolythiodioxopiperazines (ETPs) that lacks the reactive thiol group for toxicity. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. Pssm-ID: 341308 [Multi-domain] Cd Length: 433 Bit Score: 51.16 E-value: 7.35e-07
|
|||||||||||
ABCL | cd05958 | 2-aminobenzoate-CoA ligase (ABCL); ABCL catalyzes the initial step in the 2-aminobenzoate ... |
144-352 | 8.61e-07 | |||||||
2-aminobenzoate-CoA ligase (ABCL); ABCL catalyzes the initial step in the 2-aminobenzoate aerobic degradation pathway by activating 2-aminobenzoate to 2-aminobenzoyl-CoA. The reaction is carried out via a two-step process; the first step is ATP-dependent and forms a 2-aminobenzoyl-AMP intermediate, and the second step forms the 2-aminobenzoyl-CoA ester and releases the AMP. 2-Aminobenzoyl-CoA is further converted to 2-amino-5-oxo-cyclohex-1-ene-1-carbonyl-CoA catalyzed by 2-aminobenzoyl-CoA monooxygenase/reductase. ABCL has been purified from cells aerobically grown with 2-aminobenzoate as sole carbon, energy, and nitrogen source, and has been characterized as a monomer. Pssm-ID: 341268 [Multi-domain] Cd Length: 439 Bit Score: 50.94 E-value: 8.61e-07
|
|||||||||||
AMP-binding_C_2 | pfam14535 | AMP-binding enzyme C-terminal domain; This is a small domain that is found C terminal to ... |
331-412 | 2.96e-06 | |||||||
AMP-binding enzyme C-terminal domain; This is a small domain that is found C terminal to pfam00501. It has a central beta sheet core that is flanked by alpha helices. Pssm-ID: 434024 [Multi-domain] Cd Length: 96 Bit Score: 45.16 E-value: 2.96e-06
|
|||||||||||
A_NRPS_Ta1_like | cd12116 | The adenylation domain of nonribosomal peptide synthetases (NRPS), including salinosporamide A ... |
182-385 | 3.19e-06 | |||||||
The adenylation domain of nonribosomal peptide synthetases (NRPS), including salinosporamide A polyketide synthase; The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the myxovirescin (TA) antibiotic biosynthetic gene in Myxococcus xanthus; TA production plays a role in predation. It also includes the salinosporamide A polyketide synthase which is involved in the biosynthesis of salinosporamide A, a marine microbial metabolite whose chlorine atom is crucial for potent proteasome inhibition and anticancer activity. Pssm-ID: 341281 [Multi-domain] Cd Length: 470 Bit Score: 49.21 E-value: 3.19e-06
|
|||||||||||
BCL_like | cd05919 | Benzoate CoA ligase (BCL) and similar adenylate forming enzymes; This family contains benzoate ... |
175-352 | 8.84e-06 | |||||||
Benzoate CoA ligase (BCL) and similar adenylate forming enzymes; This family contains benzoate CoA ligase (BCL) and related ligases that catalyze the acylation of benzoate derivatives, 2-aminobenzoate and 4-hydroxybenzoate. Aromatic compounds represent the second most abundant class of organic carbon compounds after carbohydrates. Xenobiotic aromatic compounds are also a major class of man-made pollutants. Some bacteria use benzoate as the sole source of carbon and energy through benzoate degradation. Benzoate degradation starts with its activation to benzoyl-CoA by benzoate CoA ligase. The reaction catalyzed by benzoate CoA ligase proceeds via a two-step process; the first ATP-dependent step forms an acyl-AMP intermediate, and the second step forms the acyl-CoA ester with release of the AMP. Pssm-ID: 341243 [Multi-domain] Cd Length: 436 Bit Score: 47.46 E-value: 8.84e-06
|
|||||||||||
A_NRPS_Cytc1-like | cd17643 | similar to adenylation domain of cytotrienin synthetase CytC1; This family of the adenylation ... |
182-385 | 1.07e-05 | |||||||
similar to adenylation domain of cytotrienin synthetase CytC1; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes Streptomyces sp. cytotrienin synthetase (CytC1), a relatively promiscuous adenylation enzyme that installs the aminoacyl moieties on the phosphopantetheinyl arm of the holo carrier protein CytC2. Also included are Streptomyces sp Thr1, involved in the biosynthesis of 4-chlorothreonine, Pseudomonas aeruginosa pyoverdine synthetase D (PvdD), involved in the biosynthesis of the siderophore pyoverdine and Pseudomonas syringae syringopeptin synthetase, where syringpeptin is a necrosis-inducing phytotoxin that functions as a virulence determinant in the plant-pathogen interaction. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. Pssm-ID: 341298 [Multi-domain] Cd Length: 450 Bit Score: 47.30 E-value: 1.07e-05
|
|||||||||||
A_NRPS_VisG_like | cd17651 | similar to adenylation domain of virginiamycin S synthetase; This family of the adenylation (A) ... |
185-385 | 5.52e-05 | |||||||
similar to adenylation domain of virginiamycin S synthetase; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes virginiamycin S synthetase (VisG) in Streptomyces virginiae; VisG is involved in virginiamycin S (VS) biosynthesis as the provider of an L-pheGly molecule, a highly specific substrate for the last condensation step by VisF. This family also includes linear gramicidin synthetase B (LgrB) in Brevibacillus brevis. Substrate specificity analysis using residues of the substrate-binding pockets of all 16 adenylation domains has shown good agreement of the substrate amino acids predicted with the sequence of linear gramicidin. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. Pssm-ID: 341306 [Multi-domain] Cd Length: 491 Bit Score: 45.03 E-value: 5.52e-05
|
|||||||||||
EntF | COG1020 | EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites ... |
182-378 | 2.41e-04 | |||||||
EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440643 [Multi-domain] Cd Length: 1329 Bit Score: 43.69 E-value: 2.41e-04
|
|||||||||||
FACL_FadD13-like | cd17631 | fatty acyl-CoA synthetase, including FadD13; This family contains fatty acyl-CoA synthetases, ... |
200-279 | 2.70e-04 | |||||||
fatty acyl-CoA synthetase, including FadD13; This family contains fatty acyl-CoA synthetases, including Mycobacterium tuberculosis acid-induced operon MymA encoding the fatty acyl-CoA synthetase FadD13 which is essential for virulence and intracellular growth of the pathogen. The fatty acyl-CoA synthetase activates lipids before entering into the metabolic pathways and is also involved in transmembrane lipid transport. However, unlike soluble fatty acyl-CoA synthetases, but like the mammalian integral-membrane very-long-chain acyl-CoA synthetases, FadD13 accepts lipid substrates up to the maximum length of C26, and this is facilitated by an extensive hydrophobic tunnel from the active site to a positively charged patch. Also included is feruloyl-CoA synthetase (Fcs) in Rhodococcus strains where it is involved in biotechnological vanillin production from eugenol and ferulic acid via a non-beta-oxidative pathway. Pssm-ID: 341286 [Multi-domain] Cd Length: 435 Bit Score: 42.98 E-value: 2.70e-04
|
|||||||||||
PRK06178 | PRK06178 | acyl-CoA synthetase; Validated |
255-352 | 2.99e-04 | |||||||
acyl-CoA synthetase; Validated Pssm-ID: 235724 [Multi-domain] Cd Length: 567 Bit Score: 43.11 E-value: 2.99e-04
|
|||||||||||
A_NRPS_Sfm_like | cd12115 | The adenylation domain of nonribosomal peptide synthetases (NRPS), including Saframycin A gene ... |
264-361 | 4.62e-04 | |||||||
The adenylation domain of nonribosomal peptide synthetases (NRPS), including Saframycin A gene cluster from Streptomyces lavendulae; The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the saframycin A gene cluster from Streptomyces lavendulae which implicates the NRPS system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. It also includes saframycin Mx1 produced by Myxococcus xanthus NRPS. Pssm-ID: 341280 [Multi-domain] Cd Length: 447 Bit Score: 42.30 E-value: 4.62e-04
|
|||||||||||
PRK06187 | PRK06187 | long-chain-fatty-acid--CoA ligase; Validated |
149-279 | 2.22e-03 | |||||||
long-chain-fatty-acid--CoA ligase; Validated Pssm-ID: 235730 [Multi-domain] Cd Length: 521 Bit Score: 40.17 E-value: 2.22e-03
|
|||||||||||
A_NRPS_ProA | cd17656 | gramicidin S synthase 2, also known as ATP-dependent proline adenylase; This family of the ... |
266-377 | 2.84e-03 | |||||||
gramicidin S synthase 2, also known as ATP-dependent proline adenylase; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) contains gramicidin S synthase 2 (also known as ATP-dependent proline adenylase or proline activase or ProA). ProA is a multifunctional enzyme involved in synthesis of the cyclic peptide antibiotic gramicidin S and able to activate and polymerize the amino acids proline, valine, ornithine and leucine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. Pssm-ID: 341311 [Multi-domain] Cd Length: 479 Bit Score: 39.76 E-value: 2.84e-03
|
|||||||||||
A_NRPS_TlmIV_like | cd12114 | The adenylation domain of nonribosomal peptide synthetases (NRPS), including ... |
318-385 | 4.17e-03 | |||||||
The adenylation domain of nonribosomal peptide synthetases (NRPS), including Streptoalloteichus tallysomycin biosynthesis genes; The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the TLM biosynthetic gene cluster from Streptoalloteichus that consists of nine NRPS genes; the N-terminal module of TlmVI (NRPS-5) and the starter module of BlmVI (NRPS-5) are comprised of the acyl CoA ligase (AL) and acyl carrier protein (ACP)-like domains, which are thought to be involved in the biosynthesis of the beta-aminoalaninamide moiety. Pssm-ID: 341279 [Multi-domain] Cd Length: 477 Bit Score: 39.18 E-value: 4.17e-03
|
|||||||||||
A_NRPS_CmdD_like | cd17652 | similar to adenylation domain of chondramide synthase cmdD; This family of the adenylation (A) ... |
199-361 | 4.89e-03 | |||||||
similar to adenylation domain of chondramide synthase cmdD; This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes phosphinothricin tripeptide (PTT, phosphinothricylalanylalanine) synthetase, where PTT is a natural-product antibiotic and potent herbicide that is produced by Streptomyces hygroscopicus. This adenylation domain has been confirmed to directly activate beta-tyrosine, and fluorinated chondramides are produced through precursor-directed biosynthesis. Also included in this family is chondramide synthase D (also known as ATP-dependent phenylalanine adenylase or phenylalanine activase or tyrosine activase). Chondramides A-D are depsipeptide antitumor and antifungal antibiotics produced by C. crocatus, are a class of mixed peptide/polyketide depsipeptides comprised of three amino acids (alanine, N-methyltryptophan, plus the unusual amino acid beta-tyrosine or alpha-methoxy-beta-tyrosine) and a polyketide chain ([E]-7-hydroxy-2,4,6-trimethyloct-4-enoic acid). Pssm-ID: 341307 [Multi-domain] Cd Length: 436 Bit Score: 38.77 E-value: 4.89e-03
|
|||||||||||
A_NRPS_Srf_like | cd12117 | The adenylation domain of nonribosomal peptide synthetases (NRPS), including Bacillus subtilis ... |
250-361 | 6.75e-03 | |||||||
The adenylation domain of nonribosomal peptide synthetases (NRPS), including Bacillus subtilis termination module Surfactin (SrfA-C); The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and, in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. This family includes the adenylation domain of the Bacillus subtilis termination module (Surfactin domain, SrfA-C) which recognizes a specific amino acid building block, which is then activated and transferred to the terminal thiol of the 4'-phosphopantetheine (Ppan) arm of the downstream peptidyl carrier protein (PCP) domain. Pssm-ID: 341282 [Multi-domain] Cd Length: 483 Bit Score: 38.72 E-value: 6.75e-03
|
|||||||||||
Blast search parameters | ||||
|