succinate dehydrogenase, hydrophobic membrane anchor protein [Ensifer aridi]
succinate dehydrogenase, hydrophobic membrane anchor protein( domain architecture ID 10005406)
succinate dehydrogenase, hydrophobic membrane anchor protein (SdhD), together with subunit SdhC, acts to anchor the catalytic components of succinate dehydrogenase to the cytoplasmic membrane
List of domain hits
Name | Accession | Description | Interval | E-value | |||
SdhD | COG2142 | Succinate dehydrogenase, hydrophobic anchor subunit [Energy production and conversion]; |
1-124 | 1.19e-41 | |||
Succinate dehydrogenase, hydrophobic anchor subunit [Energy production and conversion]; : Pssm-ID: 441745 Cd Length: 124 Bit Score: 133.80 E-value: 1.19e-41
|
|||||||
Name | Accession | Description | Interval | E-value | |||
SdhD | COG2142 | Succinate dehydrogenase, hydrophobic anchor subunit [Energy production and conversion]; |
1-124 | 1.19e-41 | |||
Succinate dehydrogenase, hydrophobic anchor subunit [Energy production and conversion]; Pssm-ID: 441745 Cd Length: 124 Bit Score: 133.80 E-value: 1.19e-41
|
|||||||
SQR_TypeC_SdhD_like | cd03495 | Succinate:quinone oxidoreductase (SQR) Type C subfamily, Succinate dehydrogenase D (SdhD) ... |
22-120 | 3.09e-34 | |||
Succinate:quinone oxidoreductase (SQR) Type C subfamily, Succinate dehydrogenase D (SdhD) subunit-like; composed of predominantly uncharacterized bacterial proteins with similarity to the E. coli SdhD subunit. One characterized protein is the respiratory Complex II SdhD subunit of the only eukaryotic member, Reclinomonas americana. SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. It is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. E. coli SQR is classified as Type C SQRs because it contains two transmembrane subunits and one heme group. The SdhD and SdhC subunits are membrane anchor subunits containing heme and quinone binding sites. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the membrane anchor subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. Pssm-ID: 239575 Cd Length: 100 Bit Score: 114.23 E-value: 3.09e-34
|
|||||||
succ_dehyd_anc | TIGR02968 | succinate dehydrogenase, hydrophobic membrane anchor protein; In E. coli and many other ... |
16-120 | 2.09e-29 | |||
succinate dehydrogenase, hydrophobic membrane anchor protein; In E. coli and many other bacteria, two small, hydrophobic, mutually homologous subunits of succinate dehydrogenase, a TCA cycle enzyme, are SdhC and SdhD. This family is the SdhD, the hydrophobic membrane anchor protein. SdhC is apocytochrome b558, which also plays a role in anchoring the complex. [Energy metabolism, TCA cycle] Pssm-ID: 274369 Cd Length: 105 Bit Score: 102.26 E-value: 2.09e-29
|
|||||||
Sdh_cyt | pfam01127 | Succinate dehydrogenase/Fumarate reductase transmembrane subunit; This family includes a ... |
1-111 | 8.14e-11 | |||
Succinate dehydrogenase/Fumarate reductase transmembrane subunit; This family includes a transmembrane protein from both the Succinate dehydrogenase and Fumarate reductase complexes. Pssm-ID: 426067 Cd Length: 122 Bit Score: 55.08 E-value: 8.14e-11
|
|||||||
Name | Accession | Description | Interval | E-value | |||
SdhD | COG2142 | Succinate dehydrogenase, hydrophobic anchor subunit [Energy production and conversion]; |
1-124 | 1.19e-41 | |||
Succinate dehydrogenase, hydrophobic anchor subunit [Energy production and conversion]; Pssm-ID: 441745 Cd Length: 124 Bit Score: 133.80 E-value: 1.19e-41
|
|||||||
SQR_TypeC_SdhD_like | cd03495 | Succinate:quinone oxidoreductase (SQR) Type C subfamily, Succinate dehydrogenase D (SdhD) ... |
22-120 | 3.09e-34 | |||
Succinate:quinone oxidoreductase (SQR) Type C subfamily, Succinate dehydrogenase D (SdhD) subunit-like; composed of predominantly uncharacterized bacterial proteins with similarity to the E. coli SdhD subunit. One characterized protein is the respiratory Complex II SdhD subunit of the only eukaryotic member, Reclinomonas americana. SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. It is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. E. coli SQR is classified as Type C SQRs because it contains two transmembrane subunits and one heme group. The SdhD and SdhC subunits are membrane anchor subunits containing heme and quinone binding sites. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the membrane anchor subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. Pssm-ID: 239575 Cd Length: 100 Bit Score: 114.23 E-value: 3.09e-34
|
|||||||
succ_dehyd_anc | TIGR02968 | succinate dehydrogenase, hydrophobic membrane anchor protein; In E. coli and many other ... |
16-120 | 2.09e-29 | |||
succinate dehydrogenase, hydrophobic membrane anchor protein; In E. coli and many other bacteria, two small, hydrophobic, mutually homologous subunits of succinate dehydrogenase, a TCA cycle enzyme, are SdhC and SdhD. This family is the SdhD, the hydrophobic membrane anchor protein. SdhC is apocytochrome b558, which also plays a role in anchoring the complex. [Energy metabolism, TCA cycle] Pssm-ID: 274369 Cd Length: 105 Bit Score: 102.26 E-value: 2.09e-29
|
|||||||
Sdh_cyt | pfam01127 | Succinate dehydrogenase/Fumarate reductase transmembrane subunit; This family includes a ... |
1-111 | 8.14e-11 | |||
Succinate dehydrogenase/Fumarate reductase transmembrane subunit; This family includes a transmembrane protein from both the Succinate dehydrogenase and Fumarate reductase complexes. Pssm-ID: 426067 Cd Length: 122 Bit Score: 55.08 E-value: 8.14e-11
|
|||||||
SQR_QFR_TM | cd03493 | Succinate:quinone oxidoreductase (SQR) and Quinol:fumarate reductase (QFR) family, ... |
24-119 | 1.88e-07 | |||
Succinate:quinone oxidoreductase (SQR) and Quinol:fumarate reductase (QFR) family, transmembrane subunits; SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol, while QFR catalyzes the reverse reaction. SQR, also called succinate dehydrogenase or Complex II, is part of the citric acid cycle and the aerobic respiratory chain, while QFR is involved in anaerobic respiration with fumarate as the terminal electron acceptor. SQRs may reduce either high or low potential quinones while QFRs oxidize only low potential quinols. SQR and QFR share a common subunit arrangement, composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. The structural arrangement allows efficient electron transfer between the catalytic subunit, through iron-sulfur centers, and the transmembrane subunit(s) containing the electron donor/acceptor (quinol or quinone). The reversible reduction of quinone is an essential feature of respiration, allowing the transfer of electrons between respiratory complexes. SQRs and QFRs can be classified into five types (A-E) according to the number of their hydrophobic subunits and heme groups. This classification is consistent with the characteristics and phylogeny of the catalytic and iron-sulfur subunits. Type E proteins, e.g. non-classical archael SQRs, contain atypical transmembrane subunits and are not included in this hierarchy. The heme and quinone binding sites reside in the transmembrane subunits. Although succinate oxidation and fumarate reduction are carried out by separate enzymes in most organisms, some bifunctional enzymes that exhibit both SQR and QFR activities exist. Pssm-ID: 239573 Cd Length: 98 Bit Score: 45.73 E-value: 1.88e-07
|
|||||||
SQR_TypeC_CybS | cd03496 | SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to ... |
17-117 | 7.11e-04 | |||
SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. Eukaryotic SQRs reduce high potential quinones such as ubiquinone. SQR is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are classified as Type C SQRs because they contain two transmembrane subunits and one heme group. CybS and CybL are the two transmembrane proteins of eukaryotic SQRs. They contain heme and quinone binding sites. CybS is the eukaryotic homolog of the bacterial SdhD subunit. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the transmembrane subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. Mutations in human Complex II result in various physiological disorders including hereditary paraganglioma and pheochromocytoma tumors. The gene encoding for the SdhD subunit is classified as a tumor suppressor gene. Pssm-ID: 239576 Cd Length: 104 Bit Score: 36.45 E-value: 7.11e-04
|
|||||||
SQR_TypeC_SdhD | cd03494 | Succinate:quinone oxidoreductase (SQR) Type C subfamily, Succinate dehydrogenase D (SdhD) ... |
26-103 | 2.09e-03 | |||
Succinate:quinone oxidoreductase (SQR) Type C subfamily, Succinate dehydrogenase D (SdhD) subunit; SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. E. coli SQR, a member of this subfamily, reduces the high potential quinine, ubiquinone. SQR is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are classified as Type C SQRs because they contain two transmembrane subunits and one heme group. SdhD and SdhC are the two transmembrane proteins of bacterial SQRs. They contain heme and quinone binding sites. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the membrane anchor subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. Pssm-ID: 239574 Cd Length: 99 Bit Score: 34.89 E-value: 2.09e-03
|
|||||||
SQR_TypeA_SdhD_like | cd03500 | Succinate:quinone oxidoreductase (SQR) Type A subfamily, Succinate dehydrogenase D (SdhD)-like ... |
26-118 | 4.06e-03 | |||
Succinate:quinone oxidoreductase (SQR) Type A subfamily, Succinate dehydrogenase D (SdhD)-like subunit; SQR catalyzes the oxidation of succinate to fumarate coupled to the reduction of quinone to quinol. Members of this subfamily reduce low potential quinones such as menaquinone and thermoplasmaquinone. SQR is also called succinate dehydrogenase or Complex II, and is part of the citric acid cycle and the aerobic respiratory chain. SQR is composed of a flavoprotein catalytic subunit, an iron-sulfur protein and one or two hydrophobic transmembrane subunits. Members of this subfamily are similar to the Thermoplasma acidophilum SQR and are classified as Type A because they contain two transmembrane subunits as well as two heme groups. Although there are no structures available for this subfamily, the presence of two hemes has been proven spectroscopically for T. acidophilum. The two membrane anchor subunits are similar to the SdhD and SdhC subunits of bacterial SQRs, which contain heme and quinone binding sites. The two-electron oxidation of succinate in the flavoprotein active site is coupled to the two-electron reduction of quinone in the membrane anchor subunits via electron transport through FAD and three iron-sulfur centers. The reversible reduction of quinone is an essential feature of respiration, allowing transfer of electrons between respiratory complexes. Pssm-ID: 239580 Cd Length: 106 Bit Score: 34.56 E-value: 4.06e-03
|
|||||||
CybS | pfam05328 | CybS, succinate dehydrogenase cytochrome B small subunit; This family consists of several ... |
18-114 | 8.30e-03 | |||
CybS, succinate dehydrogenase cytochrome B small subunit; This family consists of several eukaryotic succinate dehydrogenase [ubiquinone] cytochrome B small subunit, mitochondrial precursor (CybS) proteins. SDHD encodes the small subunit (cybS) of cytochrome b in succinate-ubiquinone oxidoreductase (mitochondrial complex II). Mitochondrial complex II is involved in the Krebs cycle and in the aerobic electron transport chain. It contains four proteins. The catalytic core consists of a flavoprotein and an iron-sulfur protein; these proteins are anchored to the mitochondrial inner membrane by the large subunit of cytochrome b (cybL) and cybS, which together comprise the heme-protein cytochrome b. Mutations in the SDHD gene can lead to hereditary paraganglioma, characterized by the development of benign, vascularised tumours in the head and neck. Pssm-ID: 461624 Cd Length: 131 Bit Score: 34.13 E-value: 8.30e-03
|
|||||||
Blast search parameters | ||||
|