NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1929828186|ref|XP_037260194|]
View 

ribonucleoprotein PTB-binding 2 isoform X3 [Falco rusticolus]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM3_RAVER2 cd12668
RNA recognition motif 3 (RRM3) found found in vertebrate ribonucleoprotein PTB-binding 2 ...
204-301 8.37e-59

RNA recognition motif 3 (RRM3) found found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM3 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


:

Pssm-ID: 410069 [Multi-domain]  Cd Length: 98  Bit Score: 193.89  E-value: 8.37e-59
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 204 HSKCLCVDKFQKDYADSKELIQAFSLKYKPVFCQFAQDEDSCIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYCA 283
Cdd:cd12668     1 HSKCLCVDKLPKDYSDSEELTQLFSRPYKPVFCQLAQDEGSCIGGFAVVEYETAEQAEEVQRAMDGMTIGGSRVQVSFCA 80
                          90
                  ....*....|....*...
gi 1929828186 284 PGAPGRSTLAALIAAQRM 301
Cdd:cd12668    81 PGSPGRSTLAALIAAQGM 98
RRM2_RAVER2 cd12666
RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); ...
118-194 8.57e-51

RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM2 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


:

Pssm-ID: 410067 [Multi-domain]  Cd Length: 77  Bit Score: 171.22  E-value: 8.57e-51
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 118 LLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQWMD 194
Cdd:cd12666     1 LLCITNLPISFTLQEFEELVRAYGNIERCFLVYSEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLGESSLFAQWMD 77
RRM1_RAVER2 cd12664
RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); ...
45-114 3.82e-43

RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM1 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


:

Pssm-ID: 410065 [Multi-domain]  Cd Length: 70  Bit Score: 150.01  E-value: 3.82e-43
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDYEIKYCYVDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQLQP 114
Cdd:cd12664     1 KILIKNLPQDSTSQEVHDLLKDYELKYCYVDRNKRTAFVTLLNGEQAQDAIRTFHQHSLRGRDISVQLQP 70
longin-like super family cl38905
Longin-like domains; Longin-like domains are small protein domains present in a variety of ...
536-574 6.86e-03

Longin-like domains; Longin-like domains are small protein domains present in a variety of proteins and members of protein complexes involved in or required for different steps during the transport of proteins from the ribosome to the ER to the plasma membrane, via the Golgi apparatus. Examples are mu and sigma subunits of the heterotetrameric adaptor protein (AP) complex, zeta and delta subunits of the heterotetrameric F-COPI complex, a subgroup of R-SNARE proteins, a subfamily of the transport protein particle (TRAPP), and the signal recognition particle receptor subunit alpha (SR-alpha).


The actual alignment was detected with superfamily member cd14856:

Pssm-ID: 365781  Cd Length: 127  Bit Score: 37.11  E-value: 6.86e-03
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 1929828186 536 PKEIRLSTNPYLNLASVLPGIClpAIASKASSPPQQTGL 574
Cdd:cd14856    20 DALAKLSSNDYLRLASTFHGLH--AIAAQLSPVPGSSGI 56
 
Name Accession Description Interval E-value
RRM3_RAVER2 cd12668
RNA recognition motif 3 (RRM3) found found in vertebrate ribonucleoprotein PTB-binding 2 ...
204-301 8.37e-59

RNA recognition motif 3 (RRM3) found found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM3 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410069 [Multi-domain]  Cd Length: 98  Bit Score: 193.89  E-value: 8.37e-59
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 204 HSKCLCVDKFQKDYADSKELIQAFSLKYKPVFCQFAQDEDSCIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYCA 283
Cdd:cd12668     1 HSKCLCVDKLPKDYSDSEELTQLFSRPYKPVFCQLAQDEGSCIGGFAVVEYETAEQAEEVQRAMDGMTIGGSRVQVSFCA 80
                          90
                  ....*....|....*...
gi 1929828186 284 PGAPGRSTLAALIAAQRM 301
Cdd:cd12668    81 PGSPGRSTLAALIAAQGM 98
RRM2_RAVER2 cd12666
RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); ...
118-194 8.57e-51

RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM2 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410067 [Multi-domain]  Cd Length: 77  Bit Score: 171.22  E-value: 8.57e-51
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 118 LLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQWMD 194
Cdd:cd12666     1 LLCITNLPISFTLQEFEELVRAYGNIERCFLVYSEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLGESSLFAQWMD 77
RRM1_RAVER2 cd12664
RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); ...
45-114 3.82e-43

RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM1 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410065 [Multi-domain]  Cd Length: 70  Bit Score: 150.01  E-value: 3.82e-43
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDYEIKYCYVDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQLQP 114
Cdd:cd12664     1 KILIKNLPQDSTSQEVHDLLKDYELKYCYVDRNKRTAFVTLLNGEQAQDAIRTFHQHSLRGRDISVQLQP 70
RRM smart00360
RNA recognition motif;
121-188 7.69e-15

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 69.93  E-value: 7.69e-15
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186  121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:smart00360   4 VGNLPPDTTEEELRELFSKFGKVESVRLVRDKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPL 71
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
121-188 1.26e-12

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 63.41  E-value: 1.26e-12
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:pfam00076   3 VGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDE-TGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
119-188 3.66e-12

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 62.42  E-value: 3.66e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:COG0724     4 IYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDRETGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTL 73
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
43-180 8.52e-12

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 67.27  E-value: 8.52e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  43 RRKILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRTA------FVTLLNGEQAQNAIQKFHQYSLRGKEISVQL-QP 114
Cdd:TIGR01661   3 KTNLIVNYLPQTMTQEEIRSLFTSIgEIESCKLVRDKVTGqslgygFVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYaRP 82
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 115 T-----DALLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLG 180
Cdd:TIGR01661  83 SsdsikGANLYVSGLPKTMTQHELESIFSPFGQIITSRILSDNVTGLSKGVGFIRFDKRDEADRAIKTLNG 153
RRM smart00360
RNA recognition motif;
45-110 4.13e-11

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 59.14  E-value: 4.13e-11
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186   45 KILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFgKVESVRLVRDKETgkskgfAFVEFESEEDAEKALEALNGKELDGRPLKV 73
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
32-424 7.67e-11

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 65.21  E-value: 7.67e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  32 RLASTRRE-LGNrrkILLRNLPAESSSQEIHDLFKDY-EIKYCYV--DRNKRT---AFVTLLNGEQAQNAIQKFHQYSLR 104
Cdd:TIGR01628  79 RDPSLRRSgVGN---IFVKNLDKSVDNKALFDTFSKFgNILSCKVatDENGKSrgyGFVHFEKEESAKAAIQKVNGMLLN 155
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 105 GKEISVQL---------QPTDAL--LCITNLPISFTLEEFEELVRAYGNVERCfLVYNEVTGHSKGYGFVEYMKKDSAAK 173
Cdd:TIGR01628 156 DKEVYVGRfikkhereaAPLKKFtnLYVKNLDPSVNEDKLRELFAKFGEITSA-AVMKDGSGRSRGFAFVNFEKHEDAAK 234
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 174 ARLELLGKQLDESTlfaqwmdvnllttnliHSKCLCVDKFQKDYADSKELIQAF-------------------------- 227
Cdd:TIGR01628 235 AVEEMNGKKIGLAK----------------EGKKLYVGRAQKRAEREAELRRKFeelqqerkmkaqgvnlyvknlddtvt 298
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 228 SLKYKPVFCQFAQ--------DEDSCIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYCAPGAPGRSTLAALIA-A 298
Cdd:TIGR01628 299 DEKLRELFSECGEitsakvmlDEKGVSRGFGFVCFSNPEEANRAVTEMHGRMLGGKPLYVALAQRKEQRRAHLQDQFMqL 378
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 299 QRMMRNNRKG----------LLPEPNPVQIMKS--FNNPAMlQMLLQPQLRGHAVKPVlgasaGLPHliNSAVG-PPFLQ 365
Cdd:TIGR01628 379 QPRMRQLPMGspmggamgqpPYYGQGPQQQFNGqpLGWPRM-SMMPTPMGPGGPLRPN-----GLAP--MNAVRaPSRNA 450
                         410       420       430       440       450       460
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 366 LNKVHQSS---ILGSTSNLLLQSPAHLPLPQQQLMKIENIKANSKPgLLGEPPTMLLQtVLG 424
Cdd:TIGR01628 451 QNAAQKPPmqpVMYPPNYQSLPLSQDLPQPQSTASQGGQNKKLAQV-LASATPQMQKQ-VLG 510
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
45-110 6.70e-10

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 56.26  E-value: 6.70e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:COG0724     3 KIYVGNLPYSVTEEDLRELFSEYgEVTSVKLITDRETgrsrgfGFVEMPDDEEAQAAIEALNGAELMGRTLKV 75
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
119-188 3.50e-08

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 56.10  E-value: 3.50e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:TIGR01661   6 LIVNYLPQTMTQEEIRSLFTSIGEIESCKLVRDKVTGQSLGYGFVNYVRPEDAEKAVNSLNGLRLQNKTI 75
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
46-108 7.48e-08

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 49.92  E-value: 7.48e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186  46 ILLRNLPAESSSQEIHDLFKDY-EIKYCYV-----DRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEI 108
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFgPIKSIRLvrdetGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
TRAPPC4_synbindin cd14856
Trafficking protein particle complex subunit 4; Trafficking protein particle complex subunit 4 ...
536-574 6.86e-03

Trafficking protein particle complex subunit 4; Trafficking protein particle complex subunit 4 (TRAPPC4), also known as synbindin or TRS23, has been identified as a component of the transport protein particle (TRAPP), required for tethering endoplasmic reticulum (ER)-derived vesicles to Golgi membranes and for Golgi traffic.


Pssm-ID: 341446  Cd Length: 127  Bit Score: 37.11  E-value: 6.86e-03
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 1929828186 536 PKEIRLSTNPYLNLASVLPGIClpAIASKASSPPQQTGL 574
Cdd:cd14856    20 DALAKLSSNDYLRLASTFHGLH--AIAAQLSPVPGSSGI 56
 
Name Accession Description Interval E-value
RRM3_RAVER2 cd12668
RNA recognition motif 3 (RRM3) found found in vertebrate ribonucleoprotein PTB-binding 2 ...
204-301 8.37e-59

RNA recognition motif 3 (RRM3) found found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM3 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410069 [Multi-domain]  Cd Length: 98  Bit Score: 193.89  E-value: 8.37e-59
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 204 HSKCLCVDKFQKDYADSKELIQAFSLKYKPVFCQFAQDEDSCIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYCA 283
Cdd:cd12668     1 HSKCLCVDKLPKDYSDSEELTQLFSRPYKPVFCQLAQDEGSCIGGFAVVEYETAEQAEEVQRAMDGMTIGGSRVQVSFCA 80
                          90
                  ....*....|....*...
gi 1929828186 284 PGAPGRSTLAALIAAQRM 301
Cdd:cd12668    81 PGSPGRSTLAALIAAQGM 98
RRM2_RAVER2 cd12666
RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); ...
118-194 8.57e-51

RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM2 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410067 [Multi-domain]  Cd Length: 77  Bit Score: 171.22  E-value: 8.57e-51
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 118 LLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQWMD 194
Cdd:cd12666     1 LLCITNLPISFTLQEFEELVRAYGNIERCFLVYSEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLGESSLFAQWMD 77
RRM1_RAVER2 cd12664
RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); ...
45-114 3.82e-43

RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM1 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410065 [Multi-domain]  Cd Length: 70  Bit Score: 150.01  E-value: 3.82e-43
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDYEIKYCYVDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQLQP 114
Cdd:cd12664     1 KILIKNLPQDSTSQEVHDLLKDYELKYCYVDRNKRTAFVTLLNGEQAQDAIRTFHQHSLRGRDISVQLQP 70
RRM2_RAVER cd12389
RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
118-194 6.42e-42

RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM2 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409823 [Multi-domain]  Cd Length: 77  Bit Score: 146.69  E-value: 6.42e-42
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 118 LLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQWMD 194
Cdd:cd12389     1 LLCVTNLPLSFTEEQFEELVRPYGNVERCFLVYSEVTGESKGYGFVEYTSKESAIRAKNQLHGRQIGGRALQVDWLD 77
RRM2_RAVER1 cd12665
RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 ...
118-194 9.75e-37

RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM2 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410066 [Multi-domain]  Cd Length: 77  Bit Score: 132.36  E-value: 9.75e-37
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 118 LLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQWMD 194
Cdd:cd12665     1 LLCIANLPPSYTQQQFEELVRPFGNLERCFLVYSETTGHSKGYGFVEYMKKDSAARAKSDLLGKQLGTRTLYVHWTD 77
RRM1_RAVER cd12388
RNA recognition motif 1 (RRM1) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
45-114 1.95e-35

RNA recognition motif 1 (RRM1) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM1 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409822 [Multi-domain]  Cd Length: 70  Bit Score: 128.48  E-value: 1.95e-35
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDYEIKYCYVDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQLQP 114
Cdd:cd12388     1 RILVRNLPNDITAQEVHDLLADYGLKYCHVDKAKGTAFVTLLNGEQAGTAILKFHQSSYRDRQLSVQLQP 70
RRM1_RAVER1 cd12663
RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); ...
44-114 2.80e-34

RNA recognition motif 1 (RRM1) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM1 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410064 [Multi-domain]  Cd Length: 71  Bit Score: 125.03  E-value: 2.80e-34
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186  44 RKILLRNLPAESSSQEIHDLFKDYEIKYCYVDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQLQP 114
Cdd:cd12663     1 RKILIRGLPGDVTNQEVHDLLSDYELKYCFVDKYKGTAFVTLLNGEQAEAAINAFHQSRLRERELSVQLQP 71
RRM3_RAVER1 cd12667
RNA recognition motif 3 (RRM3) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); ...
204-295 4.66e-33

RNA recognition motif 3 (RRM3) found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM3 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410068 [Multi-domain]  Cd Length: 92  Bit Score: 122.24  E-value: 4.66e-33
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 204 HSKCLCVDKFQKDYADSKELIQAFSLKYKPVFCQFAQDEDSCIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYCA 283
Cdd:cd12667     1 HSRCLCVDRLPPGFNDLDDLRRALSAVHAPTFCQLAYGQDGQLKGFAVLEYETAEMAEMVQQQADGLSLGGSHIRVSFCA 80
                          90
                  ....*....|..
gi 1929828186 284 PGAPGRSTLAAL 295
Cdd:cd12667    81 PGPPGRSMLAAL 92
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
204-295 6.86e-31

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 116.18  E-value: 6.86e-31
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 204 HSKCLCVDKFQKDYADSKELIQAFSLKYKPVFCQFAQDEdSCIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYCA 283
Cdd:cd12390     1 HSKCLFVDRLPKDFRDGSELRKLFSQVGKPTFCQLAMGN-GVPRGFAFVEFASAEDAEEAQQLLNGHDLQGSPIRVSFGN 79
                          90
                  ....*....|..
gi 1929828186 284 PGAPGRSTLAAL 295
Cdd:cd12390    80 PGRPGASLLRRL 91
RRM smart00360
RNA recognition motif;
121-188 7.69e-15

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 69.93  E-value: 7.69e-15
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186  121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:smart00360   4 VGNLPPDTTEEELRELFSKFGKVESVRLVRDKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPL 71
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
119-188 1.76e-14

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 68.85  E-value: 1.76e-14
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVRDR-DGKSKGFAFVEFESPEDAEKALEALNGTELGGRPL 69
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
121-188 1.26e-12

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 63.41  E-value: 1.26e-12
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:pfam00076   3 VGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDE-TGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
119-188 3.66e-12

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 62.42  E-value: 3.66e-12
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:COG0724     4 IYVGNLPYSVTEEDLRELFSEYGEVTSVKLITDRETGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTL 73
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
43-180 8.52e-12

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 67.27  E-value: 8.52e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  43 RRKILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRTA------FVTLLNGEQAQNAIQKFHQYSLRGKEISVQL-QP 114
Cdd:TIGR01661   3 KTNLIVNYLPQTMTQEEIRSLFTSIgEIESCKLVRDKVTGqslgygFVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYaRP 82
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 115 T-----DALLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLG 180
Cdd:TIGR01661  83 SsdsikGANLYVSGLPKTMTQHELESIFSPFGQIITSRILSDNVTGLSKGVGFIRFDKRDEADRAIKTLNG 153
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
119-188 1.89e-11

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 60.11  E-value: 1.89e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12375     2 LIVNYLPQSMTQEELRSLFGAIGPIESCKLVRDKITGQSLGYGFVNYRDPNDARKAINTLNGLDLENKRL 71
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
46-111 3.93e-11

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 59.22  E-value: 3.93e-11
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186  46 ILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRN-----KRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQ 111
Cdd:cd00590     1 LFVGNLPPDTTEEDLRELFSKFgEVVSVRIVRDrdgksKGFAFVEFESPEDAEKALEALNGTELGGRPLKVS 72
RRM smart00360
RNA recognition motif;
45-110 4.13e-11

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 59.14  E-value: 4.13e-11
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186   45 KILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFgKVESVRLVRDKETgkskgfAFVEFESEEDAEKALEALNGKELDGRPLKV 73
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
32-424 7.67e-11

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 65.21  E-value: 7.67e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  32 RLASTRRE-LGNrrkILLRNLPAESSSQEIHDLFKDY-EIKYCYV--DRNKRT---AFVTLLNGEQAQNAIQKFHQYSLR 104
Cdd:TIGR01628  79 RDPSLRRSgVGN---IFVKNLDKSVDNKALFDTFSKFgNILSCKVatDENGKSrgyGFVHFEKEESAKAAIQKVNGMLLN 155
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 105 GKEISVQL---------QPTDAL--LCITNLPISFTLEEFEELVRAYGNVERCfLVYNEVTGHSKGYGFVEYMKKDSAAK 173
Cdd:TIGR01628 156 DKEVYVGRfikkhereaAPLKKFtnLYVKNLDPSVNEDKLRELFAKFGEITSA-AVMKDGSGRSRGFAFVNFEKHEDAAK 234
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 174 ARLELLGKQLDESTlfaqwmdvnllttnliHSKCLCVDKFQKDYADSKELIQAF-------------------------- 227
Cdd:TIGR01628 235 AVEEMNGKKIGLAK----------------EGKKLYVGRAQKRAEREAELRRKFeelqqerkmkaqgvnlyvknlddtvt 298
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 228 SLKYKPVFCQFAQ--------DEDSCIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYCAPGAPGRSTLAALIA-A 298
Cdd:TIGR01628 299 DEKLRELFSECGEitsakvmlDEKGVSRGFGFVCFSNPEEANRAVTEMHGRMLGGKPLYVALAQRKEQRRAHLQDQFMqL 378
                         330       340       350       360       370       380       390       400
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 299 QRMMRNNRKG----------LLPEPNPVQIMKS--FNNPAMlQMLLQPQLRGHAVKPVlgasaGLPHliNSAVG-PPFLQ 365
Cdd:TIGR01628 379 QPRMRQLPMGspmggamgqpPYYGQGPQQQFNGqpLGWPRM-SMMPTPMGPGGPLRPN-----GLAP--MNAVRaPSRNA 450
                         410       420       430       440       450       460
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 366 LNKVHQSS---ILGSTSNLLLQSPAHLPLPQQQLMKIENIKANSKPgLLGEPPTMLLQtVLG 424
Cdd:TIGR01628 451 QNAAQKPPmqpVMYPPNYQSLPLSQDLPQPQSTASQGGQNKKLAQV-LASATPQMQKQ-VLG 510
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
121-174 1.69e-10

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 57.61  E-value: 1.69e-10
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12415     5 IRNLSFDTTEEDLKEFFSKFGEVKYARIVLDKDTGHSKGTAFVQFKTKESADKC 58
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
119-188 2.86e-10

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 57.03  E-value: 2.86e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12650     3 LIVNYLPQNMTQDEIRSLFSSIGEIESCKLIRDKVTGQSLGYGFVNYVDPSDAEKAINTLNGLRLQNKTI 72
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
121-192 3.32e-10

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 56.75  E-value: 3.32e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQW 192
Cdd:cd12408     4 VTNLSEDATEEDLRELFRPFGPISRVYLAKDKETGQSKGFAFVTFETREDAERAIEKLNGFGYDNLILSVEW 75
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
121-190 3.53e-10

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 56.80  E-value: 3.53e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFA 190
Cdd:cd12380     6 VKNFGEDVDDDELKELFEKYGKITSAKVMKDD-SGKSKGFGFVNFENHEAAQKAVEELNGKELNGKKLYV 74
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
119-181 5.00e-10

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 56.20  E-value: 5.00e-10
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGK 181
Cdd:cd12316     2 LFVRNLPFTATEDELRELFEAFGKISEVHIPLDKQTKRSKGFAFVLFVIPEDAVKAYQELDGS 64
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
58-274 6.06e-10

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 62.52  E-value: 6.06e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  58 QEIHDLFKDY----EIKYCyVDRNKRT----AFVTLLNGEQAQNAIQKFHQYSLRGKEISVQLQPTDALL--------CI 121
Cdd:TIGR01628  15 AKLYDLFKPFgpvlSVRVC-RDSVTRRslgyGYVNFQNPADAERALETMNFKRLGGKPIRIMWSQRDPSLrrsgvgniFV 93
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 122 TNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFaqwmdvnllttn 201
Cdd:TIGR01628  94 KNLDKSVDNKALFDTFSKFGNILSCKVATDE-NGKSRGYGFVHFEKEESAKAAIQKVNGMLLNDKEVY------------ 160
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 202 lihskclcVDKFQKDYADSKELIQAFSLKY-------------KPVFCQF--------AQDEDSCIGDFAVVEYETAEQA 260
Cdd:TIGR01628 161 --------VGRFIKKHEREAAPLKKFTNLYvknldpsvnedklRELFAKFgeitsaavMKDGSGRSRGFAFVNFEKHEDA 232
                         250
                  ....*....|....
gi 1929828186 261 EKVHEVTDGMTIKG 274
Cdd:TIGR01628 233 AKAVEEMNGKKIGL 246
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
45-110 6.70e-10

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 56.26  E-value: 6.70e-10
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:COG0724     3 KIYVGNLPYSVTEEDLRELFSEYgEVTSVKLITDRETgrsrgfGFVEMPDDEEAQAAIEALNGAELMGRTLKV 75
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
45-111 1.40e-09

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 54.54  E-value: 1.40e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKdyeiKYCYV---DRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQ 111
Cdd:cd12343     1 KIFVGNLPDAATSEELRALFE----KYGKVtecDIVKNYAFVHMEKEEDAEDAIKALNGYEFMGSRINVE 66
RRM1_HuD cd12770
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup ...
119-188 2.16e-09

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM1 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells, as well as the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410163 [Multi-domain]  Cd Length: 81  Bit Score: 54.73  E-value: 2.16e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12770     4 LIVNYLPQNMTQEEFRSLFGSIGEIESCKLVRDKITGQSLGYGFVNYIDPKDAEKAINTLNGLRLQTKTI 73
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
119-188 2.43e-09

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 54.33  E-value: 2.43e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12649     3 LIVNYLPQDLTDREFRALFRAIGPVNTCKIVRDKKTGYSYGFGFVDFTSEEDAQRAIKTLNGLQLQNKRL 72
RRM1_HuC cd12772
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup ...
119-188 2.84e-09

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM1 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410165 [Multi-domain]  Cd Length: 85  Bit Score: 54.35  E-value: 2.84e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12772     7 LIVNYLPQNMTQEEFKSLFGSIGDIESCKLVRDKITGQSLGYGFVNYVDPNDADKAINTLNGLKLQTKTI 76
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
119-188 4.48e-09

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 53.68  E-value: 4.48e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12399     1 LYVGNLPYSASEEQLKSLFGQFGAVFDVKLPMDRETKRPRGFGFVELQEEESAEKAIAKLDGTDFMGRTI 70
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
117-187 7.64e-09

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 53.10  E-value: 7.64e-09
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 117 ALLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDEST 187
Cdd:cd12652     1 ANLYVSGLPKTMTQKELEQLFSQFGRIITSRILCDNVTGLSRGVGFIRFDKRVEAERAIKALNGTIPPGAT 71
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
123-184 8.41e-09

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 52.56  E-value: 8.41e-09
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 123 NLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLD 184
Cdd:cd21608     6 NLSWDTTEDDLRDLFSEFGEVESAKVITDRETGRSRGFGFVTFSTAEAAEAAIDALNGKELD 67
RRM1_HuB cd12771
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup ...
119-188 1.05e-08

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM1 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads and is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410164 [Multi-domain]  Cd Length: 83  Bit Score: 52.81  E-value: 1.05e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12771     7 LIVNYLPQNMTQEELKSLFGSIGEIESCKLVRDKITGQSLGYGFVNYIEPKDAEKAINTLNGLRLQTKTI 76
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
119-184 1.25e-08

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 52.23  E-value: 1.25e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLD 184
Cdd:cd12363     4 LGVFGLSLYTTERDLREVFSRYGPIEKVQVVYDQQTGRSRGFGFVYFESVEDAKEAKERLNGQEID 69
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
119-192 1.48e-08

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 52.08  E-value: 1.48e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQW 192
Cdd:cd12674     3 LFVRNLPFDVTLESLTDFFSDIGPVKHAVVVTDPETKKSRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKLDF 76
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
119-184 1.76e-08

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 51.82  E-value: 1.76e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLD 184
Cdd:cd12413     2 LFVRNLPYDTTDEQLEELFSDVGPVKRCFVVKDKGKDKCRGFGYVTFALAEDAQRALEEVKGKKFG 67
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
119-188 1.82e-08

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 51.95  E-value: 1.82e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12392     5 LFVKGLPFSCTKEELEELFKQHGTVKDVRLVTYR-NGKPKGLAYVEYENEADASQAVLKTDGTEIKDHTI 73
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
51-174 3.17e-08

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 56.18  E-value: 3.17e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  51 LPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQYSLRGKEISVQL------QPTDA 117
Cdd:TIGR01659 115 LPQDMTDRELYALFRTIgPINTCRIMRDYKTgysfgyAFVDFGSEADSQRAIKNLNGITVRNKRLKVSYarpggeSIKDT 194
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 118 LLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:TIGR01659 195 NLYVTNLPRTITDDQLDTIFGKYGQIVQKNILRDKLTGTPRGVAFVRFNKREEAQEA 251
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
29-335 3.30e-08

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 56.74  E-value: 3.30e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  29 VARRLASTRRELGNRRK---ILLRNLPAESSSQEIHDLFKDY-EIKYCYV--DRNKRT---AFVTLLNGEQAQNAIQKFH 99
Cdd:TIGR01628 161 VGRFIKKHEREAAPLKKftnLYVKNLDPSVNEDKLRELFAKFgEITSAAVmkDGSGRSrgfAFVNFEKHEDAAKAVEEMN 240
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 100 QYSL----RGKEISVQ-LQPTD-----------------------ALLCITNLPISFTLEEFEELVRAYGNVERCFLVYN 151
Cdd:TIGR01628 241 GKKIglakEGKKLYVGrAQKRAereaelrrkfeelqqerkmkaqgVNLYVKNLDDTVTDEKLRELFSECGEITSAKVMLD 320
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 152 EvTGHSKGYGFVEYMKKDSAAKARLELLGKqldestlfaqwmdvnllttnLIHSKCLCVDKFQKDYADSKELIQAFSlKY 231
Cdd:TIGR01628 321 E-KGVSRGFGFVCFSNPEEANRAVTEMHGR--------------------MLGGKPLYVALAQRKEQRRAHLQDQFM-QL 378
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 232 KPVFCQFAQdEDSCIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYcaPGAPGRSTLAALIAAQRMMRNNRKGLLP 311
Cdd:TIGR01628 379 QPRMRQLPM-GSPMGGAMGQPPYYGQGPQQQFNGQPLGWPRMSMMPTPMG--PGGPLRPNGLAPMNAVRAPSRNAQNAAQ 455
                         330       340
                  ....*....|....*....|....*.
gi 1929828186 312 EP--NPVQIMKSFNNPAMLQMLLQPQ 335
Cdd:TIGR01628 456 KPpmQPVMYPPNYQSLPLSQDLPQPQ 481
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
119-188 3.50e-08

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 56.10  E-value: 3.50e-08
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:TIGR01661   6 LIVNYLPQTMTQEEIRSLFTSIGEIESCKLVRDKVTGQSLGYGFVNYVRPEDAEKAVNSLNGLRLQNKTI 75
RRM2_RBM45 cd12367
RNA recognition motif 2 (RRM2) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
125-174 4.06e-08

RNA recognition motif 2 (RRM2) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM2 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409802 [Multi-domain]  Cd Length: 74  Bit Score: 50.84  E-value: 4.06e-08
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1929828186 125 PISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12367     9 PKSYTEEDLREKFKEFGDIEYCSIVKDKNTGESKGFGYVKFLKPSQAALA 58
U2AF_lg TIGR01642
U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of ...
11-202 6.94e-08

U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of an N-terminal arginine-rich low complexity domain followed by three tandem RNA recognition motifs (pfam00076). The well-characterized members of this family are auxilliary components of the U2 small nuclear ribonuclearprotein splicing factor (U2AF). These proteins are closely related to the CC1-like subfamily of splicing factors (TIGR01622). Members of this subfamily are found in plants, metazoa and fungi.


Pssm-ID: 273727 [Multi-domain]  Cd Length: 509  Bit Score: 55.67  E-value: 6.94e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  11 LPAESSRGVRPPPLGPEEVARRLAstrrelgnrRKILLRNLPAESSSQEIHDLFKDY-------------EIKYCYVDRN 77
Cdd:TIGR01642 152 LLAEGSIITPLPVLPYQQQATRQA---------RRLYVGGIPPEFVEEAVVDFFNDLmiatgyhkaedgkHVSSVNINKE 222
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  78 KRTAFVTLLNGEQAQNA--------------IQKFHQY--SLRGKEISVQLQPTDAL------------------LCITN 123
Cdd:TIGR01642 223 KNFAFLEFRTVEEATFAmaldsiiysnvflkIRRPHDYipVPQITPEVSQKNPDDNAknveklvnsttvldskdrIYIGN 302
                         170       180       190       200       210       220       230
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186 124 LPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQWMDVNLLTTNL 202
Cdd:TIGR01642 303 LPLYLGEDQIKELLESFGDLKAFNLIKDIATGLSKGYAFCEYKDPSVTDVAIAALNGKDTGDNKLHVQRACVGANQATI 381
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
46-108 7.48e-08

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 49.92  E-value: 7.48e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186  46 ILLRNLPAESSSQEIHDLFKDY-EIKYCYV-----DRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEI 108
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFgPIKSIRLvrdetGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
46-110 1.15e-07

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 49.92  E-value: 1.15e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186  46 ILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRTAFV---TLL---NGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:cd12324     9 IFVTGVHEEAQEEDIHDKFAEFgEIKNLHLNLDRRTGFVkgyALVeyeTKKEAQAAIEGLNGKELLGQTISV 80
RRM1_HuR cd12769
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup ...
119-188 1.21e-07

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM1 of HuR, also termed ELAV-like protein 1 (ELAV-1), a ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response; it binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. Meanwhile, HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410162 [Multi-domain]  Cd Length: 82  Bit Score: 49.65  E-value: 1.21e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12769     5 LIVNYLPQNMTQDELRSLFSSIGEVESAKLIRDKVAGHSLGYGFVNYVTAKDAERAINTLNGLRLQSKTI 74
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
116-174 1.24e-07

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 49.51  E-value: 1.24e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186 116 DALLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12651     2 DTNLYVTNLPRTITEDELDTIFGAYGNIVQKNLLRDKLTGRPRGVAFVRYDKREEAQAA 60
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
46-110 1.47e-07

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 49.10  E-value: 1.47e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186  46 ILLRNLPAESSSQEIHDLFKDYE-----IKYCYVDRNKRT--AFVTLLNGEQAQNAIQKfHQYSLRGKEISV 110
Cdd:cd12254     2 VRLRGLPFSATEEDIRDFFSGLDippdgIHIVYDDDGRPTgeAYVEFASEEDAQRALRR-HKGKMGGRYIEV 72
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
121-183 1.89e-07

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 49.05  E-value: 1.89e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKAR-----LELLGKQL 183
Cdd:cd12398     5 VGNIPYDATEEQLKEIFSEVGPVVSFRLVTDRETGKPKGYGFCEFRDAETALSAVrnlngYELNGRPL 72
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
126-189 1.95e-07

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 49.02  E-value: 1.95e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 126 ISFTLEE--FEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLF 189
Cdd:cd12449     8 LSFDTNEqsLEEVFSKYGQISEVVVVKDRETQRSRGFGFVTFENPDDAKDAMMAMNGKSLDGRQIR 73
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
131-184 2.16e-07

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 49.16  E-value: 2.16e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1929828186 131 EEFEElvraYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLD 184
Cdd:cd12236    20 REFEK----YGPIKRVRLVRDKKTGKSRGYAFIEFEHERDMKAAYKHADGKKID 69
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
14-183 2.78e-07

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 53.77  E-value: 2.78e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  14 ESSRGVRPPPLGPEEVARRLASTRRElgnRRKILLRNLPAESSSQEIHDLF----KDYEIKyCYVDRNKR----TAFVTL 85
Cdd:TIGR01622  88 DDRRSRREKPRARDGTPEPLTEDERD---RRTVFVQQLAARARERDLYEFFskvgKVRDVQ-IIKDRNSRrskgVGYVEF 163
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  86 LNGEQAQNAIQKFHQyslRGKEISVQLQPTDA-----------------------LLCITNLPISFTLEEFEELVRAYGN 142
Cdd:TIGR01622 164 YDVDSVQAALALTGQ---KLLGIPVIVQLSEAeknraaraatetsghhpnsipfhRLYVGNLHFNITEQDLRQIFEPFGE 240
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|.
gi 1929828186 143 VERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQL 183
Cdd:TIGR01622 241 IEFVQLQKDPETGRSKGYGFIQFRDAEQAKEALEKMNGFEL 281
RRM2_U2AF65 cd12231
RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
121-191 3.49e-07

RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; This subfamily corresponds to the RRM2 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409678 [Multi-domain]  Cd Length: 77  Bit Score: 48.03  E-value: 3.49e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQ 191
Cdd:cd12231     5 IGGLPNYLNEDQVKELLQSFGKLKAFNLVKDSATGLSKGYAFCEYVDDNVTDQAIAGLNGMQLGDKKLLVQ 75
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
119-181 4.10e-07

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 48.18  E-value: 4.10e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGK 181
Cdd:cd12566     5 LFLRNLPYSTKEDDLQKLFSKFGEVSEVHVPIDKKTKKSKGFAYVLFLDPEDAVQAYNELDGK 67
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
119-188 4.15e-07

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 47.99  E-value: 4.15e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVY---NEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12318     3 LFVKNLNFKTTEEALKKHFEKCGPIRSVTIAKkkdPKGPLLSMGYGFVEFKSPEAAQKALKQLQGTVLDGHAL 75
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
45-112 4.96e-07

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 47.57  E-value: 4.96e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKD-YEIKYCYV--DRNKR---TAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQL 112
Cdd:cd12418     2 RVRVSNLHPDVTEEDLRELFGRvGPVKSVKInyDRSGRstgTAYVVFERPEDAEKAIKQFDGVLLDGQPMKVEL 75
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
119-189 6.81e-07

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 47.01  E-value: 6.81e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNevtghsKGYGFVEYMKKDSAAKARLELLGKQLDESTLF 189
Cdd:cd12340     2 LFVRPFPPDTSESAIREIFSPYGPVKEVKMLSD------SNFAFVEFEELEDAIRAKDSVHGRVLNNEPLY 66
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
119-189 8.30e-07

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 47.71  E-value: 8.30e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLF 189
Cdd:cd12237     7 LFVGRLSLQTTEEKLKEVFSRYGDIRRLRLVRDIVTGFSKRYAFIEYKEERDALHAYRDAKKLVIDQYEIF 77
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
121-188 9.30e-07

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 46.89  E-value: 9.30e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12393     6 VSNLPFSLTNNDLHQIFSKYGKVVKVTILKDKETRKSKGVAFVLFLDRESAHNAVRAMNNKELFGRTL 73
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
221-280 9.34e-07

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 46.89  E-value: 9.34e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 221 KELIQAFSLKYKPVFCQFAQDEDSCIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQVS 280
Cdd:cd00590    13 EDLRELFSKFGEVVSVRIVRDRDGKSKGFAFVEFESPEDAEKALEALNGTELGGRPLKVS 72
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
119-183 1.03e-06

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 46.85  E-value: 1.03e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKAR-----LELLGKQL 183
Cdd:cd12284     1 LYVGSLHFNITEDMLRGIFEPFGKIEFVQLQKDPETGRSKGYGFIQFRDAEDAKKALeqlngFELAGRPM 70
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
119-180 1.37e-06

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 46.25  E-value: 1.37e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKArLELLG 180
Cdd:cd12448     1 LFVGNLPFSATQDALYEAFSQHGSIVSVRLPTDRETGQPKGFGYVDFSTIDSAEAA-IDALG 61
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
121-189 1.39e-06

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 46.41  E-value: 1.39e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLF 189
Cdd:cd12379     7 IKNLDKSIDNKALYDTFSAFGNILSCKVATDE-NGGSKGYGFVHFETEEAAERAIEKVNGMLLNGKKVF 74
RRM3_Crp79_Mug28 cd21622
RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
131-192 1.63e-06

RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the three RRM motif.


Pssm-ID: 410201 [Multi-domain]  Cd Length: 92  Bit Score: 46.59  E-value: 1.63e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 131 EEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQW 192
Cdd:cd21622    20 EDLEQLFSPFGQIVSSYLATYPGTGISKGFGFVAFSKPEDAAKAKETLNGVMVGRKRIFVSY 81
RRM1_RBM40_like cd12238
RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
47-111 1.85e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM1 of RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein), It serves as a bridging factor between the U11 and U12 snRNPs. It contains two repeats of RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions.


Pssm-ID: 409684 [Multi-domain]  Cd Length: 73  Bit Score: 46.09  E-value: 1.85e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186  47 LLRNLPAESSSQEIHDLFKDY---EIKYCYVD-RNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQ 111
Cdd:cd12238     3 LVRHLPPELSEDDKEDLLKHFgatSVRVMKRRgKLKHTAFATFDNEQAASKALSRLHQLKILGKRLVVE 71
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
119-179 2.05e-06

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 46.26  E-value: 2.05e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEyMKKDSAAKARLELL 179
Cdd:cd21609     2 LYVGNIPRNVTSEELAKIFEEAGTVEIAEVMYDRYTGRSRGFGFVT-MGSVEDAKAAIEKL 61
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
123-188 2.08e-06

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 46.35  E-value: 2.08e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 123 NLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12671    13 NIPYEATEEQLKDIFSEVGPVVSFRLVYDRETGKPKGYGFCEYQDQETALSAMRNLNGYELNGRAL 78
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
76-284 2.28e-06

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 50.77  E-value: 2.28e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  76 RNKRTAFVTLLNGEQAQNAIQKFHQYSLR-GKEISVQLQPTDALLCITNLPISFT----LEEFEELVRAYGNVercfLVY 150
Cdd:TIGR01648  97 QNRGYAFVTFCGKEEAKEAVKLLNNYEIRpGRLLGVCISVDNCRLFVGGIPKNKKreeiLEEFSKVTEGVVDV----IVY 172
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 151 NEVTGHSK--GYGFVEYMKKDSAAKARLELL-GK-QLDESTLFAQWMD--VNLLTTNLIHSKCLCVDKFQkdYADSKELI 224
Cdd:TIGR01648 173 HSAADKKKnrGFAFVEYESHRAAAMARRKLMpGRiQLWGHVIAVDWAEpeEEVDEDVMAKVKILYVRNLM--TTTTEEII 250
                         170       180       190       200       210       220
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 225 QAFSLKYKPVFCQFAQDedscIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYCAP 284
Cdd:TIGR01648 251 EKSFSEFKPGKVERVKK----IRDYAFVHFEDREDAVKAMDELNGKELEGSEIEVTLAKP 306
RRM1_MSSP cd12243
RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) ...
121-174 2.84e-06

RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM1 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus, they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. Moreover, the family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409689 [Multi-domain]  Cd Length: 71  Bit Score: 45.38  E-value: 2.84e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12243     5 IRGLPPNTTDEDLLLLCQSFGKIISTKAIIDKQTNKCKGYGFVDFDSPEAALKA 58
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
119-174 2.89e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 45.38  E-value: 2.89e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12564     3 LIVKNLPSSITEDRLRKLFSAFGTITDVQLKYTK-DGKFRRFGFVGFKSEEEAQKA 57
RRM1_RBM45 cd12366
RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
127-187 3.15e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM1 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409801 [Multi-domain]  Cd Length: 81  Bit Score: 45.77  E-value: 3.15e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 127 SFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDEST 187
Cdd:cd12366    13 SVTEDDLREAFSPFGEIQDIWVVKDKQTKESKGIAYVKFAKSSQAARAMEEMHGKCLGDDT 73
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
119-188 3.22e-06

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 45.30  E-value: 3.22e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12362     1 LFVYHLPNEFTDQDLYQLFAPFGNVVSAKVFVDKNTGRSKGFGFVSYDNPLSAQAAIKAMNGFQVGGKRL 70
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
130-184 5.12e-06

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 44.73  E-value: 5.12e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1929828186 130 LEEFEElvraYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLD 184
Cdd:cd12447    17 KKEFEK----YGGVISARVITDRGSGRSKGYGYVDFATPEAAQKALAAMSGKEID 67
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
119-188 5.65e-06

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 44.54  E-value: 5.65e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVynevtghsKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12251     4 LYVRNLMLSTTEEKLRELFSEYGKVERVKKI--------KDYAFVHFEERDDAVKAMEEMNGKELEGSEI 65
RRM2_VICKZ cd12359
RNA recognition motif 2 (RRM2) found in the VICKZ family proteins; This subfamily corresponds ...
44-110 6.15e-06

RNA recognition motif 2 (RRM2) found in the VICKZ family proteins; This subfamily corresponds to the RRM2 of IGF-II mRNA-binding proteins (IGF2BPs or IMPs) in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 409794 [Multi-domain]  Cd Length: 76  Bit Score: 44.67  E-value: 6.15e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186  44 RKILLRNLPAESSSQEIHDLFKDY-EIKYCY---VDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:cd12359     1 RKIQIRNIPPHARWEDLDSLLSTYgTVENCEqvnTKSETATVNVTYESPEQAQQAVNKLNGYQYEGSALKV 71
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
119-182 6.39e-06

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 44.54  E-value: 6.39e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQ 182
Cdd:cd12361     2 LFVGMIPKTASEEDVRPLFEQFGNIEEVQILRDKQTGQSKGCAFVTFSTREEALRAIEALHNKK 65
RRM2_HuB cd12775
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup ...
116-182 8.19e-06

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM2 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410168 [Multi-domain]  Cd Length: 84  Bit Score: 44.71  E-value: 8.19e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 116 DALLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQ 182
Cdd:cd12775     5 DANLYVSGLPKTMTQKELEQLFSQYGRIITSRILVDQVTGVSRGVGFIRFDKRIEAEEAIKGLNGQK 71
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
45-112 8.69e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 44.12  E-value: 8.69e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQYSLRGKEISVQL 112
Cdd:cd12413     1 TLFVRNLPYDTTDEQLEELFSDVgPVKRCFVVKDKGKdkcrgfGYVTFALAEDAQRALEEVKGKKFGGRKIKVEL 75
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
45-110 8.81e-06

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 44.33  E-value: 8.81e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY------EIKY-CYVDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:cd21609     1 RLYVGNIPRNVTSEELAKIFEEAgtveiaEVMYdRYTGRSRGFGFVTMGSVEDAKAAIEKLNGTEVGGREIKV 73
RRM2_HuD cd12774
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup ...
116-182 9.28e-06

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM2 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells and also regulates the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410167 [Multi-domain]  Cd Length: 84  Bit Score: 44.33  E-value: 9.28e-06
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 116 DALLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQ 182
Cdd:cd12774     5 DANLYVSGLPKTMTQKELEQLFSQYGRIITSRILVDQVTGVSRGVGFIRFDKRIEAEEAIKGLNGQK 71
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
123-188 1.16e-05

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 43.83  E-value: 1.16e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 123 NLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKArlellgKQLDESTL 188
Cdd:cd12306     6 NVDYGTTPEELQAHFKSCGTINRVTILCDKFTGQPKGFAYIEFVDKSSVENA------LLLNESEF 65
RRM2_HuC cd12776
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup ...
116-182 1.16e-05

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM2 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241220 [Multi-domain]  Cd Length: 81  Bit Score: 44.22  E-value: 1.16e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 116 DALLCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQ 182
Cdd:cd12776     1 DANLYVSGLPKTMSQKEMEQLFSQYGRIITSRILVDQVTGVSRGVGFIRFDKRIEAEEAIKGLNGQK 67
RRM1_RBM4 cd12606
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup ...
45-111 1.42e-05

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 4 (RBM4); This subgroup corresponds to the RRM1 of RBM4, a ubiquitously expressed splicing factor that has two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may function as a translational regulator of stress-associated mRNAs and also plays a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. The C-terminal region may be crucial for nuclear localization and protein-protein interaction. The RRMs, in combination with the C-terminal region, are responsible for the splicing function of RBM4.


Pssm-ID: 410018 [Multi-domain]  Cd Length: 67  Bit Score: 43.26  E-value: 1.42e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCyvDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQ 111
Cdd:cd12606     2 KLFIGNLPREATEEEIRSLFEQYgKVTEC--DIIKNYGFVHMEDKSAADEAIRNLHHYKLHGVAINVE 67
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
119-184 1.43e-05

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 43.54  E-value: 1.43e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGhSKGYGFVEYMKKDSAAKARLELLGKQLD 184
Cdd:cd12407     3 LHVSNIPFRFRDPDLRQMFGQFGTILDVEIIFNE-RG-SKGFGFVTFANSADADRAREKLNGTVVE 66
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
119-188 1.43e-05

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 43.44  E-value: 1.43e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLvynevtGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12332     4 LFVGNLPNDITEEEFKELFQKYGEVSEVFL------NKGKGFGFIRLDTRANAEAAKAELDGTPRKGRQL 67
RRM1_LARP7 cd12290
RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; ...
121-175 1.45e-05

RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; This subfamily corresponds to the RRM1 of LARP7, also termed La ribonucleoprotein domain family member 7, or P-TEFb-interaction protein for 7SK stability (PIP7S), an oligopyrimidine-binding protein that binds to the highly conserved 3'-terminal U-rich stretch (3' -UUU-OH) of 7SK RNA. LARP7 is a stable component of the 7SK small nuclear ribonucleoprotein (7SK snRNP). It intimately associates with all the nuclear 7SK and is required for 7SK stability. LARP7 also acts as a negative transcriptional regulator of cellular and viral polymerase II genes, acting by means of the 7SK snRNP system. It plays an essential role in the inhibition of positive transcription elongation factor b (P-TEFb)-dependent transcription, which has been linked to the global control of cell growth and tumorigenesis. LARP7 contains a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminal region, which mediates binding to the U-rich 3' terminus of 7SK RNA. LARP7 also carries another putative RRM domain at its C-terminus.


Pssm-ID: 409732 [Multi-domain]  Cd Length: 79  Bit Score: 43.47  E-value: 1.45e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKAR 175
Cdd:cd12290     4 VELLPKNATHEWIEAVFSKYGEVVYVSIPRYKSTGDPKGFAFIEFETSESAQKAV 58
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
119-174 1.54e-05

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 43.77  E-value: 1.54e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12376     3 LYVSGLPKTMTQKELEQLFSQYGRIITSRILRDQLTGVSRGVGFIRFDKRIEAEEA 58
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
119-192 1.59e-05

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 43.44  E-value: 1.59e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEV---TGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQW 192
Cdd:cd12355     2 LWIGNLDPRLTEYHLLKLLSKYGKIKKFDFLFHKTgplKGQPRGYCFVTFETKEEAEKAIECLNGKLALGKKLVVRW 78
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
119-184 1.78e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 43.31  E-value: 1.78e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARLELLGKQLD 184
Cdd:cd12414     2 LIVRNLPFKCTEDDLKKLFSKFGKVLEVTIPKKP-DGKLRGFAFVQFTNVADAAKAIKGMNGKKIK 66
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
139-192 2.17e-05

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 43.15  E-value: 2.17e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1929828186 139 AYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQW 192
Cdd:cd12353    22 PFGEISDARVVKDTQTGKSKGYGFVSFVKKEDAENAIQGMNGQWLGGRNIRTNW 75
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
121-188 2.29e-05

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 43.28  E-value: 2.29e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFL--VYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd21619     6 VGNIDMTINEDALEKIFSRYGQVESVRRppIHTDKADRTTGFGFIKYTDAESAERAMQQADGILLGRRRL 75
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
123-189 2.40e-05

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 43.16  E-value: 2.40e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 123 NLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKArLELLGKQLDESTLF 189
Cdd:cd12450     6 NLSWSATQDDLENFFSDCGEVVDVRIAMDRDDGRSKGFGHVEFASAESAQKA-LEKSGQDLGGREIR 71
RRM2_FCA cd12637
RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar ...
119-181 2.86e-05

RNA recognition motif 2 (RRM2) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM2 of FCA, a gene controlling flowering time in Arabidopsis, which encodes a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. The flowering time control protein FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 410045 [Multi-domain]  Cd Length: 81  Bit Score: 42.75  E-value: 2.86e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGK 181
Cdd:cd12637     2 LFVGSLPKTATEQEVRDLFEAYGEVEEVYLMKDPVTQQGTGCAFVKFAYKEEALAAIRSLNGT 64
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
121-183 3.68e-05

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 42.27  E-value: 3.68e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA-----RLELLGKQL 183
Cdd:cd12371     5 VASVHPDLSEDDIKSVFEAFGKIKSCSLAPDPETGKHKGYGFIEYENPQSAQDAiasmnLFDLGGQYL 72
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
119-174 3.91e-05

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 42.22  E-value: 3.91e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNeVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12320     3 LIVKNVPFEATRKEIRELFSPFGQLKSVRLPKK-FDGSHRGFAFVEFVTKQEAQNA 57
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
45-101 4.57e-05

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 42.22  E-value: 4.57e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCY----VDRNKRT-AFVTLLNGEQAQNAIQKF---HQY 101
Cdd:cd12320     2 KLIVKNVPFEATRKEIRELFSPFgQLKSVRlpkkFDGSHRGfAFVEFVTKQEAQNAMEALkstHLY 67
RRM_NIFK_like cd12307
RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) ...
121-171 4.85e-05

RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) and similar proteins; This subgroup corresponds to the RRM of NIFK and Nop15p. NIFK, also termed MKI67 FHA domain-interacting nucleolar phosphoprotein, or nucleolar phosphoprotein Nopp34, is a putative RNA-binding protein interacting with the forkhead associated (FHA) domain of pKi-67 antigen in a mitosis-specific and phosphorylation-dependent manner. It is nucleolar in interphase but associates with condensed mitotic chromosomes. This family also includes Saccharomyces cerevisiae YNL110C gene encoding ribosome biogenesis protein 15 (Nop15p), also termed nucleolar protein 15. Both, NIFK and Nop15p, contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409748 [Multi-domain]  Cd Length: 74  Bit Score: 42.18  E-value: 4.85e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1929828186 121 ITNLPISFtleeFEELVRAY----GNVERCFLVYNEVTGHSKGYGFVEYMKKDSA 171
Cdd:cd12307     4 IGHLPHGF----YEPELRKYfsqfGTVTRLRLSRSKKTGKSKGYAFVEFEDPEVA 54
RRM3_RBM19 cd12567
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
119-180 5.37e-05

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409983 [Multi-domain]  Cd Length: 79  Bit Score: 41.99  E-value: 5.37e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLG 180
Cdd:cd12567     5 LFVRNLPYTCTEEDLEKLFSKYGPLSEVHFPIDSLTKKPKGFAFVTYMIPEHAVKAYAELDG 66
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
124-174 5.51e-05

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 41.98  E-value: 5.51e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 124 LPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12384     8 LPYHTTDDSLREYFEQFGEIEEAVVITDRQTGKSRGYGFVTMADREAAERA 58
RRM3_PES4_MIP6 cd21603
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
46-110 7.58e-05

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410182 [Multi-domain]  Cd Length: 73  Bit Score: 41.50  E-value: 7.58e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  46 ILLRNLPAESSSQEIHDLF-KDYEIKYCYVDR----NKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:cd21603     3 IFVKNLPLDTNNDEILDFFsKVGPIKSVFTSPkykyNSLWAFVTYKKGSDTEKAIKLLNGTLFKGRTIEV 72
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
44-112 9.09e-05

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 41.48  E-value: 9.09e-05
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186  44 RKILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRT---------AFVTLLNGEQAQNAIQKfHQYSLRGKEISVQL 112
Cdd:cd12298     1 REIRVRNLDFELDEEALRGIFEKFgEIESINIPKKQKNrkgrhnngfAFVTFEDADSAESALQL-NGTLLDNRKISVSL 78
RRM_PPIL4 cd12235
RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and ...
114-174 9.72e-05

RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and similar proteins; This subfamily corresponds to the RRM of PPIase, also termed cyclophilin-like protein PPIL4, or rotamase PPIL4, a novel nuclear RNA-binding protein encoded by cyclophilin-like PPIL4 gene. The precise role of PPIase remains unclear. PPIase contains a conserved N-terminal peptidyl-prolyl cistrans isomerase (PPIase) motif, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a lysine rich domain, and a pair of bipartite nuclear targeting sequences (NLS) at the C-terminus.


Pssm-ID: 409681 [Multi-domain]  Cd Length: 83  Bit Score: 41.49  E-value: 9.72e-05
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 114 PTDALLCITNL-PISfTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12235     1 PPENVLFVCKLnPVT-TDEDLEIIFSRFGKIKSCEVIRDKKTGDSLQYAFIEFETKESCEEA 61
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
50-111 1.01e-04

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 41.06  E-value: 1.01e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186  50 NLPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQYSLRGKEISVQ 111
Cdd:cd12362     5 HLPNEFTDQDLYQLFAPFgNVVSAKVFVDKNTgrskgfGFVSYDNPLSAQAAIKAMNGFQVGGKRLKVQ 73
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
119-174 1.08e-04

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 41.24  E-value: 1.08e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12321     2 LIVLGLPWKTTEQDLKEYFSTFGEVLMVQVKKDPKTGRSKGFGFVRFASYETQVKV 57
RRM_Nop15p cd12552
RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; ...
121-174 1.12e-04

RNA recognition motif in yeast ribosome biogenesis protein 15 (Nop15p) and similar proteins; This subgroup corresponds to the RRM of Nop15p, also termed nucleolar protein 15, which is encoded by YNL110C from Saccharomyces cerevisiae, and localizes to the nucleoplasm and nucleolus. Nop15p has been identified as a component of a pre-60S particle. It interacts with RNA components of the early pre-60S particles. Furthermore, Nop15p binds directly to a pre-rRNA transcript in vitro and is required for pre-rRNA processing. It functions as a ribosome synthesis factor required for the 5' to 3' exonuclease digestion that generates the 5' end of the major, short form of the 5.8S rRNA as well as for processing of 27SB to 7S pre-rRNA. Nop15p also play a specific role in cell cycle progression. Nop15p contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409968 [Multi-domain]  Cd Length: 77  Bit Score: 41.00  E-value: 1.12e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12552     4 VSHLPHGFHEKELKKYFAQFGDLKNVRLARSKKTGNSKHYGFLEFVNPEDAMIA 57
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
121-171 1.13e-04

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 42.03  E-value: 1.13e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSA 171
Cdd:cd12676     6 VRNLPFDATEDELYSHFSQFGPLKYARVVKDPATGRSKGTAFVKFKNKEDA 56
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
140-191 1.36e-04

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 40.61  E-value: 1.36e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 140 YGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQ 191
Cdd:cd12365    22 YGTVKNVDLPIDREPNLPRGYAYVEFESPEDAEKAIKHMDGGQIDGQEVTVE 73
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
119-189 1.38e-04

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 40.72  E-value: 1.38e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLF 189
Cdd:cd12381     4 LYVKNLDDTIDDEKLREEFSPFGTITSAKVMTDE-GGRSKGFGFVCFSSPEEATKAVTEMNGRIIGGKPLY 73
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
45-110 1.55e-04

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 40.62  E-value: 1.55e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:cd21608     1 KLYVGNLSWDTTEDDLRDLFSEFgEVESAKVITDRETgrsrgfGFVTFSTAEAAEAAIDALNGKELDGRSIVV 73
RRM2_VICKZ cd12359
RNA recognition motif 2 (RRM2) found in the VICKZ family proteins; This subfamily corresponds ...
121-188 1.56e-04

RNA recognition motif 2 (RRM2) found in the VICKZ family proteins; This subfamily corresponds to the RRM2 of IGF-II mRNA-binding proteins (IGF2BPs or IMPs) in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 409794 [Multi-domain]  Cd Length: 76  Bit Score: 40.82  E-value: 1.56e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKgygFVEYMKKDSAAKARLELLGKQLDESTL 188
Cdd:cd12359     5 IRNIPPHARWEDLDSLLSTYGTVENCEQVNTKSETATV---NVTYESPEQAQQAVNKLNGYQYEGSAL 69
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
121-197 1.70e-04

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 40.64  E-value: 1.70e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARlellgKQLDESTLFAQWMDVNL 197
Cdd:cd12418     5 VSNLHPDVTEEDLRELFGRVGPVKSVKINYDR-SGRSTGTAYVVFERPEDAEKAI-----KQFDGVLLDGQPMKVEL 75
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
131-192 1.96e-04

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 40.67  E-value: 1.96e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 131 EEFEElvraYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQW 192
Cdd:cd12324    25 DKFAE----FGEIKNLHLNLDRRTGFVKGYALVEYETKKEAQAAIEGLNGKELLGQTISVDW 82
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
124-184 2.08e-04

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 40.38  E-value: 2.08e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1929828186 124 LPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSA----AKARLELLGKQLD 184
Cdd:cd12330     7 LAPDVTEEEFKEYFEQFGTVVDAVVMLDHDTGRSRGFGFVTFDSESAVekvlSKGFHELGGKKVE 71
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
124-178 2.19e-04

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 41.53  E-value: 2.19e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1929828186 124 LPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLEL 178
Cdd:cd21615    26 LDYSLTELELQKKFSKFGEIEKIRIVRDKETGKSRGYAFIVFKSESDAKNAFKEG 80
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
45-112 2.27e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 40.37  E-value: 2.27e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNK-----RTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQL 112
Cdd:cd12564     2 RLIVKNLPSSITEDRLRKLFSAFgTITDVQLKYTKdgkfrRFGFVGFKSEEEAQKALKHFNNSFIDTSRITVEE 75
RRM1_VICKZ cd12358
RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds ...
50-110 3.30e-04

RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds to the RRM1 of IGF2BPs (or IMPs) found in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 240804 [Multi-domain]  Cd Length: 73  Bit Score: 39.66  E-value: 3.30e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186  50 NLPAESSSQEIHDLFKDYEIKYCYVDRNKRT-AFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:cd12358     5 NLSSDVNESDLRQLFEEHKIPVSSVLVKKGGyAFVDCPDQSWADKAIEKLNGKILQGKVIEV 66
RRM_II_PABPN1 cd12550
RNA recognition motif in type II polyadenylate-binding protein 2 (PABP-2) and similar proteins; ...
123-189 3.52e-04

RNA recognition motif in type II polyadenylate-binding protein 2 (PABP-2) and similar proteins; This subgroup corresponds to the RRM of PABP-2, also termed poly(A)-binding protein 2, or nuclear poly(A)-binding protein 1 (PABPN1), or poly(A)-binding protein II (PABII), which is a ubiquitously expressed type II nuclear poly(A)-binding protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. Although PABP-2 binds poly(A) with high affinity and specificity as type I poly(A)-binding proteins, it contains only one highly conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is responsible for the poly(A) binding. In addition, PABP-2 possesses an acidic N-terminal domain that is essential for the stimulation of PAP, and an arginine-rich C-terminal domain.


Pssm-ID: 409966 [Multi-domain]  Cd Length: 76  Bit Score: 39.79  E-value: 3.52e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 123 NLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKArlellgKQLDEStLF 189
Cdd:cd12550     6 NVDYGATAEELEAHFHGCGSVNRVTILCDKFSGHPKGFAYIEFADKESVRTA------LALDES-LF 65
RRM1_hnRNPA_hnRNPD_like cd12325
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and ...
139-184 3.75e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and hnRNP D subfamilies and similar proteins; This subfamily corresponds to the RRM1 in the hnRNP A subfamily which includes hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The hnRNP D subfamily includes hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus, plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this subfamily contain two putative RRMs and a glycine- and tyrosine-rich C-terminus. The family also contains DAZAP1 (Deleted in azoospermia-associated protein 1), RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins. They all harbor two RRMs.


Pssm-ID: 409763 [Multi-domain]  Cd Length: 72  Bit Score: 39.43  E-value: 3.75e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 1929828186 139 AYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLE----LLGKQLD 184
Cdd:cd12325    21 KYGEVVDCVVMKDPATGRSRGFGFVTFKDPSSVDAVLAArphtLDGRTID 70
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
44-96 4.36e-04

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 40.10  E-value: 4.36e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  44 RKILLRNLPAESSSQEIHDLFKDY-EIKYCYV------DRNKRTAFVTLLNGEQAQNAIQ 96
Cdd:cd12676     2 RTLFVRNLPFDATEDELYSHFSQFgPLKYARVvkdpatGRSKGTAFVKFKNKEDADNCLS 61
RRM2_CoAA cd12609
RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator ...
45-112 4.44e-04

RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410021 [Multi-domain]  Cd Length: 68  Bit Score: 39.06  E-value: 4.44e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCyvDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQL 112
Cdd:cd12609     2 KIFVGNVSATCTSDELRGLFEEFgRVVEC--DKVKDYAFVHMEREEEALAAIEALNGKEVKGRRINVEL 68
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
44-106 4.84e-04

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 39.37  E-value: 4.84e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186  44 RKILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQYSLRGK 106
Cdd:cd12674     1 TTLFVRNLPFDVTLESLTDFFSDIgPVKHAVVVTDPETkksrgyGFVSFSTHDDAEEALAKLKNRKLSGH 70
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
123-183 5.35e-04

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 39.13  E-value: 5.35e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 123 NLPISFTLEEFEELVRAYGNVERCFLVyNEVTGHSKGYGFVEYMKKDSAAKAR-----LELLGKQL 183
Cdd:cd12412     9 GIDWDTTEEELREFFSKFGKVKDVKII-KDRAGVSKGYGFVTFETQEDAEKIQkwganLVFKGKKL 73
RRM_YRA1_MLO3 cd12267
RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA ...
121-174 5.67e-04

RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA export protein mlo3 and similar proteins; This subfamily corresponds to the RRM of Yra1p and mlo3. Yra1p is an essential nuclear RNA-binding protein encoded by Saccharomyces cerevisiae YRA1 gene. It belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p possesses potent RNA annealing activity and interacts with a number of proteins involved in nuclear transport and RNA processing. It binds to the mRNA export factor Mex67p/TAP and couples transcription to export in yeast. Yra1p is associated with Pse1p and Kap123p, two members of the beta-importin family, further mediating transport of Yra1p into the nucleus. In addition, the co-transcriptional loading of Yra1p is required for autoregulation. Yra1p consists of two highly conserved N- and C-terminal boxes and a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This subfamily includes RNA-annealing protein mlo3, also termed mRNA export protein mlo3, which has been identified in fission yeast as a protein that causes defects in chromosome segregation when overexpressed. It shows high sequence similarity with Yra1p.


Pssm-ID: 409711 [Multi-domain]  Cd Length: 78  Bit Score: 39.33  E-value: 5.67e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*
gi 1929828186 121 ITNLPISFTLEEFEEL-VRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12267     5 VSNLPKDVTEAQIREYfVSQIGPIKRVLLSYNE-GGKSTGIANITFKRAGDATKA 58
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
50-111 5.73e-04

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 38.79  E-value: 5.73e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186  50 NLPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQYSLRGKEISVQ 111
Cdd:cd12311     5 NLTYRTTPDDLRRVFEKYgEVGDVYIPRDRYTresrgfAFVRFYDKRDAEDAIDAMDGAELDGRELRVQ 73
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
249-285 6.01e-04

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 39.31  E-value: 6.01e-04
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1929828186 249 FAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYCAPG 285
Cdd:cd12649    44 FGFVDFTSEEDAQRAIKTLNGLQLQNKRLKVAYARPG 80
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
51-105 6.04e-04

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 39.14  E-value: 6.04e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186  51 LPAESSSQEIHDLFKDY-EIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFH-QYSLRG 105
Cdd:cd12361     7 IPKTASEEDVRPLFEQFgNIEEVQILRDKQTgqskgcAFVTFSTREEALRAIEALHnKKTMPG 69
RRM5_MRD1 cd12570
RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 ...
45-111 7.16e-04

RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM5 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 241014 [Multi-domain]  Cd Length: 76  Bit Score: 38.64  E-value: 7.16e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCYV----DRNKRT-AFVTLLNGEQAQNAIQKFHQYSLRGKEISVQ 111
Cdd:cd12570     2 KILVKNLPFEATKKDVRTLFSSYgQLKSVRVpkkfDQSARGfAFVEFSTAKEALNAMNALKDTHLLGRRLVLQ 74
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
121-192 7.85e-04

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 38.42  E-value: 7.85e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERcFLVYNEvtghsKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQW 192
Cdd:cd12354     5 VGNITKGLTEALLQQTFSPFGQILE-VRVFPD-----KGYAFIRFDSHEAATHAIVSVNGTIINGQAVKCSW 70
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
219-279 9.52e-04

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 38.32  E-value: 9.52e-04
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 219 DSKELIQAFSLKYKPVFCQFAQDEDSCIGDFAVVEYETAEQAEKVHEVTDGMTIKGKRIQV 279
Cdd:cd12379    15 DNKALYDTFSAFGNILSCKVATDENGGSKGYGFVHFETEEAAERAIEKVNGMLLNGKKVFV 75
RRM2_PES4_MIP6 cd21602
RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
46-109 1.25e-03

RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410181 [Multi-domain]  Cd Length: 76  Bit Score: 38.16  E-value: 1.25e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186  46 ILLRNLPAES---SSQEIHDLFKDY-EIKYCYVDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEIS 109
Cdd:cd21602     2 VFFSNLPLENprlTTRVFYDTFKKYgKILSCKLDRRKNIGFVYFENDKAARKVIKEYNNKEFFGNKIL 69
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
121-181 1.29e-03

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 37.98  E-value: 1.29e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVtGHSKGYGFVEYMKKDSAAKA----RLELLGK 181
Cdd:cd12391     4 VSNLDYSVPEDKIREIFSGCGEITDVRLVKNYK-GKSKGYCYVEFKDEESAQKAlkldRQPVEGR 67
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
119-184 1.40e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 38.02  E-value: 1.40e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLD 184
Cdd:cd12311     1 LKVDNLTYRTTPDDLRRVFEKYGEVGDVYIPRDRYTRESRGFAFVRFYDKRDAEDAIDAMDGAELD 66
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
119-184 1.53e-03

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 37.98  E-value: 1.53e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKARLELLGKQLD 184
Cdd:cd12680     3 LLVSNLDFGVSDADIKELFAEFGTLKKAAVHYDR-SGRSLGTAEVVFERRADALKAMKQYNGVPLD 67
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
123-183 1.69e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 37.48  E-value: 1.69e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1929828186 123 NLPisFTLEEfEELVRAY---GNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKArLELLGKQL 183
Cdd:cd12395     6 NLP--FDIEE-EELRKHFedcGDVEAVRIVRDRETGIGKGFGYVLFKDKDSVDLA-LKLNGSKL 65
RRM3_HRB1_GBP2 cd21607
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, ...
121-171 1.90e-03

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410186 [Multi-domain]  Cd Length: 79  Bit Score: 37.69  E-value: 1.90e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSA 171
Cdd:cd21607     7 CSNLPLSTAESDLYDLFETIGKVNNAELKYDE-TGDPTGSAVVEYENLDDA 56
RRM_eIF3B cd12278
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B ...
154-190 1.93e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B (eIF-3B) and similar proteins; This subfamily corresponds to the RRM domain in eukaryotic translation initiation factor 3 (eIF-3), a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3B, also termed eIF-3 subunit 9, or Prt1 homolog, eIF-3-eta, eIF-3 p110, or eIF-3 p116, is the major scaffolding subunit of eIF-3. It interacts with eIF-3 subunits A, G, I, and J. eIF-3B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is involved in the interaction with eIF-3J. The interaction between eIF-3B and eIF-3J is crucial for the eIF-3 recruitment to the 40 S ribosomal subunit. eIF-3B also binds directly to domain III of the internal ribosome-entry site (IRES) element of hepatitis-C virus (HCV) RNA through its N-terminal RRM, which may play a critical role in both cap-dependent and cap-independent translation. Additional research has shown that eIF-3B may function as an oncogene in glioma cells and can be served as a potential therapeutic target for anti-glioma therapy. This family also includes the yeast homolog of eIF-3 subunit B (eIF-3B, also termed PRT1 or eIF-3 p90) that interacts with the yeast homologs of eIF-3 subunits A(TIF32), G(TIF35), I(TIF34), J(HCR1), and E(Pci8). In yeast, eIF-3B (PRT1) contains an N-terminal RRM that is directly involved in the interaction with eIF-3A (TIF32) and eIF-3J (HCR1). In contrast to its human homolog, yeast eIF-3B (PRT1) may have potential to bind its total RNA through its RRM domain.


Pssm-ID: 409720 [Multi-domain]  Cd Length: 84  Bit Score: 37.94  E-value: 1.93e-03
                          10        20        30
                  ....*....|....*....|....*....|....*..
gi 1929828186 154 TGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFA 190
Cdd:cd12278    46 TGKTKGFAFVEYATPEEAKKAVKALNGYKLDKKHTFA 82
RRM_SLIRP cd12242
RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and ...
121-177 1.94e-03

RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and similar proteins; This subfamily corresponds to the RRM of SLIRP, a widely expressed small steroid receptor RNA activator (SRA) binding protein, which binds to STR7, a functional substructure of SRA. SLIRP is localized predominantly to the mitochondria and plays a key role in modulating several nuclear receptor (NR) pathways. It functions as a co-repressor to repress SRA-mediated nuclear receptor coactivation. It modulates SHARP- and SKIP-mediated co-regulation of NR activity. SLIRP contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is required for SLIRP's corepression activities.


Pssm-ID: 409688 [Multi-domain]  Cd Length: 73  Bit Score: 37.33  E-value: 1.94e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLE 177
Cdd:cd12242     4 VSNLPWTTGSSELKEYFSQFGKVKRCNLPFDKETGFHKGFGFVSFENEDGLRNALQK 60
RRM2_MSI cd12323
RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, ...
129-174 2.09e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, Musashi-2 and similar proteins; This subfamily corresponds to the RRM2.in Musashi-1 (also termed Msi1), a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 240769 [Multi-domain]  Cd Length: 74  Bit Score: 37.41  E-value: 2.09e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*.
gi 1929828186 129 TLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12323    12 TEDDVKKYFSQFGKVEDAMLMFDKQTNRHRGFGFVTFESEDVVDKV 57
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
45-112 2.24e-03

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 36.99  E-value: 2.24e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQL 112
Cdd:cd12340     1 RLFVRPFPPDTSESAIREIFSPYgPVKEVKMLSDSNFAFVEFEELEDAIRAKDSVHGRVLNNEPLYVTY 69
RRM1_HRB1_GBP2 cd21605
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, ...
121-174 2.48e-03

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410184 [Multi-domain]  Cd Length: 77  Bit Score: 37.27  E-value: 2.48e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEvtGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd21605     6 VGNLPFDCTWEDLKDHFSQVGEVIRADIVTSR--GRHRGMGTVEFTNKEDVDRA 57
RRM1_MSI1 cd12759
RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog 1 (Musashi-1) and ...
121-189 2.98e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog 1 (Musashi-1) and similar proteins; This subgroup corresponds to the RRM1 of Musashi-1. The mammalian MSI1 gene encoding Musashi-1 (also termed Msi1) is a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells and associated with asymmetric divisions in neural progenitor cells. Musashi-1 is evolutionarily conserved from invertebrates to vertebrates. It is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). Musashi-1 has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, it represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-1 contains two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 241203 [Multi-domain]  Cd Length: 77  Bit Score: 37.29  E-value: 2.98e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSA----AKARLELLGKQLDESTLF 189
Cdd:cd12759     5 IGGLSWQTTQEGLREYFGQFGEVKECLVMRDPLTKRSRGFGFVTFMDQAGVdkvlAQSRHELDSKTIDPKVAF 77
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
249-281 3.05e-03

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 37.28  E-value: 3.05e-03
                          10        20        30
                  ....*....|....*....|....*....|...
gi 1929828186 249 FAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSY 281
Cdd:cd12355    46 YCFVTFETKEEAEKAIECLNGKLALGKKLVVRW 78
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
45-112 3.17e-03

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 36.70  E-value: 3.17e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186  45 KILLRNLPAESSSQEIHDLFKDY-EIKYCYVdrNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQL 112
Cdd:cd12608     2 KIFVGNVDEDTSQEELSALFEPYgAVLSCAV--MKQFAFVHMRGEAAADRAIRELNGRELHGRALVVEE 68
RRM3_hnRNPQ cd12495
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
118-184 3.84e-03

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409918 [Multi-domain]  Cd Length: 72  Bit Score: 36.50  E-value: 3.84e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 1929828186 118 LLCITNLPISFTLEEFEELVRAYGNVERcflvynevTGHSKGYGFVEYMKKDSAAKARLELLGKQLD 184
Cdd:cd12495     3 VLFVRNLANTVTEEILEKAFSQFGKLER--------VKKLKDYAFIHFDERDGAVKAMDEMNGKDLE 61
RRM2_p54nrb cd12591
RNA recognition motif 2 (RRM2) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein ...
119-174 3.94e-03

RNA recognition motif 2 (RRM2) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb); This subgroup corresponds to the RRM2 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. It binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. p54nrb forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manner. It also forms a heterodimer with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410004 [Multi-domain]  Cd Length: 80  Bit Score: 36.82  E-value: 3.94e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGNVERCFLVYNEvTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12591     2 LTVKNLPQFVSNELLEEAFSVFGQVERAVVIVDD-RGRPTGKGIVEFSGKPAARKA 56
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
50-101 4.16e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 36.72  E-value: 4.16e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*....
gi 1929828186  50 NLPAESSSQEIHDLF-KDYEIKYCYVDRNKRT------AFVTLLNGEQAQNAIQKFHQY 101
Cdd:cd12408     6 NLSEDATEEDLRELFrPFGPISRVYLAKDKETgqskgfAFVTFETREDAERAIEKLNGF 64
RRM_II_PABPN1L cd12551
RNA recognition motif in vertebrate type II embryonic polyadenylate-binding protein 2 (ePABP-2) ...
129-174 4.52e-03

RNA recognition motif in vertebrate type II embryonic polyadenylate-binding protein 2 (ePABP-2); This subgroup corresponds to the RRM of ePABP-2, also termed embryonic poly(A)-binding protein 2, or poly(A)-binding protein nuclear-like 1 (PABPN1L). ePABP-2 is a novel embryonic-specific cytoplasmic type II poly(A)-binding protein that is expressed during the early stages of vertebrate development and in adult ovarian tissue. It may play an important role in the poly(A) metabolism of stored mRNAs during early vertebrate development. ePABP-2 shows significant sequence similarity to the ubiquitously expressed nuclear polyadenylate-binding protein 2 (PABP-2 or PABPN1). Like PABP-2, ePABP-2 contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is responsible for the poly(A) binding. In addition, it possesses an acidic N-terminal domain predicted to form a coiled-coil and an arginine-rich C-terminal domain.


Pssm-ID: 409967 [Multi-domain]  Cd Length: 77  Bit Score: 36.73  E-value: 4.52e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*.
gi 1929828186 129 TLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12551    12 TADELEAHFNGCGPINRVTILCDKFSGHPKGYAYIEFATRSSVQAA 57
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
249-284 4.70e-03

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 36.54  E-value: 4.70e-03
                          10        20        30
                  ....*....|....*....|....*....|....*.
gi 1929828186 249 FAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSYCAP 284
Cdd:cd12392    45 LAYVEYENEADASQAVLKTDGTEIKDHTISVAISNP 80
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
49-110 4.83e-03

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 36.38  E-value: 4.83e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186  49 RNLPAESSSQEIHDLFKDY-EIKYCYV-----DRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:cd12380     7 KNFGEDVDDDELKELFEKYgKITSAKVmkddsGKSKGFGFVNFENHEAAQKAVEELNGKELNGKKLYV 74
TRAPPC4_synbindin cd14856
Trafficking protein particle complex subunit 4; Trafficking protein particle complex subunit 4 ...
536-574 6.86e-03

Trafficking protein particle complex subunit 4; Trafficking protein particle complex subunit 4 (TRAPPC4), also known as synbindin or TRS23, has been identified as a component of the transport protein particle (TRAPP), required for tethering endoplasmic reticulum (ER)-derived vesicles to Golgi membranes and for Golgi traffic.


Pssm-ID: 341446  Cd Length: 127  Bit Score: 37.11  E-value: 6.86e-03
                          10        20        30
                  ....*....|....*....|....*....|....*....
gi 1929828186 536 PKEIRLSTNPYLNLASVLPGIClpAIASKASSPPQQTGL 574
Cdd:cd14856    20 DALAKLSSNDYLRLASTFHGLH--AIAAQLSPVPGSSGI 56
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
121-192 6.86e-03

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 36.12  E-value: 6.86e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186 121 ITNLPISFTLEEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKARLELLGKQLDESTLFAQW 192
Cdd:cd12617     6 VGDLSPEITTEDIKSAFAPFGKISDARVVKDMATGKSKGYGFVSFYNKLDAENAIVHMGGQWLGGRQIRTNW 77
RRM2_SRSF1_4_like cd12339
RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor SRSF1, SRSF4 and ...
50-110 6.89e-03

RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor SRSF1, SRSF4 and similar proteins; This subfamily corresponds to the RRM2 of several serine/arginine (SR) proteins that have been classified into two subgroups. The first subgroup consists of serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS) and serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). The second subgroup is composed of serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C) and plant pre-mRNA-splicing factor SF2 (SR1). These SR proteins are mainly involved in regulating constitutive and alternative pre-mRNA splicing. They also have been implicated in transcription, genomic stability, mRNA export and translation. All SR proteins in this family, except SRSF5, undergo nucleocytoplasmic shuttling, suggesting their widespread roles in gene expression. These SR proteins share a common domain architecture comprising two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. Both domains can directly contact with RNA. The RRMs appear to determine the binding specificity and the SR domain also mediates protein-protein interactions. In addition, this subfamily includes the yeast nucleolar protein 3 (Npl3p), also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. It is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein with two RRMs, separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409776 [Multi-domain]  Cd Length: 70  Bit Score: 35.64  E-value: 6.89e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1929828186  50 NLPAESSSQEIHDLFKDY-EIKYCYVDR-NKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISV 110
Cdd:cd12339     7 NLPERASWQDLKDFMRKAgEVTYADVHRdREGEGVVEFTSEEDMKRAIEKLDGTEFNGRRIRV 69
RRM_SF3B14 cd12241
RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar ...
44-111 6.95e-03

RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar proteins; This subfamily corresponds to the RRM of SF3B14 (also termed p14), a 14 kDa protein subunit of SF3B which is a multiprotein complex that is an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA and has been involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B14 associates directly with another SF3B subunit called SF3B155. It is also present in both U2- and U12-dependent spliceosomes and may contribute to branch site positioning in both the major and minor spliceosome. Moreover, SF3B14 interacts directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. SF3B14 contains one well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409687 [Multi-domain]  Cd Length: 77  Bit Score: 36.06  E-value: 6.95e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186  44 RKILLRNLPAESSSQEIHDLFKDY----EIKYCYVDRNKRTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQ 111
Cdd:cd12241     3 RILYVRNLPYKISSEELYDLFGKYgairQIRIGNTKETRGTAFVVYEDIFDAKNACDHLSGFNVCNRYLVVL 74
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
45-112 7.37e-03

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 36.00  E-value: 7.37e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 1929828186  45 KILLRNLPAESSSQEIHDLF-KDYEIKYCYVDRNK-----RTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQL 112
Cdd:cd12565     2 RIIVKNLPKYVTEKRLKEHFsKKGEITDVKVMRTKdgksrRFGFIGFKSEEEAQKAVKYFNKTFIDTSKISVEF 75
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
249-281 7.61e-03

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 35.88  E-value: 7.61e-03
                          10        20        30
                  ....*....|....*....|....*....|...
gi 1929828186 249 FAVVEYETAEQAEKVHEVTDGMTIKGKRIQVSY 281
Cdd:cd12233    36 FAFVEFEDSEDATKALEALHGSRIDGSVLTVEF 68
RRM_YRA2 cd12295
RNA recognition motif in yeast RNA annealing protein YRA2 (Yra2p) and similar proteins; This ...
44-112 7.92e-03

RNA recognition motif in yeast RNA annealing protein YRA2 (Yra2p) and similar proteins; This subfamily corresponds to the RRM of Yra2p, a nonessential nuclear RNA-binding protein encoded by Saccharomyces cerevisiae YRA2 gene. It may share some overlapping functions with Yra1p, and is able to complement an YRA1 deletion when overexpressed in yeast. Yra2p belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. It is a major component of endogenous Yra1p complexes. It interacts with Yra1p and functions as a negative regulator of Yra1p. Yra2p consists of two highly conserved N- and C-terminal boxes and a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409736 [Multi-domain]  Cd Length: 74  Bit Score: 35.88  E-value: 7.92e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 1929828186  44 RKILLRNLPAESSSQEIHDLFKDY-EIKYCYVDRNK--RTAFVTLLNGEQAQNAIQKFHQYSLRGKEISVQL 112
Cdd:cd12295     1 KRLRITNIPLDVSDYTIEDMIKEFgEPEYINFYDHKdsRSAIFEFEDPEILEKAVEKYNGKELHGAKIEVEI 72
RRM4_RBM28_like cd12416
RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
119-174 9.54e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM4 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409850 [Multi-domain]  Cd Length: 98  Bit Score: 36.04  E-value: 9.54e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 1929828186 119 LCITNLPISFTLEEFEELVRAYGN---------VERCFLVYNE------VTGHSKGYGFVEYMKKDSAAKA 174
Cdd:cd12416     3 LCVRNLPKSVDDKKLKKLFLKAVKerakkkgvkIKEVKVMRDKkrlnsdGKGRSKGYGFVEFTEHEHALKA 73
RRM2_NUCLs cd12451
RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This ...
131-188 9.67e-03

RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM2 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409885 [Multi-domain]  Cd Length: 79  Bit Score: 35.85  E-value: 9.67e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1929828186 131 EEFEELVRAYGNVERCFLVYNEVTGHSKGYGFVEYMKKDSAAKArLELLGKQLDESTL 188
Cdd:cd12451    18 DELREHFGECGEVTNVRIPTDRETGELKGFAYIEFSTKEAKEKA-LELNGSDIAGGNL 74
RRM_RCAN_like cd12434
RNA recognition motif (RRM) found in regulators of calcineurin (RCANs) and similar proteins; ...
119-191 9.92e-03

RNA recognition motif (RRM) found in regulators of calcineurin (RCANs) and similar proteins; This subfamily corresponds to the RRM of RCANs, a novel family of calcineurin regulators that are key factors contributing to Down syndrome in humans. They can stimulate and inhibit the Ca2+/calmodulin-dependent phosphatase calcineurin (also termed PP2B or PP3C) signaling in vivo through direct interactions with its catalytic subunit. Overexpressed RCANs may bind and inhibit calcineurin. In contrast, low levels of phosphorylated RCANs may stimulate the calcineurin signaling. RCANs are characterized by harboring a central short, unique serine-proline motif containing FLIISPPxSPP box, which is strongly conserved from yeast to human but is absent in bacteria. They consist of an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a highly conserved SP repeat domain containing the phosphorylation site by GSK-3, a well-known PxIxIT motif responsible for docking many substrates to calcineurin, and an unrecognized C-terminal TxxP motif of unknown function.


Pssm-ID: 409868 [Multi-domain]  Cd Length: 75  Bit Score: 35.68  E-value: 9.92e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1929828186 119 LCITNLPISFT-----LEEFEELVRAYGNVercflvyneVTGH---SKGYGFVEYMKKDSAAKARLELLGKQLDESTL-- 188
Cdd:cd12434     1 LIVTNVPSEVFdnaelKEAFESLFRTYGEI---------ATFVylkSFRRARVIFSSPEEAALARIELHGTVFLGSELrv 71

                  ....
gi 1929828186 189 -FAQ 191
Cdd:cd12434    72 yFGQ 75
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH