probable G-protein coupled receptor Mth-like 9 [Glossina fuscipes]
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
Mth_Ecto super family | cl11637 | The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and ... |
40-211 | 2.03e-62 | |||||
The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage; The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family; Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. The actual alignment was detected with superfamily member pfam06652: Pssm-ID: 448329 Cd Length: 179 Bit Score: 202.10 E-value: 2.03e-62
|
|||||||||
7tm_GPCRs super family | cl28897 | seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary ... |
219-484 | 5.22e-21 | |||||
seven-transmembrane G protein-coupled receptor superfamily; This hierarchical evolutionary model represents the seven-transmembrane (7TM) receptors, often referred to as G protein-coupled receptors (GPCRs), which transmit physiological signals from the outside of the cell to the inside via G proteins. GPCRs constitute the largest known superfamily of transmembrane receptors across the three kingdoms of life that respond to a wide variety of extracellular stimuli including peptides, lipids, neurotransmitters, amino acids, hormones, and sensory stimuli such as light, smell and taste. All GPCRs share a common structural architecture comprising of seven-transmembrane (TM) alpha-helices interconnected by three extracellular and three intracellular loops. A general feature of GPCR signaling is agonist-induced conformational changes in the receptors, leading to activation of the heterotrimeric G proteins, which consist of the guanine nucleotide-binding G-alpha subunit and the dimeric G-beta-gamma subunits. The activated G proteins then bind to and activate numerous downstream effector proteins, which generate second messengers that mediate a broad range of cellular and physiological processes. However, some 7TM receptors, such as the type 1 microbial rhodopsins, do not activate G proteins. Based on sequence similarity, GPCRs can be divided into six major classes: class A (the rhodopsin-like family), class B (the Methuselah-like, adhesion and secretin-like receptor family), class C (the metabotropic glutamate receptor family), class D (the fungal mating pheromone receptors), class E (the cAMP receptor family), and class F (the frizzled/smoothened receptor family). Nearly 800 human GPCR genes have been identified and are involved essentially in all major physiological processes. Approximately 40% of clinically marketed drugs mediate their effects through modulation of GPCR function for the treatment of a variety of human diseases including bacterial infections. The actual alignment was detected with superfamily member cd15039: Pssm-ID: 475119 [Multi-domain] Cd Length: 270 Bit Score: 92.67 E-value: 5.22e-21
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
Methuselah_N | pfam06652 | Methuselah N-terminus; This family represents the N-terminal region of the Drosophila specific ... |
40-211 | 2.03e-62 | |||||
Methuselah N-terminus; This family represents the N-terminal region of the Drosophila specific Methuselah protein. Drosophila Methuselah (Mth) mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. This family is found in conjunction with pfam00002. Pssm-ID: 429053 Cd Length: 179 Bit Score: 202.10 E-value: 2.03e-62
|
|||||||||
Mth_Ecto | cd00251 | The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and ... |
40-211 | 4.42e-49 | |||||
The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage; The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family; Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. Pssm-ID: 119403 Cd Length: 176 Bit Score: 167.08 E-value: 4.42e-49
|
|||||||||
7tmB3_Methuselah-like | cd15039 | Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G ... |
219-484 | 5.22e-21 | |||||
Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G protein-coupled receptors; The subfamily B3 of class B GPCRs consists of Methuselah (Mth) and its closely related proteins found in bilateria. Mth was originally identified in Drosophila as a GPCR affecting stress resistance and aging. In addition to the seven transmembrane helices, Mth contains an N-terminal extracellular domain involved in ligand binding, and a third intracellular loop (IC3) required for the specificity of G-protein coupling. Drosophila Mth mutants showed an increase in average lifespan by 35% and greater resistance to a variety of stress factors, including starvation, high temperature, and paraquat-induced oxidative toxicity. Moreover, mutations in two endogenous peptide ligands of Methuselah, Stunted A and B, showed an increased in lifespan and resistance to oxidative stress induced by dietary paraquat. These results strongly suggest that the Stunted-Methuselah system plays important roles in stress response and aging. Pssm-ID: 410632 [Multi-domain] Cd Length: 270 Bit Score: 92.67 E-value: 5.22e-21
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
Methuselah_N | pfam06652 | Methuselah N-terminus; This family represents the N-terminal region of the Drosophila specific ... |
40-211 | 2.03e-62 | |||||
Methuselah N-terminus; This family represents the N-terminal region of the Drosophila specific Methuselah protein. Drosophila Methuselah (Mth) mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. This family is found in conjunction with pfam00002. Pssm-ID: 429053 Cd Length: 179 Bit Score: 202.10 E-value: 2.03e-62
|
|||||||||
Mth_Ecto | cd00251 | The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and ... |
40-211 | 4.42e-49 | |||||
The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage; The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family; Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. Pssm-ID: 119403 Cd Length: 176 Bit Score: 167.08 E-value: 4.42e-49
|
|||||||||
7tmB3_Methuselah-like | cd15039 | Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G ... |
219-484 | 5.22e-21 | |||||
Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G protein-coupled receptors; The subfamily B3 of class B GPCRs consists of Methuselah (Mth) and its closely related proteins found in bilateria. Mth was originally identified in Drosophila as a GPCR affecting stress resistance and aging. In addition to the seven transmembrane helices, Mth contains an N-terminal extracellular domain involved in ligand binding, and a third intracellular loop (IC3) required for the specificity of G-protein coupling. Drosophila Mth mutants showed an increase in average lifespan by 35% and greater resistance to a variety of stress factors, including starvation, high temperature, and paraquat-induced oxidative toxicity. Moreover, mutations in two endogenous peptide ligands of Methuselah, Stunted A and B, showed an increased in lifespan and resistance to oxidative stress induced by dietary paraquat. These results strongly suggest that the Stunted-Methuselah system plays important roles in stress response and aging. Pssm-ID: 410632 [Multi-domain] Cd Length: 270 Bit Score: 92.67 E-value: 5.22e-21
|
|||||||||
7tm_classB | cd13952 | class B family of seven-transmembrane G protein-coupled receptors; The class B of ... |
221-484 | 9.23e-08 | |||||
class B family of seven-transmembrane G protein-coupled receptors; The class B of seven-transmembrane GPCRs is classified into three major subfamilies: subfamily B1 (secretin-like receptor family), B2 (adhesion family), and B3 (Methuselah-like family). The class B receptors have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi or prokaryotes. The B1 subfamily comprises receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the subfamily B1 receptors preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. The subfamily B2 consists of cell-adhesion receptors with 33 members in humans and vertebrates. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing a variety of structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, linked to a class B seven-transmembrane domain. These include, for example, EGF (epidermal growth factor)-like domains in CD97, Celsr1 (cadherin family member), Celsr2, Celsr3, EMR1 (EGF-module-containing mucin-like hormone receptor-like 1), EMR2, EMR3, and Flamingo; two laminin A G-type repeats and nine cadherin domains in Flamingo and its human orthologs Celsr1, Celsr2 and Celsr3; olfactomedin-like domains in the latrotoxin receptors; and five or four thrombospondin type 1 repeats in BAI1 (brain-specific angiogenesis inhibitor 1), BAI2 and BAI3. Almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Furthermore, the subfamily B3 includes Methuselah (Mth) protein, which was originally identified in Drosophila as a GPCR affecting stress resistance and aging, and its closely related proteins. Pssm-ID: 410627 [Multi-domain] Cd Length: 260 Bit Score: 53.37 E-value: 9.23e-08
|
|||||||||
Blast search parameters | ||||
|