anthrax toxin receptor-like isoform X5 [Homo sapiens]
vWA domain-containing protein( domain architecture ID 10208431)
vWA (von Willebrand factor type A) domain-containing protein may be involved in one of a wide variety of important cellular functions, including basal membrane formation, cell migration, cell differentiation, adhesion, hemostasis, signaling, chromosomal stability, malignant transformation, and immune defenses
List of domain hits
Name | Accession | Description | Interval | E-value | |||
vWFA super family | cl00057 | Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ... |
2-159 | 3.09e-48 | |||
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. The actual alignment was detected with superfamily member cd01474: Pssm-ID: 469594 [Multi-domain] Cd Length: 185 Bit Score: 165.38 E-value: 3.09e-48
|
|||||||
Anth_Ig | pfam05587 | Anthrax receptor extracellular domain; This region is found in the putatively extracellular ... |
154-253 | 6.57e-47 | |||
Anthrax receptor extracellular domain; This region is found in the putatively extracellular N-terminal half of the anthrax receptor. It is probably part of the Ig superfamily and most closely related to pfam01833 (personal obs: C Yeats). : Pssm-ID: 461684 Cd Length: 102 Bit Score: 158.95 E-value: 6.57e-47
|
|||||||
Name | Accession | Description | Interval | E-value | |||
vWA_ATR | cd01474 | ATR (Anthrax Toxin Receptor): Anthrax toxin is a key virulence factor for Bacillus anthracis, ... |
2-159 | 3.09e-48 | |||
ATR (Anthrax Toxin Receptor): Anthrax toxin is a key virulence factor for Bacillus anthracis, the causative agent of anthrax. ATR is the cellular receptor for the anthrax protective antigen and facilitates entry of the toxin into cells. The VWA domain in ATR contains the toxin binding site and mediates interaction with protective antigen. The binding is mediated by divalent cations that binds to the MIDAS motif. These proteins are a family of vertebrate ECM receptors expressed by endothelial cells. Pssm-ID: 238751 [Multi-domain] Cd Length: 185 Bit Score: 165.38 E-value: 3.09e-48
|
|||||||
Anth_Ig | pfam05587 | Anthrax receptor extracellular domain; This region is found in the putatively extracellular ... |
154-253 | 6.57e-47 | |||
Anthrax receptor extracellular domain; This region is found in the putatively extracellular N-terminal half of the anthrax receptor. It is probably part of the Ig superfamily and most closely related to pfam01833 (personal obs: C Yeats). Pssm-ID: 461684 Cd Length: 102 Bit Score: 158.95 E-value: 6.57e-47
|
|||||||
ChlD | COG1240 | vWFA (von Willebrand factor type A) domain of Mg and Co chelatases [Coenzyme transport and ... |
3-151 | 3.80e-15 | |||
vWFA (von Willebrand factor type A) domain of Mg and Co chelatases [Coenzyme transport and metabolism]; Pssm-ID: 440853 [Multi-domain] Cd Length: 262 Bit Score: 75.36 E-value: 3.80e-15
|
|||||||
VWA | smart00327 | von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins ... |
3-139 | 1.14e-14 | |||
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods. Pssm-ID: 214621 [Multi-domain] Cd Length: 175 Bit Score: 72.10 E-value: 1.14e-14
|
|||||||
VWA | pfam00092 | von Willebrand factor type A domain; |
3-150 | 9.77e-14 | |||
von Willebrand factor type A domain; Pssm-ID: 459670 [Multi-domain] Cd Length: 174 Bit Score: 69.23 E-value: 9.77e-14
|
|||||||
Name | Accession | Description | Interval | E-value | |||
vWA_ATR | cd01474 | ATR (Anthrax Toxin Receptor): Anthrax toxin is a key virulence factor for Bacillus anthracis, ... |
2-159 | 3.09e-48 | |||
ATR (Anthrax Toxin Receptor): Anthrax toxin is a key virulence factor for Bacillus anthracis, the causative agent of anthrax. ATR is the cellular receptor for the anthrax protective antigen and facilitates entry of the toxin into cells. The VWA domain in ATR contains the toxin binding site and mediates interaction with protective antigen. The binding is mediated by divalent cations that binds to the MIDAS motif. These proteins are a family of vertebrate ECM receptors expressed by endothelial cells. Pssm-ID: 238751 [Multi-domain] Cd Length: 185 Bit Score: 165.38 E-value: 3.09e-48
|
|||||||
Anth_Ig | pfam05587 | Anthrax receptor extracellular domain; This region is found in the putatively extracellular ... |
154-253 | 6.57e-47 | |||
Anthrax receptor extracellular domain; This region is found in the putatively extracellular N-terminal half of the anthrax receptor. It is probably part of the Ig superfamily and most closely related to pfam01833 (personal obs: C Yeats). Pssm-ID: 461684 Cd Length: 102 Bit Score: 158.95 E-value: 6.57e-47
|
|||||||
vWFA_subfamily_ECM | cd01450 | Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ... |
2-135 | 2.38e-18 | |||
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains Pssm-ID: 238727 [Multi-domain] Cd Length: 161 Bit Score: 82.34 E-value: 2.38e-18
|
|||||||
ChlD | COG1240 | vWFA (von Willebrand factor type A) domain of Mg and Co chelatases [Coenzyme transport and ... |
3-151 | 3.80e-15 | |||
vWFA (von Willebrand factor type A) domain of Mg and Co chelatases [Coenzyme transport and metabolism]; Pssm-ID: 440853 [Multi-domain] Cd Length: 262 Bit Score: 75.36 E-value: 3.80e-15
|
|||||||
vWFA | cd00198 | Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ... |
12-135 | 7.71e-15 | |||
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Pssm-ID: 238119 [Multi-domain] Cd Length: 161 Bit Score: 72.21 E-value: 7.71e-15
|
|||||||
VWA | smart00327 | von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins ... |
3-139 | 1.14e-14 | |||
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods. Pssm-ID: 214621 [Multi-domain] Cd Length: 175 Bit Score: 72.10 E-value: 1.14e-14
|
|||||||
VWA | pfam00092 | von Willebrand factor type A domain; |
3-150 | 9.77e-14 | |||
von Willebrand factor type A domain; Pssm-ID: 459670 [Multi-domain] Cd Length: 174 Bit Score: 69.23 E-value: 9.77e-14
|
|||||||
YfbK | COG2304 | Secreted protein containing bacterial Ig-like domain and vWFA domain [General function ... |
12-129 | 2.15e-13 | |||
Secreted protein containing bacterial Ig-like domain and vWFA domain [General function prediction only]; Pssm-ID: 441879 [Multi-domain] Cd Length: 289 Bit Score: 70.90 E-value: 2.15e-13
|
|||||||
vWA_subgroup | cd01465 | VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
20-137 | 5.44e-09 | |||
VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the function of the VWA domain in these proteins. The members do have a conserved MIDAS motif. The biochemical function however is not known. Pssm-ID: 238742 [Multi-domain] Cd Length: 170 Bit Score: 55.36 E-value: 5.44e-09
|
|||||||
vWA_micronemal_protein | cd01471 | Micronemal proteins: The Toxoplasma lytic cycle begins when the parasite actively invades a ... |
12-119 | 2.24e-08 | |||
Micronemal proteins: The Toxoplasma lytic cycle begins when the parasite actively invades a target cell. In association with invasion, T. gondii sequentially discharges three sets of secretory organelles beginning with the micronemes, which contain adhesive proteins involved in parasite attachment to a host cell. Deployed as protein complexes, several micronemal proteins possess vertebrate-derived adhesive sequences that function in binding receptors. The VWA domain likely mediates the protein-protein interactions of these with their interacting partners. Pssm-ID: 238748 [Multi-domain] Cd Length: 186 Bit Score: 53.93 E-value: 2.24e-08
|
|||||||
vWA_collagen | cd01472 | von Willebrand factor (vWF) type A domain; equivalent to the I-domain of integrins. This ... |
3-139 | 8.77e-07 | |||
von Willebrand factor (vWF) type A domain; equivalent to the I-domain of integrins. This domain has a variety of functions including: intermolecular adhesion, cell migration, signalling, transcription, and DNA repair. In integrins these domains form heterodimers while in vWF it forms homodimers and multimers. There are different interaction surfaces of this domain as seen by its complexes with collagen with either integrin or human vWFA. In integrins collagen binding occurs via the metal ion-dependent adhesion site (MIDAS) and involves three surface loops located on the upper surface of the molecule. In human vWFA, collagen binding is thought to occur on the bottom of the molecule and does not involve the vestigial MIDAS motif. Pssm-ID: 238749 [Multi-domain] Cd Length: 164 Bit Score: 48.76 E-value: 8.77e-07
|
|||||||
vWA_collagen_alphaI-XII-like | cd01482 | Collagen: The extracellular matrix represents a complex alloy of variable members of diverse ... |
3-139 | 1.69e-05 | |||
Collagen: The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified thus far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. Some collagens have about 15-18 vWA domains in them. The VWA domains present in these collagens mediate protein-protein interactions. Pssm-ID: 238759 [Multi-domain] Cd Length: 164 Bit Score: 45.36 E-value: 1.69e-05
|
|||||||
vWA_Matrilin | cd01475 | VWA_Matrilin: In cartilaginous plate, extracellular matrix molecules mediate cell-matrix and ... |
77-179 | 2.60e-05 | |||
VWA_Matrilin: In cartilaginous plate, extracellular matrix molecules mediate cell-matrix and matrix-matrix interactions thereby providing tissue integrity. Some members of the matrilin family are expressed specifically in developing cartilage rudiments. The matrilin family consists of at least four members. All the members of the matrilin family contain VWA domains, EGF-like domains and a heptad repeat coiled-coiled domain at the carboxy terminus which is responsible for the oligomerization of the matrilins. The VWA domains have been shown to be essential for matrilin network formation by interacting with matrix ligands. Pssm-ID: 238752 [Multi-domain] Cd Length: 224 Bit Score: 45.45 E-value: 2.60e-05
|
|||||||
vWA_BatA_type | cd01467 | VWA BatA type: Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
3-141 | 3.36e-04 | |||
VWA BatA type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses. In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Members of this subgroup are bacterial in origin. They are typified by the presence of a MIDAS motif. Pssm-ID: 238744 [Multi-domain] Cd Length: 180 Bit Score: 41.55 E-value: 3.36e-04
|
|||||||
VWA_2 | pfam13519 | von Willebrand factor type A domain; |
11-82 | 9.00e-03 | |||
von Willebrand factor type A domain; Pssm-ID: 463909 [Multi-domain] Cd Length: 103 Bit Score: 36.12 E-value: 9.00e-03
|
|||||||
Blast search parameters | ||||
|