uncharacterized protein GVI51_L02695 [Nakaseomyces glabratus]
YqeH domain-containing protein( domain architecture ID 10111420)
YqeH domain-containing protein
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
YqeH | cd01855 | Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH ... |
83-290 | 4.89e-44 | ||||
Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH induces an excess initiation of DNA replication, suggesting that it negatively controls initiation of chromosome replication. The YqeH subfamily is common in eukaryotes and sporadically present in bacteria with probable acquisition by plants from chloroplasts. Proteins of the YqeH family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. : Pssm-ID: 206748 [Multi-domain] Cd Length: 191 Bit Score: 154.34 E-value: 4.89e-44
|
||||||||
Name | Accession | Description | Interval | E-value | ||||||
YqeH | cd01855 | Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH ... |
83-290 | 4.89e-44 | ||||||
Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH induces an excess initiation of DNA replication, suggesting that it negatively controls initiation of chromosome replication. The YqeH subfamily is common in eukaryotes and sporadically present in bacteria with probable acquisition by plants from chloroplasts. Proteins of the YqeH family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. Pssm-ID: 206748 [Multi-domain] Cd Length: 191 Bit Score: 154.34 E-value: 4.89e-44
|
||||||||||
GTPase_YqeH | TIGR03597 | ribosome biogenesis GTPase YqeH; This family describes YqeH, a member of a larger family of ... |
17-370 | 4.25e-09 | ||||||
ribosome biogenesis GTPase YqeH; This family describes YqeH, a member of a larger family of GTPases involved in ribosome biogenesis. Like YqlF, it shows a cyclical permutation relative to GTPases EngA (in which the GTPase domain is duplicated), Era, and others. Members of this protein family are found in a relatively small number of bacterial species, including Bacillus subtilis but not Escherichia coli. [Protein synthesis, Other] Pssm-ID: 213834 [Multi-domain] Cd Length: 360 Bit Score: 58.40 E-value: 4.25e-09
|
||||||||||
MMR_HSR1 | pfam01926 | 50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete ... |
207-289 | 5.13e-06 | ||||||
50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete activity of the protein of interacting with the 50S ribosome and binding of both adenine and guanine nucleotides, with a preference for guanine nucleotide. Pssm-ID: 460387 [Multi-domain] Cd Length: 113 Bit Score: 45.30 E-value: 5.13e-06
|
||||||||||
EngB | COG0218 | GTP-binding protein EngB required for normal cell division [Cell cycle control, cell division, ... |
207-290 | 2.36e-04 | ||||||
GTP-binding protein EngB required for normal cell division [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 439988 [Multi-domain] Cd Length: 194 Bit Score: 42.37 E-value: 2.36e-04
|
||||||||||
trmE | PRK05291 | tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE; |
208-225 | 7.15e-04 | ||||||
tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE; Pssm-ID: 235392 [Multi-domain] Cd Length: 449 Bit Score: 42.02 E-value: 7.15e-04
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
YqeH | cd01855 | Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH ... |
83-290 | 4.89e-44 | ||||||
Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH induces an excess initiation of DNA replication, suggesting that it negatively controls initiation of chromosome replication. The YqeH subfamily is common in eukaryotes and sporadically present in bacteria with probable acquisition by plants from chloroplasts. Proteins of the YqeH family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. Pssm-ID: 206748 [Multi-domain] Cd Length: 191 Bit Score: 154.34 E-value: 4.89e-44
|
||||||||||
GTPase_YqeH | TIGR03597 | ribosome biogenesis GTPase YqeH; This family describes YqeH, a member of a larger family of ... |
17-370 | 4.25e-09 | ||||||
ribosome biogenesis GTPase YqeH; This family describes YqeH, a member of a larger family of GTPases involved in ribosome biogenesis. Like YqlF, it shows a cyclical permutation relative to GTPases EngA (in which the GTPase domain is duplicated), Era, and others. Members of this protein family are found in a relatively small number of bacterial species, including Bacillus subtilis but not Escherichia coli. [Protein synthesis, Other] Pssm-ID: 213834 [Multi-domain] Cd Length: 360 Bit Score: 58.40 E-value: 4.25e-09
|
||||||||||
YihA_EngB | cd01876 | YihA (EngB) GTPase family; The YihA (EngB) subfamily of GTPases is typified by the E. coli ... |
207-290 | 1.32e-06 | ||||||
YihA (EngB) GTPase family; The YihA (EngB) subfamily of GTPases is typified by the E. coli YihA, an essential protein involved in cell division control. YihA and its orthologs are small proteins that typically contain less than 200 amino acid residues and consists of the GTPase domain only (some of the eukaryotic homologs contain an N-terminal extension of about 120 residues that might be involved in organellar targeting). Homologs of yihA are found in most Gram-positive and Gram-negative pathogenic bacteria, with the exception of Mycobacterium tuberculosis. The broad-spectrum nature of YihA and its essentiality for cell viability in bacteria make it an attractive antibacterial target. Pssm-ID: 206665 [Multi-domain] Cd Length: 170 Bit Score: 48.66 E-value: 1.32e-06
|
||||||||||
MMR_HSR1 | pfam01926 | 50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete ... |
207-289 | 5.13e-06 | ||||||
50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete activity of the protein of interacting with the 50S ribosome and binding of both adenine and guanine nucleotides, with a preference for guanine nucleotide. Pssm-ID: 460387 [Multi-domain] Cd Length: 113 Bit Score: 45.30 E-value: 5.13e-06
|
||||||||||
trmE | cd04164 | trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in ... |
208-225 | 1.43e-04 | ||||||
trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in bacteria and eukaryotes. It controls modification of the uridine at the wobble position (U34) of tRNAs that read codons ending with A or G in the mixed codon family boxes. TrmE contains a GTPase domain that forms a canonical Ras-like fold. It functions a molecular switch GTPase, and apparently uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the conserved cysteine in the C-terminal domain is thought to function as a catalytic residue. In bacteria that are able to survive in extremely low pH conditions, TrmE regulates glutamate-dependent acid resistance. Pssm-ID: 206727 [Multi-domain] Cd Length: 159 Bit Score: 42.48 E-value: 1.43e-04
|
||||||||||
EngB | COG0218 | GTP-binding protein EngB required for normal cell division [Cell cycle control, cell division, ... |
207-290 | 2.36e-04 | ||||||
GTP-binding protein EngB required for normal cell division [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 439988 [Multi-domain] Cd Length: 194 Bit Score: 42.37 E-value: 2.36e-04
|
||||||||||
YjeQ_EngC | cd01854 | Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases; ... |
146-223 | 2.38e-04 | ||||||
Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases; YjeQ (YloQ in Bacillus subtilis) is a ribosomal small subunit-dependent GTPase; hence also known as RsgA. YjeQ is a late-stage ribosomal biogenesis factor involved in the 30S subunit maturation, and it represents a protein family whose members are broadly conserved in bacteria and have been shown to be essential to the growth of E. coli and B. subtilis. Proteins of the YjeQ family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. All YjeQ family proteins display a unique domain architecture, which includes an N-terminal OB-fold RNA-binding domain, the central permuted GTPase domain, and a zinc knuckle-like C-terminal cysteine domain. Pssm-ID: 206747 [Multi-domain] Cd Length: 211 Bit Score: 42.39 E-value: 2.38e-04
|
||||||||||
RsgA | COG1162 | Ribosome biogenesis GTPase RsgA [Translation, ribosomal structure and biogenesis]; |
146-223 | 4.46e-04 | ||||||
Ribosome biogenesis GTPase RsgA [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440776 [Multi-domain] Cd Length: 300 Bit Score: 42.41 E-value: 4.46e-04
|
||||||||||
RsgA_GTPase | pfam03193 | RsgA GTPase; RsgA (also known as EngC and YjeQ) represents a protein family whose members are ... |
144-223 | 4.60e-04 | ||||||
RsgA GTPase; RsgA (also known as EngC and YjeQ) represents a protein family whose members are broadly conserved in bacteria and are indispensable for growth. The GTPase domain of RsgA is very similar to several P-loop GTPases, but differs in having a circular permutation of the GTPase structure described by a G4-G1-G3 pattern. Pssm-ID: 427191 [Multi-domain] Cd Length: 174 Bit Score: 40.99 E-value: 4.60e-04
|
||||||||||
MnmE | COG0486 | tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal ... |
208-225 | 6.27e-04 | ||||||
tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal structure and biogenesis]; tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE is part of the Pathway/BioSystem: tRNA modification Pssm-ID: 440253 [Multi-domain] Cd Length: 448 Bit Score: 42.36 E-value: 6.27e-04
|
||||||||||
trmE | PRK05291 | tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE; |
208-225 | 7.15e-04 | ||||||
tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE; Pssm-ID: 235392 [Multi-domain] Cd Length: 449 Bit Score: 42.02 E-value: 7.15e-04
|
||||||||||
YlqF | cd01856 | Circularly permuted YlqF GTPase; Proteins of the YlqF family contain all sequence motifs ... |
145-289 | 8.00e-04 | ||||||
Circularly permuted YlqF GTPase; Proteins of the YlqF family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. The YlqF subfamily is represented in all eukaryotes as well as a phylogenetically diverse array of bacteria (including gram-positive bacteria, proteobacteria, Synechocystis, Borrelia, and Thermotoga). Pssm-ID: 206749 [Multi-domain] Cd Length: 171 Bit Score: 40.20 E-value: 8.00e-04
|
||||||||||
Era_like | cd00880 | E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family ... |
207-318 | 9.91e-04 | ||||||
E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family includes several distinct subfamilies (TrmE/ThdF, FeoB, YihA (EngB), Era, and EngA/YfgK) that generally show sequence conservation in the region between the Walker A and B motifs (G1 and G3 box motifs), to the exclusion of other GTPases. TrmE is ubiquitous in bacteria and is a widespread mitochondrial protein in eukaryotes, but is absent from archaea. The yeast member of TrmE family, MSS1, is involved in mitochondrial translation; bacterial members are often present in translation-related operons. FeoB represents an unusual adaptation of GTPases for high-affinity iron (II) transport. YihA (EngB) family of GTPases is typified by the E. coli YihA, which is an essential protein involved in cell division control. Era is characterized by a distinct derivative of the KH domain (the pseudo-KH domain) which is located C-terminal to the GTPase domain. EngA and its orthologs are composed of two GTPase domains and, since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Pssm-ID: 206646 [Multi-domain] Cd Length: 161 Bit Score: 39.92 E-value: 9.91e-04
|
||||||||||
PRK12288 | PRK12288 | small ribosomal subunit biogenesis GTPase RsgA; |
146-236 | 1.91e-03 | ||||||
small ribosomal subunit biogenesis GTPase RsgA; Pssm-ID: 237039 [Multi-domain] Cd Length: 347 Bit Score: 40.61 E-value: 1.91e-03
|
||||||||||
MnmE_helical | pfam12631 | MnmE helical domain; The tRNA modification GTPase MnmE consists of three domains. An ... |
208-225 | 3.01e-03 | ||||||
MnmE helical domain; The tRNA modification GTPase MnmE consists of three domains. An N-terminal domain, a helical domain and a GTPase domain which is nested within the helical domain. This family represents the helical domain. Pssm-ID: 463649 [Multi-domain] Cd Length: 326 Bit Score: 39.77 E-value: 3.01e-03
|
||||||||||
Era | COG1159 | GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; |
207-231 | 3.62e-03 | ||||||
GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440773 [Multi-domain] Cd Length: 290 Bit Score: 39.59 E-value: 3.62e-03
|
||||||||||
EngA2 | cd01895 | EngA2 GTPase contains the second domain of EngA; This EngA2 subfamily CD represents the second ... |
207-224 | 4.35e-03 | ||||||
EngA2 GTPase contains the second domain of EngA; This EngA2 subfamily CD represents the second GTPase domain of EngA and its orthologs, which are composed of two adjacent GTPase domains. Since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Although the exact function of these proteins has not been elucidated, studies have revealed that the E. coli EngA homolog, Der, and Neisseria gonorrhoeae EngA are essential for cell viability. A recent report suggests that E. coli Der functions in ribosome assembly and stability. Pssm-ID: 206682 [Multi-domain] Cd Length: 174 Bit Score: 38.18 E-value: 4.35e-03
|
||||||||||
YlqF_related_GTPase | cd01849 | Circularly permuted YlqF-related GTPases; These proteins are found in bacteria, eukaryotes, ... |
197-289 | 4.50e-03 | ||||||
Circularly permuted YlqF-related GTPases; These proteins are found in bacteria, eukaryotes, and archaea. They all exhibit a circular permutation of the GTPase signature motifs so that the order of the conserved G box motifs is G4-G5-G1-G2-G3, with G4 and G5 being permuted from the C-terminal region of proteins in the Ras superfamily to the N-terminus of YlqF-related GTPases. Pssm-ID: 206746 [Multi-domain] Cd Length: 146 Bit Score: 37.75 E-value: 4.50e-03
|
||||||||||
Era | cd04163 | E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is ... |
207-231 | 5.17e-03 | ||||||
E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is a multifunctional GTPase found in all bacteria except some eubacteria. It binds to the 16S ribosomal RNA (rRNA) of the 30S subunit and appears to play a role in the assembly of the 30S subunit, possibly by chaperoning the 16S rRNA. It also contacts several assembly elements of the 30S subunit. Era couples cell growth with cytokinesis and plays a role in cell division and energy metabolism. Homologs have also been found in eukaryotes. Era contains two domains: the N-terminal GTPase domain and a C-terminal domain KH domain that is critical for RNA binding. Both domains are important for Era function. Era is functionally able to compensate for deletion of RbfA, a cold-shock adaptation protein that is required for efficient processing of the 16S rRNA. Pssm-ID: 206726 [Multi-domain] Cd Length: 168 Bit Score: 37.83 E-value: 5.17e-03
|
||||||||||
era | PRK00089 | GTPase Era; Reviewed |
207-231 | 5.70e-03 | ||||||
GTPase Era; Reviewed Pssm-ID: 234624 [Multi-domain] Cd Length: 292 Bit Score: 38.88 E-value: 5.70e-03
|
||||||||||
PRK00093 | PRK00093 | GTP-binding protein Der; Reviewed |
207-223 | 6.91e-03 | ||||||
GTP-binding protein Der; Reviewed Pssm-ID: 234628 [Multi-domain] Cd Length: 435 Bit Score: 38.88 E-value: 6.91e-03
|
||||||||||
DLP_2 | cd09912 | Dynamin-like protein including dynamins, mitofusins, and guanylate-binding proteins; The ... |
207-224 | 8.06e-03 | ||||||
Dynamin-like protein including dynamins, mitofusins, and guanylate-binding proteins; The dynamin family of large mechanochemical GTPases includes the classical dynamins and dynamin-like proteins (DLPs) that are found throughout the Eukarya. This family also includes bacterial DLPs. These proteins catalyze membrane fission during clathrin-mediated endocytosis. Dynamin consists of five domains; an N-terminal G domain that binds and hydrolyzes GTP, a middle domain (MD) involved in self-assembly and oligomerization, a pleckstrin homology (PH) domain responsible for interactions with the plasma membrane, GED, which is also involved in self-assembly, and a proline arginine rich domain (PRD) that interacts with SH3 domains on accessory proteins. To date, three vertebrate dynamin genes have been identified; dynamin 1, which is brain specific, mediates uptake of synaptic vesicles in presynaptic terminals; dynamin-2 is expressed ubiquitously and similarly participates in membrane fission; mutations in the MD, PH and GED domains of dynamin 2 have been linked to human diseases such as Charcot-Marie-Tooth peripheral neuropathy and rare forms of centronuclear myopathy. Dynamin 3 participates in megakaryocyte progenitor amplification, and is also involved in cytoplasmic enlargement and the formation of the demarcation membrane system. This family also includes mitofusins (MFN1 and MFN2 in mammals) that are involved in mitochondrial fusion. Dynamin oligomerizes into helical structures around the neck of budding vesicles in a GTP hydrolysis-dependent manner. Pssm-ID: 206739 [Multi-domain] Cd Length: 180 Bit Score: 37.53 E-value: 8.06e-03
|
||||||||||
Der | COG1160 | Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; |
207-223 | 8.18e-03 | ||||||
Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440774 [Multi-domain] Cd Length: 438 Bit Score: 38.85 E-value: 8.18e-03
|
||||||||||
Blast search parameters | ||||
|