Dehydratase large subunit; This family contains the large subunit of the trimeric diol ...
2-552
0e+00
Dehydratase large subunit; This family contains the large subunit of the trimeric diol dehydratases and glycerol dehydratases. These enzymes are produced by some enterobacteria in response to growth substances.
Pssm-ID: 426700 Cd Length: 552 Bit Score: 1142.84 E-value: 0e+00
Dehydratase large subunit. This family contains the large (alpha) subunit of B12-dependent ...
9-553
0e+00
Dehydratase large subunit. This family contains the large (alpha) subunit of B12-dependent glycerol dehydratases (GDHs) and B12-dependent diol dehydratases (DDHs). GDH is isofunctional with DDH. These enzymes can each catalyze the conversion of 1,2-propanediol, glycerol, and 1,2-ethanediol to the corresponding aldehydes via a coenzyme B12 (adenosylcobalamin)-dependent radical mechanism. Both enzymes exhibit a subunit composition of alpha2beta2gamma2. The enzymes differ in substrate specificity; glycerol is the preferred substrate for GDH and 1,2-propanediol for DDH. GDH shows almost equal affinity for both (R) and (S)-isomers while DDH prefers the (S) isomer. GDH plays a key role in the dihydroxyacetone (DHA) pathway and DDH in the anaerobic degradation of 1,2-diols. The radical mechanism has been well studied for Klebsiella oxytoca DDH and involves binding of 1,2-propanediol to the enzyme to induce hemolytic cleavage of the Co-C5' bond of the coenzyme to form cob(II)alamin and the adenosyl radical. Hydrogen abstraction from the substrate follows producing a substrate generated radical and 5'-deoxyadenosine. Rearrangement to the product radical is then followed by abstraction of a hydrogen atom from 5'-deoxyadenosine to produce the hydrated propionaldehyde and regenerate the adenosyl radical. After the Co-C5' bond is reformed and the hydrated aldehyde dehydrated, the process is complete. GDH has a higher affinity for coenzyme B12 than DDH. Both GDH and DDH are activated by various monovalent cations with K+, NH4+, and Rb+ being the most effective. However, DDH differs from GDH in that it is partially active with Cs+ and Na+. In general, the alpha and beta subunits for both enzymes are on different chains. However, for a subset of the GDHs, alpha and beta subunits appear to be on a single chain.
Pssm-ID: 239658 Cd Length: 545 Bit Score: 1049.02 E-value: 0e+00
Dehydratase large subunit; This family contains the large subunit of the trimeric diol ...
2-552
0e+00
Dehydratase large subunit; This family contains the large subunit of the trimeric diol dehydratases and glycerol dehydratases. These enzymes are produced by some enterobacteria in response to growth substances.
Pssm-ID: 426700 Cd Length: 552 Bit Score: 1142.84 E-value: 0e+00
Dehydratase large subunit. This family contains the large (alpha) subunit of B12-dependent ...
9-553
0e+00
Dehydratase large subunit. This family contains the large (alpha) subunit of B12-dependent glycerol dehydratases (GDHs) and B12-dependent diol dehydratases (DDHs). GDH is isofunctional with DDH. These enzymes can each catalyze the conversion of 1,2-propanediol, glycerol, and 1,2-ethanediol to the corresponding aldehydes via a coenzyme B12 (adenosylcobalamin)-dependent radical mechanism. Both enzymes exhibit a subunit composition of alpha2beta2gamma2. The enzymes differ in substrate specificity; glycerol is the preferred substrate for GDH and 1,2-propanediol for DDH. GDH shows almost equal affinity for both (R) and (S)-isomers while DDH prefers the (S) isomer. GDH plays a key role in the dihydroxyacetone (DHA) pathway and DDH in the anaerobic degradation of 1,2-diols. The radical mechanism has been well studied for Klebsiella oxytoca DDH and involves binding of 1,2-propanediol to the enzyme to induce hemolytic cleavage of the Co-C5' bond of the coenzyme to form cob(II)alamin and the adenosyl radical. Hydrogen abstraction from the substrate follows producing a substrate generated radical and 5'-deoxyadenosine. Rearrangement to the product radical is then followed by abstraction of a hydrogen atom from 5'-deoxyadenosine to produce the hydrated propionaldehyde and regenerate the adenosyl radical. After the Co-C5' bond is reformed and the hydrated aldehyde dehydrated, the process is complete. GDH has a higher affinity for coenzyme B12 than DDH. Both GDH and DDH are activated by various monovalent cations with K+, NH4+, and Rb+ being the most effective. However, DDH differs from GDH in that it is partially active with Cs+ and Na+. In general, the alpha and beta subunits for both enzymes are on different chains. However, for a subset of the GDHs, alpha and beta subunits appear to be on a single chain.
Pssm-ID: 239658 Cd Length: 545 Bit Score: 1049.02 E-value: 0e+00
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options