protein bicaudal C homolog 1 [Homo sapiens]
List of domain hits
Name | Accession | Description | Interval | E-value | |||
KH-I_BICC1_rpt1 | cd22420 | first type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
46-126 | 6.52e-53 | |||
first type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the first one. : Pssm-ID: 411848 Cd Length: 81 Bit Score: 178.65 E-value: 6.52e-53
|
|||||||
KH-I_BICC1_rpt2 | cd22421 | second type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
131-200 | 4.86e-46 | |||
second type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the second one. : Pssm-ID: 411849 Cd Length: 70 Bit Score: 159.05 E-value: 4.86e-46
|
|||||||
KH-I_BICC1_rpt3 | cd22422 | third type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
284-349 | 2.14e-38 | |||
third type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the third one. : Pssm-ID: 411850 Cd Length: 67 Bit Score: 137.08 E-value: 2.14e-38
|
|||||||
SAM_BICC1 | cd09520 | SAM domain of BICC1 (bicaudal) subfamily; SAM (sterile alpha motif) domain of BICC1 (bicaudal) ... |
872-936 | 1.03e-37 | |||
SAM domain of BICC1 (bicaudal) subfamily; SAM (sterile alpha motif) domain of BICC1 (bicaudal) subfamily is a protein-protein interaction domain. Proteins of this group have N-terminal K homology RNA-binding vigilin-like repeats and a C-terminal SAM domain. BICC1 is involved in the regulation of embryonic differentiation. It plays a role in the regulation of Dvl (Dishevelled) signaling, particularly in the correct cilia orientation and nodal flow generation. In Drosophila, disruption of BICC1 can disturb the normal migration direction of the anterior follicle cell of oocytes; the specific function of SAM is to recruit whole protein to the periphery of P-bodies. In mammals, mutations in this gene are associated with polycystic kidney disease and it was suggested that the BICC1 protein can indirectly interact with ANKS6 protein (ANKS6 is also associated with polycystic kidney disease) through some protein and RNA intermediates. : Pssm-ID: 188919 Cd Length: 65 Bit Score: 135.12 E-value: 1.03e-37
|
|||||||
Name | Accession | Description | Interval | E-value | |||
KH-I_BICC1_rpt1 | cd22420 | first type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
46-126 | 6.52e-53 | |||
first type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411848 Cd Length: 81 Bit Score: 178.65 E-value: 6.52e-53
|
|||||||
KH-I_BICC1_rpt2 | cd22421 | second type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
131-200 | 4.86e-46 | |||
second type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411849 Cd Length: 70 Bit Score: 159.05 E-value: 4.86e-46
|
|||||||
KH-I_BICC1_rpt3 | cd22422 | third type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
284-349 | 2.14e-38 | |||
third type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411850 Cd Length: 67 Bit Score: 137.08 E-value: 2.14e-38
|
|||||||
SAM_BICC1 | cd09520 | SAM domain of BICC1 (bicaudal) subfamily; SAM (sterile alpha motif) domain of BICC1 (bicaudal) ... |
872-936 | 1.03e-37 | |||
SAM domain of BICC1 (bicaudal) subfamily; SAM (sterile alpha motif) domain of BICC1 (bicaudal) subfamily is a protein-protein interaction domain. Proteins of this group have N-terminal K homology RNA-binding vigilin-like repeats and a C-terminal SAM domain. BICC1 is involved in the regulation of embryonic differentiation. It plays a role in the regulation of Dvl (Dishevelled) signaling, particularly in the correct cilia orientation and nodal flow generation. In Drosophila, disruption of BICC1 can disturb the normal migration direction of the anterior follicle cell of oocytes; the specific function of SAM is to recruit whole protein to the periphery of P-bodies. In mammals, mutations in this gene are associated with polycystic kidney disease and it was suggested that the BICC1 protein can indirectly interact with ANKS6 protein (ANKS6 is also associated with polycystic kidney disease) through some protein and RNA intermediates. Pssm-ID: 188919 Cd Length: 65 Bit Score: 135.12 E-value: 1.03e-37
|
|||||||
KH | smart00322 | K homology RNA-binding domain; |
131-203 | 4.48e-16 | |||
K homology RNA-binding domain; Pssm-ID: 197652 [Multi-domain] Cd Length: 68 Bit Score: 73.48 E-value: 4.48e-16
|
|||||||
KH_1 | pfam00013 | KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause ... |
134-201 | 7.85e-16 | |||
KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause paraneoplastic opsoclonus ataxia. Pssm-ID: 459630 [Multi-domain] Cd Length: 65 Bit Score: 72.70 E-value: 7.85e-16
|
|||||||
SAM_1 | pfam00536 | SAM domain (Sterile alpha motif); It has been suggested that SAM is an evolutionarily ... |
876-933 | 1.38e-14 | |||
SAM domain (Sterile alpha motif); It has been suggested that SAM is an evolutionarily conserved protein binding domain that is involved in the regulation of numerous developmental processes in diverse eukaryotes. The SAM domain can potentially function as a protein interaction module through its ability to homo- and heterooligomerise with other SAM domains. Pssm-ID: 425739 Cd Length: 64 Bit Score: 69.22 E-value: 1.38e-14
|
|||||||
KH_1 | pfam00013 | KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause ... |
286-349 | 2.99e-14 | |||
KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause paraneoplastic opsoclonus ataxia. Pssm-ID: 459630 [Multi-domain] Cd Length: 65 Bit Score: 68.08 E-value: 2.99e-14
|
|||||||
SAM | smart00454 | Sterile alpha motif; Widespread domain in signalling and nuclear proteins. In EPH-related ... |
876-933 | 2.07e-12 | |||
Sterile alpha motif; Widespread domain in signalling and nuclear proteins. In EPH-related tyrosine kinases, appears to mediate cell-cell initiated signal transduction via the binding of SH2-containing proteins to a conserved tyrosine that is phosphorylated. In many cases mediates homodimerisation. Pssm-ID: 197735 Cd Length: 68 Bit Score: 63.08 E-value: 2.07e-12
|
|||||||
KH | smart00322 | K homology RNA-binding domain; |
284-352 | 1.79e-09 | |||
K homology RNA-binding domain; Pssm-ID: 197652 [Multi-domain] Cd Length: 68 Bit Score: 54.61 E-value: 1.79e-09
|
|||||||
KH_1 | pfam00013 | KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause ... |
48-124 | 1.12e-04 | |||
KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause paraneoplastic opsoclonus ataxia. Pssm-ID: 459630 [Multi-domain] Cd Length: 65 Bit Score: 41.11 E-value: 1.12e-04
|
|||||||
KH | smart00322 | K homology RNA-binding domain; |
78-126 | 4.06e-04 | |||
K homology RNA-binding domain; Pssm-ID: 197652 [Multi-domain] Cd Length: 68 Bit Score: 39.59 E-value: 4.06e-04
|
|||||||
Name | Accession | Description | Interval | E-value | |||
KH-I_BICC1_rpt1 | cd22420 | first type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
46-126 | 6.52e-53 | |||
first type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411848 Cd Length: 81 Bit Score: 178.65 E-value: 6.52e-53
|
|||||||
KH-I_BICC1_rpt2 | cd22421 | second type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
131-200 | 4.86e-46 | |||
second type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411849 Cd Length: 70 Bit Score: 159.05 E-value: 4.86e-46
|
|||||||
KH-I_BICC1_rpt3 | cd22422 | third type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
284-349 | 2.14e-38 | |||
third type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411850 Cd Length: 67 Bit Score: 137.08 E-value: 2.14e-38
|
|||||||
SAM_BICC1 | cd09520 | SAM domain of BICC1 (bicaudal) subfamily; SAM (sterile alpha motif) domain of BICC1 (bicaudal) ... |
872-936 | 1.03e-37 | |||
SAM domain of BICC1 (bicaudal) subfamily; SAM (sterile alpha motif) domain of BICC1 (bicaudal) subfamily is a protein-protein interaction domain. Proteins of this group have N-terminal K homology RNA-binding vigilin-like repeats and a C-terminal SAM domain. BICC1 is involved in the regulation of embryonic differentiation. It plays a role in the regulation of Dvl (Dishevelled) signaling, particularly in the correct cilia orientation and nodal flow generation. In Drosophila, disruption of BICC1 can disturb the normal migration direction of the anterior follicle cell of oocytes; the specific function of SAM is to recruit whole protein to the periphery of P-bodies. In mammals, mutations in this gene are associated with polycystic kidney disease and it was suggested that the BICC1 protein can indirectly interact with ANKS6 protein (ANKS6 is also associated with polycystic kidney disease) through some protein and RNA intermediates. Pssm-ID: 188919 Cd Length: 65 Bit Score: 135.12 E-value: 1.03e-37
|
|||||||
SAM_ANKS3 | cd09519 | SAM domain of ANKS3 subfamily; SAM (sterile alpha motif) domain of ANKS3 subfamily is a ... |
876-934 | 9.97e-18 | |||
SAM domain of ANKS3 subfamily; SAM (sterile alpha motif) domain of ANKS3 subfamily is a potential protein-protein interaction domain. Proteins of this subfamily have N-terminal ankyrin repeats and a C-terminal SAM domain. SAM is a widespread domain in signaling proteins. In many cases it mediates homo-dimerization/oligomerization. Pssm-ID: 188918 Cd Length: 64 Bit Score: 77.92 E-value: 9.97e-18
|
|||||||
SAM_superfamily | cd09487 | SAM (Sterile alpha motif ); SAM (Sterile Alpha Motif) domain is a module consisting of ... |
877-932 | 1.10e-16 | |||
SAM (Sterile alpha motif ); SAM (Sterile Alpha Motif) domain is a module consisting of approximately 70 amino acids. This domain is found in the Fungi/Metazoa group and in a restricted number of bacteria. Proteins with SAM domains are represented by a wide variety of domain architectures and have different intracellular localization, including nucleus, cytoplasm and membranes. SAM domains have diverse functions. They can interact with proteins, RNAs and membrane lipids, contain site of phosphorylation and/or kinase docking site, and play a role in protein homo and hetero dimerization/oligomerization in processes ranging from signal transduction to regulation of transcription. Mutations in SAM domains have been linked to several diseases. Pssm-ID: 188886 [Multi-domain] Cd Length: 56 Bit Score: 74.97 E-value: 1.10e-16
|
|||||||
KH-I_CeGLD3_rpt1 | cd22441 | first type I K homology (KH) RNA-binding domain found in Caenorhabditis elegans defective in ... |
132-200 | 3.67e-16 | |||
first type I K homology (KH) RNA-binding domain found in Caenorhabditis elegans defective in germ line development protein 3 (CeGLD-3) and similar proteins; CeGLD-3, also called germline development defective 3, is a Bicaudal-C (Bic-C) homolog that is involved in the translational control of germline-specific mRNAs during embryogenesis. It interacts with the cytoplasmic poly(A)-polymerase GLD-2. The two proteins cooperate to recognize target mRNAs and convert them into a polyadenylated, translationally active state. CeGLD-3 contains four K-homology (KH) RNA-binding domains, which are divergent KH domains that lacks the RNA-binding GXXG motif. The model corresponds to the first one. Pssm-ID: 411869 Cd Length: 71 Bit Score: 73.79 E-value: 3.67e-16
|
|||||||
KH | smart00322 | K homology RNA-binding domain; |
131-203 | 4.48e-16 | |||
K homology RNA-binding domain; Pssm-ID: 197652 [Multi-domain] Cd Length: 68 Bit Score: 73.48 E-value: 4.48e-16
|
|||||||
SAM_ANKS6 | cd09518 | SAM domain of ANKS6 (or SamCystin) subfamily; SAM (sterile alpha motif) domain of ANKS6 (or ... |
877-934 | 5.95e-16 | |||
SAM domain of ANKS6 (or SamCystin) subfamily; SAM (sterile alpha motif) domain of ANKS6 (or SamCystin) subfamily is a potential protein-protein interaction domain. Proteins of this subfamily have N-terminal ankyrin repeats and a C-terminal SAM domain. They are able to form self-associated complexes and both (SAM and ANK) domains play a role in such interactions. Mutations in Anks6 gene are associated with polycystic kidney disease. They cause formation of renal cysts in rodent models. It was suggested that the ANKS6 protein can interact indirectly (through RNA and protein intermediates) with BICC1, another polycystic kidney disease-associated protein. Pssm-ID: 188917 Cd Length: 65 Bit Score: 72.99 E-value: 5.95e-16
|
|||||||
KH_1 | pfam00013 | KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause ... |
134-201 | 7.85e-16 | |||
KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause paraneoplastic opsoclonus ataxia. Pssm-ID: 459630 [Multi-domain] Cd Length: 65 Bit Score: 72.70 E-value: 7.85e-16
|
|||||||
KH-I_Vigilin_rpt6 | cd02394 | sixth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, ... |
133-202 | 2.21e-15 | |||
sixth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the sixth one. Pssm-ID: 411804 [Multi-domain] Cd Length: 68 Bit Score: 71.45 E-value: 2.21e-15
|
|||||||
SAM_1 | pfam00536 | SAM domain (Sterile alpha motif); It has been suggested that SAM is an evolutionarily ... |
876-933 | 1.38e-14 | |||
SAM domain (Sterile alpha motif); It has been suggested that SAM is an evolutionarily conserved protein binding domain that is involved in the regulation of numerous developmental processes in diverse eukaryotes. The SAM domain can potentially function as a protein interaction module through its ability to homo- and heterooligomerise with other SAM domains. Pssm-ID: 425739 Cd Length: 64 Bit Score: 69.22 E-value: 1.38e-14
|
|||||||
KH_1 | pfam00013 | KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause ... |
286-349 | 2.99e-14 | |||
KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause paraneoplastic opsoclonus ataxia. Pssm-ID: 459630 [Multi-domain] Cd Length: 65 Bit Score: 68.08 E-value: 2.99e-14
|
|||||||
KH-I | cd00105 | K homology (KH) RNA-binding domain, type I; KH binds single-stranded RNA or DNA. It is found ... |
135-200 | 2.03e-13 | |||
K homology (KH) RNA-binding domain, type I; KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. There are two different KH domains that belong to different protein folds, but they share a single KH motif. The KH motif is folded into a beta alpha alpha beta unit. In addition to the core, type II KH domains (e.g. ribosomal protein S3) include an N-terminal extension and type I KH domains (e.g. hnRNP K) contain a C-terminal extension. Some KH-I superfamily members contain a divergent KH domain that lacks the RNA-binding GXXG motif. Some others have a mutated GXXG motif which may or may not have nucleic acid binding ability. Pssm-ID: 411802 [Multi-domain] Cd Length: 63 Bit Score: 65.78 E-value: 2.03e-13
|
|||||||
SAM | smart00454 | Sterile alpha motif; Widespread domain in signalling and nuclear proteins. In EPH-related ... |
876-933 | 2.07e-12 | |||
Sterile alpha motif; Widespread domain in signalling and nuclear proteins. In EPH-related tyrosine kinases, appears to mediate cell-cell initiated signal transduction via the binding of SH2-containing proteins to a conserved tyrosine that is phosphorylated. In many cases mediates homodimerisation. Pssm-ID: 197735 Cd Length: 68 Bit Score: 63.08 E-value: 2.07e-12
|
|||||||
KH-I_BICC1_rpt3 | cd22422 | third type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
133-196 | 3.77e-12 | |||
third type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411850 Cd Length: 67 Bit Score: 62.35 E-value: 3.77e-12
|
|||||||
KH-I | cd00105 | K homology (KH) RNA-binding domain, type I; KH binds single-stranded RNA or DNA. It is found ... |
288-349 | 3.89e-11 | |||
K homology (KH) RNA-binding domain, type I; KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. There are two different KH domains that belong to different protein folds, but they share a single KH motif. The KH motif is folded into a beta alpha alpha beta unit. In addition to the core, type II KH domains (e.g. ribosomal protein S3) include an N-terminal extension and type I KH domains (e.g. hnRNP K) contain a C-terminal extension. Some KH-I superfamily members contain a divergent KH domain that lacks the RNA-binding GXXG motif. Some others have a mutated GXXG motif which may or may not have nucleic acid binding ability. Pssm-ID: 411802 [Multi-domain] Cd Length: 63 Bit Score: 59.23 E-value: 3.89e-11
|
|||||||
SAM_sec23ip-like | cd09516 | SAM domain of sec23ip-like subfamily; SAM (sterile alpha motif) domain of Sec23ip-like (Sec23 ... |
874-927 | 1.02e-10 | |||
SAM domain of sec23ip-like subfamily; SAM (sterile alpha motif) domain of Sec23ip-like (Sec23 interacting protein) subfamily is a potential protein-protein interaction domain. This group of proteins includes Sec23ip and DDHD2 proteins. All of them contain at least two domains: a SAM domain and a predicted metal-binding domain. For mammalian DDHD2 members of this group, phospholipase activity has been demonstrated. Sec23ip proteins of this group interact with Sec23 proteins via an N-terminal proline-rich region. Members of this subfamily are involved in organization of ER/Golgi intermediate compartment. Pssm-ID: 188915 Cd Length: 69 Bit Score: 58.19 E-value: 1.02e-10
|
|||||||
KH-I_Vigilin_rpt10 | cd22413 | tenth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, ... |
131-196 | 1.65e-10 | |||
tenth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the tenth one. Pssm-ID: 411841 [Multi-domain] Cd Length: 66 Bit Score: 57.65 E-value: 1.65e-10
|
|||||||
SAM_2 | pfam07647 | SAM domain (Sterile alpha motif); |
876-933 | 1.54e-09 | |||
SAM domain (Sterile alpha motif); Pssm-ID: 429573 Cd Length: 66 Bit Score: 54.97 E-value: 1.54e-09
|
|||||||
KH | smart00322 | K homology RNA-binding domain; |
284-352 | 1.79e-09 | |||
K homology RNA-binding domain; Pssm-ID: 197652 [Multi-domain] Cd Length: 68 Bit Score: 54.61 E-value: 1.79e-09
|
|||||||
KH-I_Vigilin_rpt10 | cd22413 | tenth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, ... |
286-348 | 2.25e-09 | |||
tenth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the tenth one. Pssm-ID: 411841 [Multi-domain] Cd Length: 66 Bit Score: 54.19 E-value: 2.25e-09
|
|||||||
KH-I_Vigilin_rpt8 | cd22411 | eighth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; ... |
144-199 | 2.76e-09 | |||
eighth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the eighth one. Pssm-ID: 411839 [Multi-domain] Cd Length: 62 Bit Score: 54.13 E-value: 2.76e-09
|
|||||||
KH-I_Vigilin_rpt14 | cd22417 | fourteenth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; ... |
133-203 | 3.97e-09 | |||
fourteenth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the fourteenth one. Pssm-ID: 411845 [Multi-domain] Cd Length: 72 Bit Score: 53.75 E-value: 3.97e-09
|
|||||||
KH-I_ScSCP160_rpt2 | cd22447 | second type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein ... |
130-201 | 4.68e-09 | |||
second type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein SCP160 and similar proteins; SCP160, also called protein HX, is a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum. It is involved in the control of mitotic chromosome transmission. It is required during cell division for faithful partitioning of the ER-nuclear envelope membranes which enclose the duplicated chromosomes in yeast. SCP160 contains seven K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411875 [Multi-domain] Cd Length: 80 Bit Score: 53.96 E-value: 4.68e-09
|
|||||||
KH-I_BICC1_rpt2 | cd22421 | second type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) ... |
285-346 | 5.75e-09 | |||
second type I K homology (KH) RNA-binding domain found in protein bicaudal C homolog 1 (BICC1) and similar proteins; BICC1, also called Bic-C, is a mammalian homologue of Drosophila Bicaudal-C (dBic-C). BICC1 functions as an RNA-binding protein that represses the translation of selected mRNAs to control development. It regulates gene expression and modulates cell proliferation and apoptosis. BICC1 is a negative regulator of Wnt signaling. Increased levels of BICC1 may be associated with depression. Besides, BICC1 is a genetic determinant of osteoblastogenesis and bone mineral density. BICC1 contains three K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411849 Cd Length: 70 Bit Score: 53.50 E-value: 5.75e-09
|
|||||||
KH-I_TDRKH_rpt1 | cd22428 | first type I K homology (KH) RNA-binding domain found in tudor and KH domain-containing ... |
147-203 | 1.26e-08 | |||
first type I K homology (KH) RNA-binding domain found in tudor and KH domain-containing protein (TDRKH) and similar proteins; TDRKH, also called tudor domain-containing protein 2 (TDRD2), is a mitochondria-anchored RNA-binding protein that is required for spermatogenesis and involved in piRNA biogenesis. It specifically recruits MIWI, but not MILI, to engage the piRNA pathway. TDRKH contains two K-homology (KH) RNA-binding domains and one tudor domain, which are involved in binding to RNA or single-strand DNA. The model corresponds to the first one. Pssm-ID: 411856 [Multi-domain] Cd Length: 74 Bit Score: 52.34 E-value: 1.26e-08
|
|||||||
KH-I_Vigilin_rpt13 | cd22416 | thirteenth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; ... |
133-202 | 4.47e-08 | |||
thirteenth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the thirteenth one. Pssm-ID: 411844 [Multi-domain] Cd Length: 78 Bit Score: 51.08 E-value: 4.47e-08
|
|||||||
SAM_USH1G_HARP | cd09517 | SAM domain of USH1G_HARP family; SAM (sterile alpha motif) domain of USH1G/HARP (Usher ... |
875-944 | 5.13e-08 | |||
SAM domain of USH1G_HARP family; SAM (sterile alpha motif) domain of USH1G/HARP (Usher syndrome type-1G/ Harmonin-interacting Ankyrin Repeat-containing protein) family is a protein-protein interaction domain. Members of this family have an N-terminal ankyrin repeat region and a C-terminal SAM domain. In mammals these proteins can interact via the SAM domain with the PDZ domain of harmonin to form a scaffolding complex that facilitates signal transduction in epithelial and inner ear sensory cells. It was suggested that USH1G and HARP can be tissue specific partners of harmonin. Mutations in ush1g genes lead to Usher syndrome type 1G. This syndrome is the cause of deaf-blindness in humans. Pssm-ID: 188916 Cd Length: 66 Bit Score: 50.41 E-value: 5.13e-08
|
|||||||
KH-I_ScSCP160_rpt1 | cd22446 | first type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein ... |
130-199 | 6.36e-08 | |||
first type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein SCP160 and similar proteins; SCP160, also called protein HX, is a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum. It is involved in the control of mitotic chromosome transmission. It is required during cell division for faithful partitioning of the ER-nuclear envelope membranes which enclose the duplicated chromosomes in yeast. SCP160 contains seven K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411874 [Multi-domain] Cd Length: 86 Bit Score: 50.87 E-value: 6.36e-08
|
|||||||
SAM_ASZ1 | cd09521 | SAM domain of ASZ1 subfamily; SAM (sterile alpha motif) domain of ASZ1 (Ankyrin, SAM, leucine ... |
871-934 | 6.49e-08 | |||
SAM domain of ASZ1 subfamily; SAM (sterile alpha motif) domain of ASZ1 (Ankyrin, SAM, leucine Zipper) also known as GASZ (Germ cell-specific Ankyrin, SAM, leucine Zipper) subfamily is a potential protein-protein interaction domain. Proteins of this group are involved in the repression of transposable elements during spermatogenesis, oogenesis, and preimplantation embryogenesis. They support synthesis of PIWI-interacting RNA via association with some PIWI proteins, such as MILI and MIWI. This association is required for initiation and maintenance of retrotransposon repression during the meiosis. In mice lacking ASZ1, DNA damage and delayed germ cell maturation was observed due to retrotransposons releasing from their repressed state. Pssm-ID: 188920 Cd Length: 64 Bit Score: 50.36 E-value: 6.49e-08
|
|||||||
KH-I_Vigilin_rpt15 | cd22418 | fifteenth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; ... |
133-196 | 8.79e-08 | |||
fifteenth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the fifteenth one. Pssm-ID: 411846 [Multi-domain] Cd Length: 69 Bit Score: 49.96 E-value: 8.79e-08
|
|||||||
KH-I_Vigilin_rpt3 | cd22407 | third type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, ... |
289-349 | 1.18e-07 | |||
third type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the third one. Pssm-ID: 411835 [Multi-domain] Cd Length: 62 Bit Score: 49.51 E-value: 1.18e-07
|
|||||||
KH-I_ScSCP160_rpt4 | cd22449 | fourth type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein ... |
134-202 | 1.28e-07 | |||
fourth type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein SCP160 and similar proteins; SCP160, also called protein HX, is a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum. It is involved in the control of mitotic chromosome transmission. It is required during cell division for faithful partitioning of the ER-nuclear envelope membranes which enclose the duplicated chromosomes in yeast. SCP160 contains seven K-homology (KH) RNA-binding domains. The model corresponds to the fourth one. Pssm-ID: 411877 [Multi-domain] Cd Length: 70 Bit Score: 49.58 E-value: 1.28e-07
|
|||||||
SAM_DDHD2 | cd09585 | SAM domain of DDHD2; SAM (sterile alpha motif) domain of DDHD2 group is a potential ... |
878-931 | 1.37e-07 | |||
SAM domain of DDHD2; SAM (sterile alpha motif) domain of DDHD2 group is a potential protein-protein interaction domain. DDHD2 proteins contain at least two domains:a SAM domain and a predicted metal-binding domain. Phospholipase A1 activity was demonstrated for the mammalian DDHD2 protein. Mutation of the putative catalytic serine resulted in elimination of activity. Unlike SEC23IP, DDHD2 proteins do not have an N-terminal proline-rich region and correspondingly they are not able to interact with Sec23p/Sec24p complex. Overexpression of DDHD2 is the cause of dispersion of ER/Golgi intermediate compartment and dispersion of tethering proteins located in the Golgi region, leading to aggregation in the endoplasmic reticulum. Pssm-ID: 188984 Cd Length: 69 Bit Score: 49.37 E-value: 1.37e-07
|
|||||||
KH-I_Vigilin_rpt4 | cd22408 | fourth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; ... |
134-199 | 5.39e-07 | |||
fourth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the fourth one. Pssm-ID: 411836 [Multi-domain] Cd Length: 62 Bit Score: 47.55 E-value: 5.39e-07
|
|||||||
SAM_TAL | cd09523 | SAM domain of TAL subfamily; SAM (sterile alpha motif) domain of TAL (Tsg101-associated ligase) ... |
877-933 | 7.00e-07 | |||
SAM domain of TAL subfamily; SAM (sterile alpha motif) domain of TAL (Tsg101-associated ligase) proteins, also known as LRSAM1 (Leucine-rich repeat and sterile alpha motif-containing) proteins, is a putative protein-protein interaction domain. Proteins of this subfamily participate in the regulation of retrovirus budding and receptor endocytosis. They show E3 ubiquitin ligase activity. Human TAL protein interacts with Tsg101 and TAL's C-terminal ring finger domain is essential for the multiple monoubiquitylation of Tsg101. Pssm-ID: 188922 Cd Length: 65 Bit Score: 47.28 E-value: 7.00e-07
|
|||||||
KH-I_Mextli_like | cd22454 | type I K homology (KH) RNA-binding domain found in Drosophila melanogaster eukaryotic ... |
147-202 | 1.78e-06 | |||
type I K homology (KH) RNA-binding domain found in Drosophila melanogaster eukaryotic translation initiation factor 4E-binding protein Mextli and similar proteins; Mextli is a novel eukaryotic translation initiation factor 4E-binding protein that promotes translation in Drosophila melanogaster. Pssm-ID: 411882 [Multi-domain] Cd Length: 71 Bit Score: 46.15 E-value: 1.78e-06
|
|||||||
KH-I_TDRKH_rpt1 | cd22428 | first type I K homology (KH) RNA-binding domain found in tudor and KH domain-containing ... |
298-345 | 1.84e-06 | |||
first type I K homology (KH) RNA-binding domain found in tudor and KH domain-containing protein (TDRKH) and similar proteins; TDRKH, also called tudor domain-containing protein 2 (TDRD2), is a mitochondria-anchored RNA-binding protein that is required for spermatogenesis and involved in piRNA biogenesis. It specifically recruits MIWI, but not MILI, to engage the piRNA pathway. TDRKH contains two K-homology (KH) RNA-binding domains and one tudor domain, which are involved in binding to RNA or single-strand DNA. The model corresponds to the first one. Pssm-ID: 411856 [Multi-domain] Cd Length: 74 Bit Score: 46.56 E-value: 1.84e-06
|
|||||||
KH-I_Vigilin_rpt6 | cd02394 | sixth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, ... |
284-346 | 1.94e-06 | |||
sixth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the sixth one. Pssm-ID: 411804 [Multi-domain] Cd Length: 68 Bit Score: 46.02 E-value: 1.94e-06
|
|||||||
SAM_VTS1_fungal | cd09556 | SAM domain of VTS1 RNA-binding proteins; SAM (sterile alpha motif) domain of VTS1 subfamily ... |
877-927 | 2.09e-06 | |||
SAM domain of VTS1 RNA-binding proteins; SAM (sterile alpha motif) domain of VTS1 subfamily proteins is RNA binding domain located in the C-terminal region. SAM interacts with stem-loop structures of mRNA. Proteins of this subfamily participate in regulation of transcript stability and degradation, and also may be involved in vacuolar protein transport regulation. VTS1 protein of S.cerevisiae induces mRNA degradation via the major deadenylation-dependent mRNA decay pathway; VTS1 recruits CCR4/POP2/NOT deadenylase complex to target mRNA. The recruitment is the initial step resulting in poly(A) tail removal transcripts. Potentially SAM domain may be responsible not only for RNA binding but also for deadenylase binding. Pssm-ID: 188955 Cd Length: 69 Bit Score: 46.14 E-value: 2.09e-06
|
|||||||
SAM_SGMS1-like | cd09515 | SAM domain of sphingomyelin synthase related subfamily; SAM (sterile alpha motif) domain of ... |
883-935 | 2.18e-06 | |||
SAM domain of sphingomyelin synthase related subfamily; SAM (sterile alpha motif) domain of SGMS-like (sphingomyelin synthase) subfamily is a potential protein-protein interaction domain. This group of proteins is related to sphingomyelin synthase 1, and contains an N-terminal SAM domain. The function of SGMS1-like proteins is unknown; they may play a role in sphingolipid metabolism. Pssm-ID: 188914 Cd Length: 70 Bit Score: 46.09 E-value: 2.18e-06
|
|||||||
KH-I_ScSCP160_rpt7 | cd22452 | seventh type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein ... |
138-201 | 3.10e-06 | |||
seventh type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein SCP160 and similar proteins; SCP160, also called protein HX, is a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum. It is involved in the control of mitotic chromosome transmission. It is required during cell division for faithful partitioning of the ER-nuclear envelope membranes which enclose the duplicated chromosomes in yeast. SCP160 contains seven K-homology (KH) RNA-binding domains. The model corresponds to the seventh one. Pssm-ID: 411880 [Multi-domain] Cd Length: 65 Bit Score: 45.39 E-value: 3.10e-06
|
|||||||
KH-I_FUBP_rpt3 | cd22398 | third type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding ... |
147-203 | 3.21e-06 | |||
third type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding proteins; The far upstream element-binding protein (FUBP) family includes FUBP1-3. FUBP1, also called FBP, or FUSE-binding protein 1, or DNA helicase V, or DH V, binds RNA and single-stranded DNA (ssDNA) and may act both as activator and repressor of transcription. It regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. FUBP2, also called FUSE-binding protein 2, or KH type-splicing regulatory protein (KSRP), or p75, is a single-strand nucleic acid binding protein implicated in a variety of cellular processes, including splicing in the nucleus, mRNA decay, maturation of miRNA, and transcriptional control of proto-oncogenes such as c-myc. It regulates the stability and/or translatability of many mRNA species, encoding immune-relevant proteins, either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. FUBP3, also called FUSE-binding protein 3, or MARTA2, was previously shown to mediate dendritic targeting of MAP2 mRNA in neurons. It may interact with single-stranded DNA from the far-upstream element (FUSE) and activate gene expression. It is required for beta-actin mRNA localization. It also interacts with fibroblast growth factor 9 (FGF9) 3'-UTR UG repeats and positively controls FGF9 expression through increasing translation of FGF9 mRNA. FUBP proteins contain four K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411826 [Multi-domain] Cd Length: 67 Bit Score: 45.33 E-value: 3.21e-06
|
|||||||
KH-I_PCBP_rpt3 | cd22439 | third type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding ... |
301-348 | 3.46e-06 | |||
third type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding proteins (PCBPs); The PCBP family, also known as hnRNP E family, comprises four members, PCBP1-4, which are RNA-binding proteins that interact in a sequence-specific manner with single-stranded poly(C) sequences. They are mainly involved in various posttranscriptional regulations, including mRNA stabilization or translational activation/silencing. Besides, PCBPs may share iron chaperone activity. PCBPs contain three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411867 [Multi-domain] Cd Length: 68 Bit Score: 45.30 E-value: 3.46e-06
|
|||||||
SAM_DGK-delta-eta | cd09507 | SAM domain of diacylglycerol kinase delta and eta subunits; SAM (sterile alpha motif) domain ... |
883-933 | 4.05e-06 | |||
SAM domain of diacylglycerol kinase delta and eta subunits; SAM (sterile alpha motif) domain of DGK-eta-delta subfamily proteins is a protein-protein interaction domain. Proteins of this subfamily are multidomain diacylglycerol kinases with a SAM domain located at the C-terminus. DGK proteins participate in signal transduction. They regulate the level of second messengers such as diacylglycerol and phosphatidic acid. The SAM domain of DGK proteins can form high molecular weight homooligomers through head-to-tail interactions as well as heterooligomers between the SAM domains of DGK delta and eta proteins. The oligomerization plays a role in the regulation of DGK intracellular localization. Pssm-ID: 188906 Cd Length: 65 Bit Score: 45.10 E-value: 4.05e-06
|
|||||||
SAM_Ste50-like_fungal | cd09533 | SAM domain of Ste50_like (ubc2) subfamily; SAM (sterile alpha motif) domain of Ste50-like (or ... |
883-933 | 5.41e-06 | |||
SAM domain of Ste50_like (ubc2) subfamily; SAM (sterile alpha motif) domain of Ste50-like (or Ubc2 for Ustilago bypass of cyclase) subfamily is a putative protein-protein interaction domain. This group includes only fungal proteins. Basidiomycetes have an N-terminal SAM domain, central UBQ domain, and C-terminal SH3 domain, while Ascomycetes lack the SH3 domain. Ubc2 of Ustilago maydis is a major virulence and maize pathogenicity factor. It is required for filamentous growth (the budding haploid form of Ustilago maydis is a saprophyte, while filamentous dikaryotic form is a pathogen). Also the Ubc2 protein is involved in the pheromone-responsive morphogenesis via the MAP kinase cascade. The SAM domain is necessary for ubc2 function; deletion of SAM eliminates this function. A Lys-to-Glu mutation in the SAM domain of ubc2 gene induces temperature sensitivity. Pssm-ID: 188932 Cd Length: 58 Bit Score: 44.61 E-value: 5.41e-06
|
|||||||
SAM_BOI-like_fungal | cd09535 | SAM domain of BOI-like fungal subfamily; SAM (sterile alpha motif) domain of BOI-like fungal ... |
891-933 | 5.61e-06 | |||
SAM domain of BOI-like fungal subfamily; SAM (sterile alpha motif) domain of BOI-like fungal subfamily is a potential protein-protein interaction domain. Proteins of this subfamily are apparently scaffold proteins, since most contain SH3 and PH domains, which are also protein-protein interaction domains, in addition to SAM domain. BOI-like proteins participate in cell cycle regulation. In particular BOI1 and BOI2 proteins of budding yeast S.cerevisiae are involved in bud formation, and POB1 protein of fission yeast S.pombe plays a role in cell elongation and separation. Among binding partners of BOI-like fungal subfamily members are such proteins as Bem1 and Cdc42 (they are known to be involved in cell polarization and bud formation). Pssm-ID: 188934 Cd Length: 65 Bit Score: 44.85 E-value: 5.61e-06
|
|||||||
KH-I_FUBP_rpt2 | cd22397 | second type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding ... |
147-203 | 5.98e-06 | |||
second type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding proteins; The far upstream element-binding protein (FUBP) family includes FUBP1-3. FUBP1, also called FBP, or FUSE-binding protein 1, or DNA helicase V, or DH V, binds RNA and single-stranded DNA (ssDNA) and may act both as activator and repressor of transcription. It regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. FUBP2, also called FUSE-binding protein 2, or KH type-splicing regulatory protein (KSRP), or p75, is a single-strand nucleic acid binding protein implicated in a variety of cellular processes, including splicing in the nucleus, mRNA decay, maturation of miRNA, and transcriptional control of proto-oncogenes such as c-myc. It regulates the stability and/or translatability of many mRNA species, encoding immune-relevant proteins, either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. FUBP3, also called FUSE-binding protein 3, or MARTA2, was previously shown to mediate dendritic targeting of MAP2 mRNA in neurons. It may interact with single-stranded DNA from the far-upstream element (FUSE) and activate gene expression. It is required for beta-actin mRNA localization. It also interacts with fibroblast growth factor 9 (FGF9) 3'-UTR UG repeats and positively controls FGF9 expression through increasing translation of FGF9 mRNA. FUBP proteins contain four K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411825 [Multi-domain] Cd Length: 69 Bit Score: 44.93 E-value: 5.98e-06
|
|||||||
SAM_sec23ip | cd09584 | SAM domain of sec23ip; SAM (sterile alpha motif) domain of Sec23ip (Sec23 interacting protein) ... |
877-926 | 6.00e-06 | |||
SAM domain of sec23ip; SAM (sterile alpha motif) domain of Sec23ip (Sec23 interacting protein) group is a potential protein-protein interaction domain. Sec23ip proteins (also known as p125) contain an N-terminal proline-rich region, a central region containing a SAM domain and a C-terminal region with a predicted metal-binding domain. Sec23ip interacts with Sec23p/Sec24p part of COPII-coated vesicles complex involved in protein transport from the ER to the Golgi apparatus. The proline-rich region plays an essential role in this interaction. Overexpression of Sec23ip leads to disorganization of ER/Golgi intermediate compartment. Pssm-ID: 188983 Cd Length: 69 Bit Score: 44.80 E-value: 6.00e-06
|
|||||||
KH-I_Vigilin_rpt9 | cd22412 | ninth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, ... |
133-202 | 6.86e-06 | |||
ninth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the ninth one. Pssm-ID: 411840 Cd Length: 70 Bit Score: 44.59 E-value: 6.86e-06
|
|||||||
KH-I_Vigilin_rpt3 | cd22407 | third type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, ... |
136-200 | 8.50e-06 | |||
third type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the third one. Pssm-ID: 411835 [Multi-domain] Cd Length: 62 Bit Score: 44.12 E-value: 8.50e-06
|
|||||||
SAM_tankyrase1,2 | cd09524 | SAM domain of tankyrase1,2 subfamily; SAM (sterile alpha motif) domain of Tankyrase1,2 ... |
877-933 | 9.30e-06 | |||
SAM domain of tankyrase1,2 subfamily; SAM (sterile alpha motif) domain of Tankyrase1,2 subfamily is a protein-protein interaction domain. In addition to the SAM domain, proteins of this group have ankyrin repeats and a ADP- ribosyltransferase (poly-(ADP-ribose) synthase) domain. Tankyrases can polymerize through their SAM domains forming homoligomers and these complexes are disrupted by autoribosylation. Tankyrases apparently act as master scaffolding proteins and thus may interact simultaneously with multiple proteins, in particular with TRF1, NuMA, IRAP and Grb14 (ankyrin repeats are involved in these interactions). Tankyrases participate in a variety of cell signaling pathways as effector molecules. Their functions are different depending on the intracellular location: at telomeres they play a role in the regulation of telomere length via control of telomerase access to telomeres, at centrosomes they promote spindle assembly/disassembly, in Golgi vesicles they participate in the regulation of vesicle trafficking and Golgi dynamics. Tankyrase 1 may be of interest as new potential target for telomerase-directed cancer therapy. Pssm-ID: 188923 Cd Length: 66 Bit Score: 44.24 E-value: 9.30e-06
|
|||||||
SAM_Smaug-like | cd09489 | SAM (Sterile alpha motif ); SAM (sterile alpha motif) domain of Smaug-like subfamily proteins ... |
878-930 | 1.56e-05 | |||
SAM (Sterile alpha motif ); SAM (sterile alpha motif) domain of Smaug-like subfamily proteins is an RNA binding domain. SAM interacts with stem-loop structures in target mRNAs. Proteins of this subfamily are post-transcriptional regulators involved in mRNA silencing and deadenylation; they can be implicated in transcript stability regulation and vacuolar protein transport as well. SAM_Smaug-like domain-containing proteins are found in metazoa from yeast to human. In animals they are active during early embryogenesis. Pssm-ID: 188888 Cd Length: 57 Bit Score: 43.31 E-value: 1.56e-05
|
|||||||
KH-I_IGF2BP_rpt2 | cd22401 | second type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 ... |
299-349 | 2.48e-05 | |||
second type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family; The IGF2BP family includes three members: IGF2BP1/IMP-1/ CRD-BP/ VICKZ1, IGF2BP2/IMP-2/ VICKZ2, and IGF2BP3/IMP-3/VICKZ3, which are RNA-binding factors that recruit target transcripts to cytoplasmic protein-RNA complexes (mRNPs). They function by binding to the 5' UTR of the insulin-like growth factor 2 (IGF2) mRNA and regulating IGF2 translation. IGF2BP proteins contain four K-homology (KH) RNA-binding domains which are important in RNA binding and are known to be involved in RNA synthesis and metabolism. The model corresponds to the second one. Pssm-ID: 411829 [Multi-domain] Cd Length: 72 Bit Score: 42.98 E-value: 2.48e-05
|
|||||||
KH-I_Vigilin_rpt8 | cd22411 | eighth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; ... |
70-122 | 3.28e-05 | |||
eighth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the eighth one. Pssm-ID: 411839 [Multi-domain] Cd Length: 62 Bit Score: 42.58 E-value: 3.28e-05
|
|||||||
KH-I_FUBP_rpt4 | cd22399 | fourth type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding ... |
147-201 | 3.60e-05 | |||
fourth type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding proteins; The far upstream element-binding protein (FUBP) family includes FUBP1-3. FUBP1, also called FBP, or FUSE-binding protein 1, or DNA helicase V, or DH V, binds RNA and single-stranded DNA (ssDNA) and may act both as activator and repressor of transcription. It regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. FUBP2, also called FUSE-binding protein 2, or KH type-splicing regulatory protein (KSRP), or p75, is a single-strand nucleic acid binding protein implicated in a variety of cellular processes, including splicing in the nucleus, mRNA decay, maturation of miRNA, and transcriptional control of proto-oncogenes such as c-myc. It regulates the stability and/or translatability of many mRNA species, encoding immune-relevant proteins, either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. FUBP3, also called FUSE-binding protein 3, or MARTA2, was previously shown to mediate dendritic targeting of MAP2 mRNA in neurons. It may interact with single-stranded DNA from the far-upstream element (FUSE) and activate gene expression. It is required for beta-actin mRNA localization. It also interacts with fibroblast growth factor 9 (FGF9) 3'-UTR UG repeats and positively controls FGF9 expression through increasing translation of FGF9 mRNA. FUBP proteins contain four K-homology (KH) RNA-binding domains. The model corresponds to the fourth one. Pssm-ID: 411827 [Multi-domain] Cd Length: 67 Bit Score: 42.60 E-value: 3.60e-05
|
|||||||
SAM_caskin1,2_repeat2 | cd09498 | SAM domain of caskin protein repeat 2; SAM (sterile alpha motif) domain repeat 2 of caskin1,2 ... |
871-934 | 5.05e-05 | |||
SAM domain of caskin protein repeat 2; SAM (sterile alpha motif) domain repeat 2 of caskin1,2 proteins is a protein-protein interaction domain. Caskin has two tandem SAM domains. Caskin protein is known to interact with membrane-associated guanylate kinase CASK, and may play a role in neural development, synaptic protein targeting, and regulation of gene expression. Pssm-ID: 188897 Cd Length: 71 Bit Score: 42.28 E-value: 5.05e-05
|
|||||||
KH-I_Vigilin_rpt2 | cd22406 | second type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; ... |
126-200 | 5.43e-05 | |||
second type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the second one. Pssm-ID: 411834 [Multi-domain] Cd Length: 75 Bit Score: 42.30 E-value: 5.43e-05
|
|||||||
KH-I_ScSCP160_rpt5 | cd22450 | fifth type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein ... |
130-193 | 5.50e-05 | |||
fifth type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein SCP160 and similar proteins; SCP160, also called protein HX, is a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum. It is involved in the control of mitotic chromosome transmission. It is required during cell division for faithful partitioning of the ER-nuclear envelope membranes which enclose the duplicated chromosomes in yeast. SCP160 contains seven K-homology (KH) RNA-binding domains. The model corresponds to the fifth one. Pssm-ID: 411878 Cd Length: 80 Bit Score: 42.26 E-value: 5.50e-05
|
|||||||
SAM_Smaug | cd09557 | SAM domain of Smaug subfamily; SAM (sterile alpha motif) domain of Smaug proteins is an RNA ... |
876-933 | 6.51e-05 | |||
SAM domain of Smaug subfamily; SAM (sterile alpha motif) domain of Smaug proteins is an RNA recognition domain. It binds a specific RNA motif known as Smaug recognition element (SRE). Among members of this group are invertebrate Smaug (Smg) proteins and vertebrate Smaug1 and Smaug2 proteins. They are involved in post-transcriptional control during early embryogenesis in animals. In Drosophila, Smaug protein is a translational repressor of mRNA of Nanos (Nos) protein. Gradient of Nanos is required for proper abdominal segmentation. SAM domain interacts specifically with the Nanos mRNA regulatory regions. Moreover, Smaug protein is involved in regulation of specific maternal transcripts degradation in Drosophila early embryo via recruitment of the CCR4/POP2/NOT deadenylase. Pssm-ID: 188956 Cd Length: 63 Bit Score: 41.54 E-value: 6.51e-05
|
|||||||
SAM_WDSUB1 | cd09505 | SAM domain of WDSUB1 proteins; SAM (sterile alpha motif) domain of WDSUB1 subfamily proteins ... |
886-933 | 6.72e-05 | |||
SAM domain of WDSUB1 proteins; SAM (sterile alpha motif) domain of WDSUB1 subfamily proteins is a putative protein-protein interaction domain. Proteins of this group contain multiple domains: SAM, one or more WD40 repeats and U-box (derived version of the RING-finger domain). Apparently the WDSUB1 subfamily proteins participate in protein degradation through ubiquitination, since U-box domain are known as a member of E3 ubiquitin ligase family, while SAM and WD40 domains most probably are responsible for an E2 ubiquitin-conjugating enzyme binding and a target protein binding. Pssm-ID: 188904 Cd Length: 72 Bit Score: 41.92 E-value: 6.72e-05
|
|||||||
KH-I_Vigilin_rpt5 | cd22409 | fifth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, ... |
144-201 | 6.74e-05 | |||
fifth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the fifth one. Pssm-ID: 411837 [Multi-domain] Cd Length: 70 Bit Score: 41.80 E-value: 6.74e-05
|
|||||||
KH-I_FUBP_rpt1 | cd22396 | first type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding ... |
147-201 | 9.66e-05 | |||
first type I K homology (KH) RNA-binding domain found in the FUBP family RNA/DNA-binding proteins; The far upstream element-binding protein (FUBP) family includes FUBP1-3. FUBP1, also called FBP, or FUSE-binding protein 1, or DNA helicase V, or DH V, binds RNA and single-stranded DNA (ssDNA) and may act both as activator and repressor of transcription. It regulates MYC expression by binding to a single-stranded far-upstream element (FUSE) upstream of the MYC promoter. FUBP2, also called FUSE-binding protein 2, or KH type-splicing regulatory protein (KSRP), or p75, is a single-strand nucleic acid binding protein implicated in a variety of cellular processes, including splicing in the nucleus, mRNA decay, maturation of miRNA, and transcriptional control of proto-oncogenes such as c-myc. It regulates the stability and/or translatability of many mRNA species, encoding immune-relevant proteins, either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. FUBP3, also called FUSE-binding protein 3, or MARTA2, was previously shown to mediate dendritic targeting of MAP2 mRNA in neurons. It may interact with single-stranded DNA from the far-upstream element (FUSE) and activate gene expression. It is required for beta-actin mRNA localization. It also interacts with fibroblast growth factor 9 (FGF9) 3'-UTR UG repeats and positively controls FGF9 expression through increasing translation of FGF9 mRNA. FUBP proteins contain four K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411824 [Multi-domain] Cd Length: 68 Bit Score: 41.47 E-value: 9.66e-05
|
|||||||
KH_1 | pfam00013 | KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause ... |
48-124 | 1.12e-04 | |||
KH domain; KH motifs bind RNA in vitro. Autoantibodies to Nova, a KH domain protein, cause paraneoplastic opsoclonus ataxia. Pssm-ID: 459630 [Multi-domain] Cd Length: 65 Bit Score: 41.11 E-value: 1.12e-04
|
|||||||
KH-I_ScSCP160_rpt6 | cd22451 | sixth type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein ... |
133-199 | 1.17e-04 | |||
sixth type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein SCP160 and similar proteins; SCP160, also called protein HX, is a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum. It is involved in the control of mitotic chromosome transmission. It is required during cell division for faithful partitioning of the ER-nuclear envelope membranes which enclose the duplicated chromosomes in yeast. SCP160 contains seven K-homology (KH) RNA-binding domains. The model corresponds to the sixth one. Pssm-ID: 411879 [Multi-domain] Cd Length: 69 Bit Score: 41.29 E-value: 1.17e-04
|
|||||||
KH-I_ASCC1 | cd22419 | type I K homology (KH) RNA-binding domain found in activating signal cointegrator 1 complex ... |
134-203 | 1.65e-04 | |||
type I K homology (KH) RNA-binding domain found in activating signal cointegrator 1 complex subunit 1 (ASCC1) and similar proteins; ASCC1, also called ASC-1 complex subunit p50, or Trip4 complex subunit p50, plays a role in DNA damage repair as component of the ASCC complex. It is part of the ASC-1 complex that enhances NF-kappa-B, SRF and AP1 transactivation. In cells responding to gastrin-activated paracrine signals, it is involved in the induction of SERPINB2 expression by gastrin. ASCC1 may also play a role in the development of neuromuscular junction. Pssm-ID: 411847 [Multi-domain] Cd Length: 66 Bit Score: 40.64 E-value: 1.65e-04
|
|||||||
SAM_DGK-eta | cd09576 | SAM domain of diacylglycerol kinase eta; SAM (sterile alpha motif) domain of DGK-eta subfamily ... |
885-933 | 1.68e-04 | |||
SAM domain of diacylglycerol kinase eta; SAM (sterile alpha motif) domain of DGK-eta subfamily proteins is a protein-protein interaction domain. Proteins of this subfamily are multidomain diacylglycerol kinases. The SAM domain is located at the C-terminus of two out of three isoforms of DGK-eta protein. DGK-eta proteins participate in signal transduction. They regulate the level of second messengers such as diacylglycerol and phosphatidic acid. The SAM domain of DCK-eta proteins can form high molecular weight homooligomers through head-to-tail interactions as well as heterooligomers with the SAM domain of DGK-delta proteins. The oligomerization plays a role in the regulation of the DGK-delta intracellular localization: it is responsible for sustained endosomal localization of the protein and resulted in negative regulation of DCK-eta catalytic activity. Pssm-ID: 188975 Cd Length: 65 Bit Score: 40.72 E-value: 1.68e-04
|
|||||||
KH-I_MUG60_like | cd22453 | type I K homology (KH) RNA-binding domain found in Schizosaccharomyces pombe meiotically ... |
144-177 | 1.68e-04 | |||
type I K homology (KH) RNA-binding domain found in Schizosaccharomyces pombe meiotically up-regulated gene 60 protein (MUG60) and similar proteins; MUG60 is a KH domain-containing protein that has a role in meiosis. The family also contains Saccharomyces cerevisiae KH domain-containing protein YLL032C. Pssm-ID: 411881 [Multi-domain] Cd Length: 72 Bit Score: 40.81 E-value: 1.68e-04
|
|||||||
KH-I_PCBP_rpt2 | cd02396 | second type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding ... |
133-204 | 2.42e-04 | |||
second type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding proteins (PCBPs); The PCBP family, also known as hnRNP E family, comprises four members, PCBP1-4, which are RNA-binding proteins that interact in a sequence-specific manner with single-stranded poly(C) sequences. They are mainly involved in various posttranscriptional regulations, including mRNA stabilization or translational activation/silencing. Besides, PCBPs may share iron chaperone activity. PCBPs contain three K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411806 [Multi-domain] Cd Length: 72 Bit Score: 40.33 E-value: 2.42e-04
|
|||||||
KH-I_PNPase | cd02393 | type I K homology (KH) RNA-binding domain found in polyribonucleotide nucleotidyltransferase ... |
146-202 | 2.81e-04 | |||
type I K homology (KH) RNA-binding domain found in polyribonucleotide nucleotidyltransferase (PNPase) and similar proteins; PNPase, also called polynucleotide phosphorylase, is a polyribonucleotide nucleotidyl transferase that degrades mRNA in prokaryotes and plant chloroplasts. It catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'-direction. It is also involved, along with RNase II, in tRNA processing. The C-terminal region of PNPase contains domains homologous to those in other RNA binding proteins: a KH domain and an S1 domain. The model corresponds to the KH domain. Pssm-ID: 411803 [Multi-domain] Cd Length: 70 Bit Score: 40.15 E-value: 2.81e-04
|
|||||||
KH-I_NOVA_rpt2 | cd22436 | second type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ... |
134-199 | 2.89e-04 | |||
second type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ventral antigen (Nova); The family includes two related neuronal RNA-binding proteins, Nova-1 and Nova-2. Nova-1, also called onconeural ventral antigen 1, or paraneoplastic Ri antigen, or ventral neuron-specific protein 1, may regulate RNA splicing or metabolism in a specific subset of developing neurons. It interacts with RNA containing repeats of the YCAY sequence. It is a brain-enriched splicing factor regulating neuronal alternative splicing. Nova-1 is involved in neurological disorders and carcinogenesis. Nova-2, also called astrocytic NOVA1-like RNA-binding protein, is a neuronal RNA-binding protein expressed in a broader central nervous system (CNS) distribution than Nova-1. It functions in neuronal RNA metabolism. NOVA family proteins contain three K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411864 [Multi-domain] Cd Length: 70 Bit Score: 39.91 E-value: 2.89e-04
|
|||||||
SAM_USH1G | cd09586 | SAM domain of USH1G; SAM (sterile alpha motif) domain of USH1G (Usher syndrome type-1G protein) ... |
876-944 | 2.98e-04 | |||
SAM domain of USH1G; SAM (sterile alpha motif) domain of USH1G (Usher syndrome type-1G protein) proteins (also known as SANS) is a putative protein-protein interaction domain. Members of this group have an N-terminal ankyrin repeat region and C-terminal SAM domain. USH1G is expressed in the hair bundles of the inner ear sensory cells. It can form a functional network with USH1B (myosin VIIa), USH1C (harmonin b), USH1F (protocadherin-related 15), and USH1D (cadherin 23). The SAM domain of the USH1G protein is involved in synergetic interactions with the PDZ domain of harmonin. Such interactions contribute to the stability of harmonin. The network is required for the correct cohesion of the hair bundle. Mutations in the ush1g gene lead to Usher syndrome type 1G. This syndrome is the cause of deaf-blindness in humans. Pssm-ID: 188985 Cd Length: 66 Bit Score: 39.78 E-value: 2.98e-04
|
|||||||
KH-I_MASK | cd22404 | type I K homology (KH) RNA-binding domain found in Mask family proteins; The Mask family ... |
136-203 | 3.36e-04 | |||
type I K homology (KH) RNA-binding domain found in Mask family proteins; The Mask family includes Drosophila melanogaster ankyrin repeat and KH domain-containing protein Mask, and its mammalian homologues Mask1/ANKHD1 and Mask2/ANKRD17. Mask, also called multiple ankyrin repeat single KH domain-containing protein, is a large ankyrin repeat and KH domain-containing protein involved in Drosophila receptor tyrosine kinase signaling. It acts as a mediator of receptor tyrosine kinase (RTK) signaling and may act either downstream of MAPK or transduce signaling through a parallel branch of the RTK pathway. Mask is required for the development and organization of indirect flight muscle sarcomeres by regulating the formation of M line and H zone and the correct assembly of thick and thin filaments in the sarcomere. Mask1/ANKHD1, also called HIV-1 Vpr-binding ankyrin repeat protein, or multiple ankyrin repeats single KH domain, or Hmask, is highly expressed in various cancer tissues and is involved in cancer progression, including proliferation and invasion. Mask2/ANKRD17, also called ankyrin repeat protein 17, or gene trap ankyrin repeat protein (GTAR), or serologically defined breast cancer antigen NY-BR-16, is a ubiquitously expressed ankyrin factor essential for the vascular integrity during embryogenesis. It may be directly involved in the DNA replication process and play pivotal roles in cell cycle and DNA regulation. It is also involved in innate immune defense against bacteria and viruses. Pssm-ID: 411832 [Multi-domain] Cd Length: 71 Bit Score: 39.89 E-value: 3.36e-04
|
|||||||
KH-I_ScSCP160_rpt2 | cd22447 | second type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein ... |
277-348 | 3.51e-04 | |||
second type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein SCP160 and similar proteins; SCP160, also called protein HX, is a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum. It is involved in the control of mitotic chromosome transmission. It is required during cell division for faithful partitioning of the ER-nuclear envelope membranes which enclose the duplicated chromosomes in yeast. SCP160 contains seven K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411875 [Multi-domain] Cd Length: 80 Bit Score: 40.09 E-value: 3.51e-04
|
|||||||
KH-I_IGF2BP_rpt2 | cd22401 | second type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 ... |
147-203 | 3.76e-04 | |||
second type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family; The IGF2BP family includes three members: IGF2BP1/IMP-1/ CRD-BP/ VICKZ1, IGF2BP2/IMP-2/ VICKZ2, and IGF2BP3/IMP-3/VICKZ3, which are RNA-binding factors that recruit target transcripts to cytoplasmic protein-RNA complexes (mRNPs). They function by binding to the 5' UTR of the insulin-like growth factor 2 (IGF2) mRNA and regulating IGF2 translation. IGF2BP proteins contain four K-homology (KH) RNA-binding domains which are important in RNA binding and are known to be involved in RNA synthesis and metabolism. The model corresponds to the second one. Pssm-ID: 411829 [Multi-domain] Cd Length: 72 Bit Score: 39.90 E-value: 3.76e-04
|
|||||||
SAM_Shank1,2,3 | cd09506 | SAM domain of Shank1,2,3 family proteins; SAM (sterile alpha motif) domain of Shank1,2,3 ... |
877-933 | 3.83e-04 | |||
SAM domain of Shank1,2,3 family proteins; SAM (sterile alpha motif) domain of Shank1,2,3 family proteins is a protein-protein interaction domain. Shank1,2,3 proteins are scaffold proteins that are known to interact with a variety of cytoplasmic and membrane proteins. SAM domains of the Shank1,2,3 family are prone to homooligomerization. They are highly enriched in the postsynaptic density, acting as scaffolds to organize assembly of postsynaptic proteins. SAM domains of Shank3 proteins can form large sheets of helical fibers. Shank genes show distinct patterns of expression, in rat Shank1 mRNA is found almost exclusively in brain, Shank2 in brain, kidney and liver, and Shank3 in heart, brain and spleen. Pssm-ID: 188905 Cd Length: 66 Bit Score: 39.61 E-value: 3.83e-04
|
|||||||
KH | smart00322 | K homology RNA-binding domain; |
78-126 | 4.06e-04 | |||
K homology RNA-binding domain; Pssm-ID: 197652 [Multi-domain] Cd Length: 68 Bit Score: 39.59 E-value: 4.06e-04
|
|||||||
KH-I_AKAP1 | cd22395 | type I K homology (KH) RNA-binding domain found in mitochondrial A-kinase anchor protein 1 ... |
298-341 | 4.27e-04 | |||
type I K homology (KH) RNA-binding domain found in mitochondrial A-kinase anchor protein 1 (AKAP1) and similar proteins; AKAP1, also called A-kinase anchor protein 149 kDa, or AKAP 149, or dual specificity A-kinase-anchoring protein 1, or D-AKAP-1, or protein kinase A-anchoring protein 1 (PRKA1), or spermatid A-kinase anchor protein 84, or S-AKAP84, is a novel developmentally regulated A kinase anchor protein of male germ cells. It binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane. Pssm-ID: 411823 [Multi-domain] Cd Length: 68 Bit Score: 39.43 E-value: 4.27e-04
|
|||||||
SAM_Ste11_fungal | cd09534 | SAM domain of Ste11_fungal subfamily; SAM (sterile alpha motif) domain of Ste11 subfamily is a ... |
876-934 | 4.32e-04 | |||
SAM domain of Ste11_fungal subfamily; SAM (sterile alpha motif) domain of Ste11 subfamily is a protein-protein interaction domain. Proteins of this subfamily have SAM domain at the N-terminus and protein kinase domain at the C-terminus. They participate in regulation of mating pheromone response, invasive growth and high osmolarity growth response. MAP triple kinase Ste11 from S.cerevisia is known to interact with Ste20 kinase and Ste50 regulator. These kinases are able to form homodimers interacting through their SAM domains as well as heterodimers or heterogenous complexes when either SAM domain of monomeric or homodimeric form of Ste11 interacts with Ste50 regulator. Pssm-ID: 188933 Cd Length: 62 Bit Score: 39.12 E-value: 4.32e-04
|
|||||||
SAM_AIDA1AB-like_repeat1 | cd09499 | SAM domain of AIDA1AB-like proteins, repeat 1; SAM (sterile alpha motif) domain repeat 1 of ... |
883-935 | 5.15e-04 | |||
SAM domain of AIDA1AB-like proteins, repeat 1; SAM (sterile alpha motif) domain repeat 1 of AIDA1AB-like proteins is a protein-protein interaction domain. AIDA1AB-like proteins have two tandem SAM domains. They may form an intramolecular head-to-tail homodimer. One of two basic motifs of the nuclear localization signal (NLS) is located within helix 5 of SAM2 (motif HKRK). This signal plays a role in decoupling of SAM2 from SAM1, thus facilitating translocation of this type proteins into the nucleus. SAM1 domain has a potential phosphorylation site for CMGC group of serine/threonine kinases. SAM domains of the AIDA1-like subfamily can directly bind ubiquitin and participate in regulating the degradation of ubiquitinated EphA receptors, particularly EPH-A8 receptor. Additionally AIDA1AB-like proteins may participate in the regulation of nucleoplasmic coilin protein interactions. Pssm-ID: 188898 Cd Length: 67 Bit Score: 39.20 E-value: 5.15e-04
|
|||||||
SAM_caskin1,2_repeat1 | cd09497 | SAM domain of caskin protein repeat 1; SAM (sterile alpha motif) domain repeat 1 of caskin1,2 ... |
883-936 | 5.47e-04 | |||
SAM domain of caskin protein repeat 1; SAM (sterile alpha motif) domain repeat 1 of caskin1,2 proteins is a protein-protein interaction domain. Caskin has two tandem SAM domains. Caskin protein is known to interact with membrane-associated guanylate kinase CASK, and apparently may play a role in neural development, synaptic protein targeting, and regulation of gene expression. Pssm-ID: 188896 Cd Length: 66 Bit Score: 39.16 E-value: 5.47e-04
|
|||||||
KH-I_FUBP3_rpt4 | cd22489 | fourth type I K homology (KH) RNA-binding domain found in far upstream element-binding protein ... |
147-201 | 5.59e-04 | |||
fourth type I K homology (KH) RNA-binding domain found in far upstream element-binding protein 3 (FUBP3) and similar proteins; FUBP3, also called FUSE-binding protein 3, or MARTA2, was previously shown to mediate dendritic targeting of MAP2 mRNA in neurons. It may interact with single-stranded DNA from the far-upstream element (FUSE) and activate gene expression. It is required for beta-actin mRNA localization. It also interacts with fibroblast growth factor 9 (FGF9) 3'-UTR UG repeats and positively controls FGF9 expression through increasing translation of FGF9 mRNA. FUBP3 contains four K-homology (KH) RNA-binding domains. The model corresponds to the fourth one. Pssm-ID: 411917 [Multi-domain] Cd Length: 69 Bit Score: 39.14 E-value: 5.59e-04
|
|||||||
KH-I_Vigilin_rpt12 | cd22415 | twelfth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; ... |
291-341 | 6.19e-04 | |||
twelfth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the twelfth one. Pssm-ID: 411843 [Multi-domain] Cd Length: 92 Bit Score: 39.98 E-value: 6.19e-04
|
|||||||
KH-I_PNPT1 | cd09033 | type I K homology (KH) RNA-binding domain found in mitochondrial polyribonucleotide ... |
129-202 | 6.23e-04 | |||
type I K homology (KH) RNA-binding domain found in mitochondrial polyribonucleotide nucleotidyltransferase 1 (PNPT1) and similar proteins; PNPT1, also called 3'-5' RNA exonuclease OLD35, or PNPase old-35, or polynucleotide phosphorylase 1, or PNPase 1, or polynucleotide phosphorylase-like protein, is an RNA-binding protein implicated in numerous RNA metabolic processes. It catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'-to-5' direction. It acts as a mitochondrial intermembrane factor with RNA-processing exoribonulease activity. PNPT1 is a component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. It is involved in the degradation of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules and required for correct processing and polyadenylation of mitochondrial mRNAs. PNPT1 also plays a role as a cytoplasmic RNA import factor that mediates the translocation of small RNA components, like the 5S RNA, the RNA subunit of ribonuclease P and the mitochondrial RNA-processing (MRP) RNA, into the mitochondrial matrix. Pssm-ID: 411809 [Multi-domain] Cd Length: 67 Bit Score: 39.10 E-value: 6.23e-04
|
|||||||
KH-I_IGF2BP_rpt1 | cd22400 | first type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 ... |
147-203 | 6.80e-04 | |||
first type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family; The IGF2BP family includes three members: IGF2BP1/IMP-1/ CRD-BP/ VICKZ1, IGF2BP2/IMP-2/ VICKZ2, and IGF2BP3/IMP-3/VICKZ3, which are RNA-binding factors that recruit target transcripts to cytoplasmic protein-RNA complexes (mRNPs). They function by binding to the 5' UTR of the insulin-like growth factor 2 (IGF2) mRNA and regulating IGF2 translation. IGF2BP proteins contain four K-homology (KH) RNA-binding domains which are important in RNA binding and are known to be involved in RNA synthesis and metabolism. The model corresponds to the first one. Pssm-ID: 411828 [Multi-domain] Cd Length: 68 Bit Score: 38.79 E-value: 6.80e-04
|
|||||||
KH-I_PEPPER_rpt2_like | cd22460 | second type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana RNA-binding KH ... |
147-203 | 7.25e-04 | |||
second type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana RNA-binding KH domain-containing protein PEPPER and similar proteins; The family includes a group of plant RNA-binding KH domain-containing proteins, such as PEPPER, flowering locus K homology domain protein (FLK), RNA-binding KH domain-containing protein RCF3 and KH domain-containing protein HEN4. PEPPER regulates vegetative and gynoecium development. It acts as a positive regulator of the central floral repressor FLOWERING LOCUS C. In concert with HUA2, PEPPER antagonizes FLK by positively regulating FLC probably at transcriptional and post-transcriptional levels, and thus acts as a negative regulator of flowering. FLK, also called flowering locus KH domain protein, regulates positively flowering by repressing FLC expression and post-transcriptional modification. PEPPER and FLK contain three K-homology (KH) RNA-binding domains. RCF3, also called protein ENHANCED STRESS RESPONSE 1 (ESR1), or protein HIGH OSMOTIC STRESS GENE EXPRESSION 5 (HOS5), or protein REGULATOR OF CBF GENE EXPRESSION 3, or protein SHINY 1 (SHI1), acts as negative regulator of osmotic stress-induced gene expression. It is involved in the regulation of thermotolerance responses under heat stress. It functions as an upstream regulator of heat stress transcription factor (HSF) genes. HEN4, also called protein HUA ENHANCER 4, plays a role in floral reproductive organ identity in the third whorl and floral determinacy specification by specifically promoting the processing of AGAMOUS (AG) pre-mRNA. It functions in association with HUA1 and HUA2. RCF3 and HEN4 contain five KH RNA-binding domains. The model corresponds to the KH2 domain of PEPPER and FLK, as well as KH2 and KH4 domains of RCF3 and HEN4. Pssm-ID: 411888 [Multi-domain] Cd Length: 73 Bit Score: 39.14 E-value: 7.25e-04
|
|||||||
KH-I | cd00105 | K homology (KH) RNA-binding domain, type I; KH binds single-stranded RNA or DNA. It is found ... |
70-123 | 7.38e-04 | |||
K homology (KH) RNA-binding domain, type I; KH binds single-stranded RNA or DNA. It is found in a wide variety of proteins including ribosomal proteins, transcription factors and post-transcriptional modifiers of mRNA. There are two different KH domains that belong to different protein folds, but they share a single KH motif. The KH motif is folded into a beta alpha alpha beta unit. In addition to the core, type II KH domains (e.g. ribosomal protein S3) include an N-terminal extension and type I KH domains (e.g. hnRNP K) contain a C-terminal extension. Some KH-I superfamily members contain a divergent KH domain that lacks the RNA-binding GXXG motif. Some others have a mutated GXXG motif which may or may not have nucleic acid binding ability. Pssm-ID: 411802 [Multi-domain] Cd Length: 63 Bit Score: 38.82 E-value: 7.38e-04
|
|||||||
KH-I_AtC3H36_like | cd22464 | type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana zinc finger CCCH ... |
135-203 | 8.92e-04 | |||
type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana zinc finger CCCH domain-containing proteins AtC3H36, AtC3H52 and similar proteins; The family corresponds to a group of plant CCCH family zinc finger proteins, such as AtC3H36 and AtC3H52, which contain one K homology (KH) RNA-binding domain. They may play important roles in RNA processing as RNA-binding proteins in animals. They may also have an effective role in stress tolerance. Pssm-ID: 411892 [Multi-domain] Cd Length: 66 Bit Score: 38.61 E-value: 8.92e-04
|
|||||||
SAM_DGK-delta | cd09575 | SAM domain of diacylglycerol kinase delta; SAM (sterile alpha motif) domain of DGK-delta ... |
885-933 | 8.97e-04 | |||
SAM domain of diacylglycerol kinase delta; SAM (sterile alpha motif) domain of DGK-delta subfamily proteins is a protein-protein interaction domain. Proteins of this subfamily are multidomain diacylglycerol kinases with a SAM domain located at the C-terminus. DGK-delta proteins participate in signal transduction. They regulate the level of second messengers such as diacylglycerol and phosphatidic acid. In particular DGK-delta is involved in the regulation of clathrin-dependent endocytosis. The SAM domain of DGK-delta proteins can form high molecular weight homooligomers through head-to-tail interactions as well as heterooligomers with the SAM domain of DGK-eta proteins. The oligomerization plays a role in the regulation of the DGK-delta intracellular localization: it inhibits the translocation of the protein to the plasma membrane from the cytoplasm. The SAM domain also can bind Zn at multiple (not conserved) sites driving the formation of highly ordered large sheets of polymers, thus suggesting that Zn may play important role in the function of DCK-delta. Pssm-ID: 188974 Cd Length: 65 Bit Score: 38.39 E-value: 8.97e-04
|
|||||||
SAM_MLTK | cd09529 | SAM domain of MLTK subfamily; SAM (sterile alpha motif) domain of MLTK subfamily is a ... |
886-933 | 1.00e-03 | |||
SAM domain of MLTK subfamily; SAM (sterile alpha motif) domain of MLTK subfamily is a protein-protein interaction domain. Besides SAM domain, these proteins have N-terminal protein tyrosine kinase domain and leucine-zipper motif. Proteins of this group act as mitogen-activated protein triple kinase in a number of MAPK cascades. They can be activated by autophosphorylation in response to stress signals. MLTK-alpha is known to phosphorylate histone H3. In mammals, MLTKs participate in the activation of the JNK/SAPK, p38, ERK5 pathways, the transcriptional factor NF-kB, in the regulation of the cell cycle checkpoint, and in the induction of apoptosis in a hepatoma cell line. Some members of this subfamily are proto-oncogenes, thus MLTK-alpha is involved in neoplasmic cell transformation and/or skin cancer development in athymic nude mice. Based on in vivo coprecipitation experiments in mammalian cells, it has been demonstrated that MLTK proteins might form homodimers/oligomers via their SAM domains. Pssm-ID: 188928 Cd Length: 71 Bit Score: 38.64 E-value: 1.00e-03
|
|||||||
KH-I_HNRNPK_rpt1 | cd22432 | first type I K homology (KH) RNA-binding domain found in heterogeneous nuclear ... |
147-173 | 1.07e-03 | |||
first type I K homology (KH) RNA-binding domain found in heterogeneous nuclear ribonucleoprotein K (hnRNP K) and similar proteins; hnRNP K, also called transformation up-regulated nuclear protein (TUNP), is a pre-mRNA binding protein that binds tenaciously to poly(C) sequences. It may be involved in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. It can also bind poly(C) single-stranded DNA. hnRNP K plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. hnRNP K contains three K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411860 [Multi-domain] Cd Length: 64 Bit Score: 38.32 E-value: 1.07e-03
|
|||||||
KH-I_Vigilin_rpt6 | cd02394 | sixth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, ... |
68-127 | 1.17e-03 | |||
sixth type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the sixth one. Pssm-ID: 411804 [Multi-domain] Cd Length: 68 Bit Score: 38.32 E-value: 1.17e-03
|
|||||||
KH-I_ScSCP160_rpt3 | cd22448 | third type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein ... |
134-203 | 1.25e-03 | |||
third type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein SCP160 and similar proteins; SCP160, also called protein HX, is a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum. It is involved in the control of mitotic chromosome transmission. It is required during cell division for faithful partitioning of the ER-nuclear envelope membranes which enclose the duplicated chromosomes in yeast. SCP160 contains seven K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411876 Cd Length: 81 Bit Score: 38.66 E-value: 1.25e-03
|
|||||||
KH-I_IGF2BP_rpt4 | cd22403 | fourth type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 ... |
147-200 | 1.34e-03 | |||
fourth type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family; The IGF2BP family includes three members: IGF2BP1/IMP-1/CRD-BP/VICKZ1, IGF2BP2/IMP-2/VICKZ2, and IGF2BP3/IMP-3/VICKZ3, which are RNA-binding factors that recruit target transcripts to cytoplasmic protein-RNA complexes (mRNPs). They function by binding to the 5' UTR of the insulin-like growth factor 2 (IGF2) mRNA and regulating IGF2 translation. IGF2BP proteins contain four K-homology (KH) RNA-binding domains which are important in RNA binding and are known to be involved in RNA synthesis and metabolism. The model corresponds to the fourth one. Pssm-ID: 411831 [Multi-domain] Cd Length: 66 Bit Score: 37.99 E-value: 1.34e-03
|
|||||||
SAM_ZCCH14 | cd09558 | SAM domain of ZCCH14 subfamily; SAM (sterile alpha motif) domain of ZCCH14 (Zinc finger CCHC ... |
884-937 | 1.52e-03 | |||
SAM domain of ZCCH14 subfamily; SAM (sterile alpha motif) domain of ZCCH14 (Zinc finger CCHC domain 14) protein subfamily (also known as BDG-29 or KIAA0579) is a putative RNA binding domain. Members of this group are believed to be involved in post-translational regulation during early embryogenesis. Pssm-ID: 188957 Cd Length: 65 Bit Score: 37.76 E-value: 1.52e-03
|
|||||||
KH-I_NOVA_rpt1 | cd22435 | first type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ... |
132-204 | 1.65e-03 | |||
first type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ventral antigen (Nova); The family includes two related neuronal RNA-binding proteins, Nova-1 and Nova-2. Nova-1, also called onconeural ventral antigen 1, or paraneoplastic Ri antigen, or ventral neuron-specific protein 1, may regulate RNA splicing or metabolism in a specific subset of developing neurons. It interacts with RNA containing repeats of the YCAY sequence. It is a brain-enriched splicing factor regulating neuronal alternative splicing. Nova-1 is involved in neurological disorders and carcinogenesis. Nova-2, also called astrocytic NOVA1-like RNA-binding protein, is a neuronal RNA-binding protein expressed in a broader central nervous system (CNS) distribution than Nova-1. It functions in neuronal RNA metabolism. NOVA family proteins contain three K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411863 [Multi-domain] Cd Length: 73 Bit Score: 37.90 E-value: 1.65e-03
|
|||||||
KH-I_PCBP_rpt1 | cd22438 | first type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding ... |
301-344 | 1.86e-03 | |||
first type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding proteins (PCBPs); The PCBP family, also known as hnRNP E family, comprises four members, PCBP1-4, which are RNA-binding proteins that interact in a sequence-specific manner with single-stranded poly(C) sequences. They are mainly involved in various posttranscriptional regulations, including mRNA stabilization or translational activation/silencing. Besides, PCBPs may share iron chaperone activity. PCBPs contain three K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411866 [Multi-domain] Cd Length: 67 Bit Score: 37.62 E-value: 1.86e-03
|
|||||||
KH-I_PCBP_rpt2 | cd02396 | second type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding ... |
284-353 | 2.36e-03 | |||
second type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding proteins (PCBPs); The PCBP family, also known as hnRNP E family, comprises four members, PCBP1-4, which are RNA-binding proteins that interact in a sequence-specific manner with single-stranded poly(C) sequences. They are mainly involved in various posttranscriptional regulations, including mRNA stabilization or translational activation/silencing. Besides, PCBPs may share iron chaperone activity. PCBPs contain three K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411806 [Multi-domain] Cd Length: 72 Bit Score: 37.63 E-value: 2.36e-03
|
|||||||
KH-I_PCBP4_rpt2 | cd22520 | second type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 4 (PCBP4) ... |
133-192 | 2.59e-03 | |||
second type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 4 (PCBP4) and similar proteins; PCBP4, also called alpha-CP4, or heterogeneous nuclear ribonucleoprotein E4, or hnRNP E4, is a single-stranded nucleic acid binding protein that binds preferentially to oligo dC. It regulates both basal and stress-induced p21 expression through binding p21 3'-UTR and modulating p21 mRNA stability. It also plays a role in the cell cycle and is implicated in lung tumor suppression. PCBP4 contains three K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411948 [Multi-domain] Cd Length: 72 Bit Score: 37.31 E-value: 2.59e-03
|
|||||||
KH-I_ScSCP160_rpt1 | cd22446 | first type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein ... |
298-346 | 2.84e-03 | |||
first type I K homology (KH) RNA-binding domain found in Saccharomyces cerevisiae Protein SCP160 and similar proteins; SCP160, also called protein HX, is a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum. It is involved in the control of mitotic chromosome transmission. It is required during cell division for faithful partitioning of the ER-nuclear envelope membranes which enclose the duplicated chromosomes in yeast. SCP160 contains seven K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411874 [Multi-domain] Cd Length: 86 Bit Score: 37.77 E-value: 2.84e-03
|
|||||||
KH-I_PCBP3_rpt2 | cd22519 | second type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 3 (PCBP3) ... |
133-212 | 3.00e-03 | |||
second type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 3 (PCBP3) and similar proteins; PCBP3, also called alpha-CP3, or PCBP3-overlapping transcript, or PCBP3-overlapping transcript 1, or heterogeneous nuclear ribonucleoprotein E3, or hnRNP E3, is a single-stranded nucleic acid binding protein that binds preferentially to oligo dC. It can function as a repressor dependent on binding to single-strand and double-stranded poly(C) sequences. PCBP3 contains three K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411947 [Multi-domain] Cd Length: 79 Bit Score: 37.46 E-value: 3.00e-03
|
|||||||
KH-I_FUBP2_rpt1 | cd22479 | first type I K homology (KH) RNA-binding domain found in far upstream element-binding protein ... |
147-203 | 3.04e-03 | |||
first type I K homology (KH) RNA-binding domain found in far upstream element-binding protein 2 (FUBP2) and similar proteins; FUBP2, also called FUSE-binding protein 2, or KH type-splicing regulatory protein (KSRP), or p75, is a single-strand nucleic acid binding protein implicated in a variety of cellular processes, including splicing in the nucleus, mRNA decay, maturation of miRNA, and transcriptional control of proto-oncogenes such as c-myc. It regulates the stability and/or translatability of many mRNA species, encoding immune-relevant proteins, either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. FUBP2 contains four K-homology (KH) RNA-binding domains. The model corresponds to the first one. Pssm-ID: 411907 [Multi-domain] Cd Length: 71 Bit Score: 37.23 E-value: 3.04e-03
|
|||||||
KH-I_PCBP1_2_rpt2 | cd22518 | second type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 1 (PCBP1) ... |
133-192 | 3.06e-03 | |||
second type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 1 (PCBP1) and similar proteins; The family includes PCBP1 (also called alpha-CP1, or heterogeneous nuclear ribonucleoprotein E1, or hnRNP E1, or nucleic acid-binding protein SUB2.3) and PCBP2 (also called alpha-CP2, or heterogeneous nuclear ribonucleoprotein E2, or hnRNP E2). They are single-stranded nucleic acid binding proteins that bind preferentially to oligo dC. They act as iron chaperones for ferritin. In case of infection by poliovirus, PCBP1 plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. PCBP2 is a major cellular poly(rC)-binding protein. It also binds poly(rU). PCBP2 negatively regulates cellular antiviral responses mediated by MAVS signaling. It acts as an adapter between MAVS and the E3 ubiquitin ligase ITCH, therefore triggering MAVS ubiquitination and degradation. PCBP2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. Both PCBP1 and PCBP2 contain three K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411946 [Multi-domain] Cd Length: 78 Bit Score: 37.41 E-value: 3.06e-03
|
|||||||
KH-I_PEPPER_rpt1_like | cd22459 | first type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana RNA-binding KH ... |
147-171 | 3.65e-03 | |||
first type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana RNA-binding KH domain-containing protein PEPPER and similar proteins; The family includes a group of plant RNA-binding KH domain-containing proteins, such as PEPPER, flowering locus K homology domain protein (FLK), RNA-binding KH domain-containing protein RCF3 and KH domain-containing protein HEN4. PEPPER regulates vegetative and gynoecium development. It acts as a positive regulator of the central floral repressor FLOWERING LOCUS C. In concert with HUA2, PEPPER antagonizes FLK by positively regulating FLC probably at transcriptional and post-transcriptional levels, and thus acts as a negative regulator of flowering. FLK, also called flowering locus KH domain protein, regulates positively flowering by repressing FLC expression and post-transcriptional modification. PEPPER and FLK contain three K-homology (KH) RNA-binding domains. RCF3, also called protein ENHANCED STRESS RESPONSE 1 (ESR1), or protein HIGH OSMOTIC STRESS GENE EXPRESSION 5 (HOS5), or protein REGULATOR OF CBF GENE EXPRESSION 3, or protein SHINY 1 (SHI1), acts as negative regulator of osmotic stress-induced gene expression. It is involved in the regulation of thermotolerance responses under heat stress. It functions as an upstream regulator of heat stress transcription factor (HSF) genes. HEN4, also called protein HUA ENHANCER 4, plays a role in floral reproductive organ identity in the third whorl and floral determinacy specification by specifically promoting the processing of AGAMOUS (AG) pre-mRNA. It functions in association with HUA1 and HUA2. RCF3 and HEN4 contain five KH RNA-binding domains. The model corresponds to the KH1 domain of PEPPER and FLK, as well as KH1 and KH3 domains of RCF3 and HEN4. Pssm-ID: 411887 [Multi-domain] Cd Length: 69 Bit Score: 36.82 E-value: 3.65e-03
|
|||||||
KH-I_Vigilin_rpt7 | cd22410 | seventh type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; ... |
134-187 | 3.74e-03 | |||
seventh type I K homology (KH) RNA-binding domain found in vigilin and similar proteins; Vigilin, also called high density lipoprotein-binding protein, or HDL-binding protein, is a ubiquitous and highly conserved RNA-binding protein that shuttles between nucleus and cytoplasm presumably in contact with RNA molecules. It may be involved in chromosome partitioning at mitosis, facilitating translation and tRNA transport, and control of mRNA metabolism, including estrogen-mediated stabilization of vitellogenin mRNA. Vigilin is up-regulated by cholesterol loading of cells and functions to protect cells from over-accumulation of cholesterol. It may play a role in cell sterol metabolism. Disruption of human vigilin impairs chromosome condensation and segregation. Vigilin has a unique structure of 14-15 consecutively arranged, but non-identical K-homology (KH) domains which apparently mediate RNA-protein binding. The model corresponds to the seventh one. Pssm-ID: 411838 Cd Length: 67 Bit Score: 36.87 E-value: 3.74e-03
|
|||||||
KH-I_NOVA_rpt3 | cd09031 | third type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ... |
133-201 | 3.78e-03 | |||
third type I K homology (KH) RNA-binding domain found in the family of neuro-oncological ventral antigen (Nova); The family includes two related neuronal RNA-binding proteins, Nova-1 and Nova-2. Nova-1, also called onconeural ventral antigen 1, or paraneoplastic Ri antigen, or ventral neuron-specific protein 1, may regulate RNA splicing or metabolism in a specific subset of developing neurons. It interacts with RNA containing repeats of the YCAY sequence. It is a brain-enriched splicing factor regulating neuronal alternative splicing. Nova-1 is involved in neurological disorders and carcinogenesis. Nova-2, also called astrocytic NOVA1-like RNA-binding protein, is a neuronal RNA-binding protein expressed in a broader central nervous system (CNS) distribution than Nova-1. It functions in neuronal RNA metabolism. NOVA family proteins contain three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411807 [Multi-domain] Cd Length: 71 Bit Score: 36.79 E-value: 3.78e-03
|
|||||||
KH-I_HEN4_like_rpt5 | cd22462 | fifth type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana KH ... |
298-346 | 4.43e-03 | |||
fifth type I K homology (KH) RNA-binding domain found in Arabidopsis thaliana KH domain-containing protein HEN4 and similar protein; HEN4, also called protein HUA ENHANCER 4, plays a role in floral reproductive organ identity in the third whorl and floral determinacy specification by specifically promoting the processing of AGAMOUS (AG) pre-mRNA. It functions in association with HUA1 and HUA2. HEN4 contains five K-homology (KH) RNA-binding domains. The model corresponds to the KH5 domain of HEN4. Pssm-ID: 411890 [Multi-domain] Cd Length: 66 Bit Score: 36.46 E-value: 4.43e-03
|
|||||||
KH-I_CeGLD3_rpt1 | cd22441 | first type I K homology (KH) RNA-binding domain found in Caenorhabditis elegans defective in ... |
284-348 | 4.89e-03 | |||
first type I K homology (KH) RNA-binding domain found in Caenorhabditis elegans defective in germ line development protein 3 (CeGLD-3) and similar proteins; CeGLD-3, also called germline development defective 3, is a Bicaudal-C (Bic-C) homolog that is involved in the translational control of germline-specific mRNAs during embryogenesis. It interacts with the cytoplasmic poly(A)-polymerase GLD-2. The two proteins cooperate to recognize target mRNAs and convert them into a polyadenylated, translationally active state. CeGLD-3 contains four K-homology (KH) RNA-binding domains, which are divergent KH domains that lacks the RNA-binding GXXG motif. The model corresponds to the first one. Pssm-ID: 411869 Cd Length: 71 Bit Score: 36.81 E-value: 4.89e-03
|
|||||||
KH-I_PCBP1_2_rpt3 | cd22521 | third type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 1 (PCBP1) ... |
299-349 | 5.62e-03 | |||
third type I K homology (KH) RNA-binding domain found in poly(rC)-binding protein 1 (PCBP1) and similar proteins; The family includes PCBP1 (also called alpha-CP1, or heterogeneous nuclear ribonucleoprotein E1, or hnRNP E1, or nucleic acid-binding protein SUB2.3) and PCBP2 (also called alpha-CP2, or heterogeneous nuclear ribonucleoprotein E2, or hnRNP E2). They are single-stranded nucleic acid binding proteins that bind preferentially to oligo dC. They act as iron chaperones for ferritin. In case of infection by poliovirus, PCBP1 plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. PCBP2 is a major cellular poly(rC)-binding protein. It also binds poly(rU). PCBP2 negatively regulates cellular antiviral responses mediated by MAVS signaling. It acts as an adapter between MAVS and the E3 ubiquitin ligase ITCH, therefore triggering MAVS ubiquitination and degradation. PCBP2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. Both PCBP1 and PCBP2 contain three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411949 Cd Length: 76 Bit Score: 36.57 E-value: 5.62e-03
|
|||||||
KH-I_PCBP_rpt3 | cd22439 | third type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding ... |
147-200 | 6.93e-03 | |||
third type I K homology (KH) RNA-binding domain found in the family of poly(C)-binding proteins (PCBPs); The PCBP family, also known as hnRNP E family, comprises four members, PCBP1-4, which are RNA-binding proteins that interact in a sequence-specific manner with single-stranded poly(C) sequences. They are mainly involved in various posttranscriptional regulations, including mRNA stabilization or translational activation/silencing. Besides, PCBPs may share iron chaperone activity. PCBPs contain three K-homology (KH) RNA-binding domains. The model corresponds to the third one. Pssm-ID: 411867 [Multi-domain] Cd Length: 68 Bit Score: 36.05 E-value: 6.93e-03
|
|||||||
SAM_Polycomb | cd09509 | SAM domain of Polycomb group; SAM (sterile alpha motif) domain of Polycomb group is a ... |
886-917 | 7.03e-03 | |||
SAM domain of Polycomb group; SAM (sterile alpha motif) domain of Polycomb group is a protein-protein interaction domain. The Polycomb group includes transcriptional repressors which are involved in the regulation of some key regulatory genes during development in many organisms. They are best known for silencing Hox (Homeobox) genes. Polycomb proteins work together in large multimeric and chromatin-associated complexes. They organize chromatin of the target genes and maintain repressed states during many cell divisions. Polycomb proteins are classified based on their common function, but not on conserved domains and/or motifs; however many Polycomb proteins (members of PRC1 class complex) contain SAM domains which are more similar to each other inside of the Polycomb group than to SAM domains outside of it. Most information about structure and function of Polycomb SAM domains comes from studies of Ph (Polyhomeotic) and Scm (Sex comb on midleg) proteins. Polycomb SAM domains usually can be found at the C-terminus of the proteins. Some members of this group contain, in addition to the SAM domain, MTB repeats, Zn finger, and/or DUF3588 domains. Polycomb SAM domains can form homo- and/or heterooligomers through ML and EH surfaces. SAM/SAM oligomers apparently play a role in transcriptional repression through polymerization along the chromosome. Polycomb proteins are known to be highly expressed in some cells years before their cancer pathology; thus they are attractive markers for early cancer therapy. Pssm-ID: 188908 Cd Length: 64 Bit Score: 35.92 E-value: 7.03e-03
|
|||||||
KH-I_IGF2BP_rpt3 | cd22402 | third type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 ... |
299-348 | 7.10e-03 | |||
third type I K homology (KH) RNA-binding domain found in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family; The IGF2BP family includes three members: IGF2BP1/IMP-1/ CRD-BP/ VICKZ1, IGF2BP2/IMP-2/ VICKZ2, and IGF2BP3/IMP-3/VICKZ3, which are RNA-binding factors that recruit target transcripts to cytoplasmic protein-RNA complexes (mRNPs). They function by binding to the 5' UTR of the insulin-like growth factor 2 (IGF2) mRNA and regulating IGF2 translation. IGF2BP proteins contain four K-homology (KH) RNA-binding domains which are important in RNA binding and are known to be involved in RNA synthesis and metabolism. The model corresponds to the third one. Pssm-ID: 411830 [Multi-domain] Cd Length: 66 Bit Score: 36.07 E-value: 7.10e-03
|
|||||||
KH-I_FUBP2_rpt2 | cd22482 | second type I K homology (KH) RNA-binding domain found in far upstream element-binding protein ... |
147-203 | 9.81e-03 | |||
second type I K homology (KH) RNA-binding domain found in far upstream element-binding protein 2 (FUBP2) and similar proteins; FUBP2, also called FUSE-binding protein 2, or KH type-splicing regulatory protein (KSRP), or p75, is a single-strand nucleic acid binding protein implicated in a variety of cellular processes, including splicing in the nucleus, mRNA decay, maturation of miRNA, and transcriptional control of proto-oncogenes such as c-myc. It regulates the stability and/or translatability of many mRNA species, encoding immune-relevant proteins, either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. FUBP2 contains four K-homology (KH) RNA-binding domains. The model corresponds to the second one. Pssm-ID: 411910 [Multi-domain] Cd Length: 73 Bit Score: 36.04 E-value: 9.81e-03
|
|||||||
Blast search parameters | ||||
|