Prostaglandin reductase 2 [Caenorhabditis elegans]
prostaglandin reductase 2( domain architecture ID 10169693)
prostaglandin reductase 2 functions as a 15-oxo-prostaglandin 13-reductase and acts on 15-keto-PGE1, 15-keto-PGE2, 15-keto-PGE1-alpha and 15-keto-PGE2-alpha, with highest activity towards 15-keto-PGE2; belongs to the medium chain dehydrogenase/reductase (MDR) superfamily
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
PTGR2 | cd08293 | Prostaglandin reductase; Prostaglandins and related eicosanoids are metabolized by the ... |
14-365 | 0e+00 | ||||||
Prostaglandin reductase; Prostaglandins and related eicosanoids are metabolized by the oxidation of the 15(S)-hydroxyl group of the NAD+-dependent (type I 15-PGDH) 15-prostaglandin dehydrogenase (15-PGDH) followed by reduction by NADPH/NADH-dependent (type II 15-PGDH) delta-13 15-prostaglandin reductase (13-PGR) to 15-keto-13,14,-dihydroprostaglandins. 13-PGR is a bifunctional enzyme, since it also has leukotriene B(4) 12-hydroxydehydrogenase activity. These 15-PGDH and related enzymes are members of the medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. : Pssm-ID: 176253 [Multi-domain] Cd Length: 345 Bit Score: 612.09 E-value: 0e+00
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
PTGR2 | cd08293 | Prostaglandin reductase; Prostaglandins and related eicosanoids are metabolized by the ... |
14-365 | 0e+00 | ||||||
Prostaglandin reductase; Prostaglandins and related eicosanoids are metabolized by the oxidation of the 15(S)-hydroxyl group of the NAD+-dependent (type I 15-PGDH) 15-prostaglandin dehydrogenase (15-PGDH) followed by reduction by NADPH/NADH-dependent (type II 15-PGDH) delta-13 15-prostaglandin reductase (13-PGR) to 15-keto-13,14,-dihydroprostaglandins. 13-PGR is a bifunctional enzyme, since it also has leukotriene B(4) 12-hydroxydehydrogenase activity. These 15-PGDH and related enzymes are members of the medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. Pssm-ID: 176253 [Multi-domain] Cd Length: 345 Bit Score: 612.09 E-value: 0e+00
|
||||||||||
CurA | COG2130 | NADPH-dependent curcumin reductase CurA [Secondary metabolites biosynthesis, transport and ... |
16-364 | 2.48e-116 | ||||||
NADPH-dependent curcumin reductase CurA [Secondary metabolites biosynthesis, transport and catabolism, General function prediction only]; Pssm-ID: 441733 [Multi-domain] Cd Length: 333 Bit Score: 340.50 E-value: 2.48e-116
|
||||||||||
B4_12hDH | TIGR02825 | leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase; Leukotriene B4 ... |
31-364 | 7.25e-53 | ||||||
leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase; Leukotriene B4 12-hydroxydehydrogenase is an NADP-dependent enzyme of arachidonic acid metabolism, responsible for converting leukotriene B4 to the much less active metabolite 12-oxo-leukotriene B4. The BRENDA database lists leukotriene B4 12-hydroxydehydrogenase as one of the synonyms of 2-alkenal reductase (EC 1.3.1.74), while 1.3.1.48 is 15-oxoprostaglandin 13-reductase. Pssm-ID: 131872 [Multi-domain] Cd Length: 325 Bit Score: 177.88 E-value: 7.25e-53
|
||||||||||
PLN03154 | PLN03154 | putative allyl alcohol dehydrogenase; Provisional |
55-364 | 3.23e-43 | ||||||
putative allyl alcohol dehydrogenase; Provisional Pssm-ID: 215606 [Multi-domain] Cd Length: 348 Bit Score: 153.07 E-value: 3.23e-43
|
||||||||||
ADH_N_2 | pfam16884 | N-terminal domain of oxidoreductase; N-terminal region of oxidoreductase and prostaglandin ... |
17-136 | 5.58e-20 | ||||||
N-terminal domain of oxidoreductase; N-terminal region of oxidoreductase and prostaglandin reductase and alcohol dehydrogenase. Pssm-ID: 465297 [Multi-domain] Cd Length: 108 Bit Score: 84.17 E-value: 5.58e-20
|
||||||||||
PKS_ER | smart00829 | Enoylreductase; Enoylreductase in Polyketide synthases. |
79-363 | 4.28e-10 | ||||||
Enoylreductase; Enoylreductase in Polyketide synthases. Pssm-ID: 214840 [Multi-domain] Cd Length: 287 Bit Score: 59.71 E-value: 4.28e-10
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
PTGR2 | cd08293 | Prostaglandin reductase; Prostaglandins and related eicosanoids are metabolized by the ... |
14-365 | 0e+00 | ||||||
Prostaglandin reductase; Prostaglandins and related eicosanoids are metabolized by the oxidation of the 15(S)-hydroxyl group of the NAD+-dependent (type I 15-PGDH) 15-prostaglandin dehydrogenase (15-PGDH) followed by reduction by NADPH/NADH-dependent (type II 15-PGDH) delta-13 15-prostaglandin reductase (13-PGR) to 15-keto-13,14,-dihydroprostaglandins. 13-PGR is a bifunctional enzyme, since it also has leukotriene B(4) 12-hydroxydehydrogenase activity. These 15-PGDH and related enzymes are members of the medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. Pssm-ID: 176253 [Multi-domain] Cd Length: 345 Bit Score: 612.09 E-value: 0e+00
|
||||||||||
CurA | COG2130 | NADPH-dependent curcumin reductase CurA [Secondary metabolites biosynthesis, transport and ... |
16-364 | 2.48e-116 | ||||||
NADPH-dependent curcumin reductase CurA [Secondary metabolites biosynthesis, transport and catabolism, General function prediction only]; Pssm-ID: 441733 [Multi-domain] Cd Length: 333 Bit Score: 340.50 E-value: 2.48e-116
|
||||||||||
PGDH | cd05288 | Prostaglandin dehydrogenases; Prostaglandins and related eicosanoids are metabolized by the ... |
16-363 | 3.01e-115 | ||||||
Prostaglandin dehydrogenases; Prostaglandins and related eicosanoids are metabolized by the oxidation of the 15(S)-hydroxyl group of the NAD+-dependent (type I 15-PGDH) 15-prostaglandin dehydrogenase (15-PGDH) followed by reduction by NADPH/NADH-dependent (type II 15-PGDH) delta-13 15-prostaglandin reductase (13-PGR) to 15-keto-13,14,-dihydroprostaglandins. 13-PGR is a bifunctional enzyme, since it also has leukotriene B(4) 12-hydroxydehydrogenase activity. These 15-PGDH and related enzymes are members of the medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. Pssm-ID: 176190 [Multi-domain] Cd Length: 329 Bit Score: 337.92 E-value: 3.01e-115
|
||||||||||
leukotriene_B4_DH_like | cd08294 | 13-PGR is a bifunctional enzyme with delta-13 15-prostaglandin reductase and leukotriene B4 12 ... |
30-364 | 3.70e-79 | ||||||
13-PGR is a bifunctional enzyme with delta-13 15-prostaglandin reductase and leukotriene B4 12 hydroxydehydrogenase activity; Prostaglandins and related eicosanoids are metabolized by the oxidation of the 15(S)-hydroxyl group of the NAD+-dependent (type I 15-PGDH) 15-prostaglandin dehydrogenase (15-PGDH) followed by reduction by NADPH/NADH-dependent (type II 15-PGDH) delta-13 15-prostaglandin reductase (13-PGR) to 15-keto- 13,14,-dihydroprostaglandins. 13-PGR is a bifunctional enzyme, since it also has leukotriene B(4) 12-hydroxydehydrogenase activity. These 15-PGDH and related enzymes are members of the medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. Pssm-ID: 176254 [Multi-domain] Cd Length: 329 Bit Score: 245.64 E-value: 3.70e-79
|
||||||||||
double_bond_reductase_like | cd08295 | Arabidopsis alkenal double bond reductase and leukotriene B4 12-hydroxydehydrogenase; This ... |
47-364 | 6.26e-71 | ||||||
Arabidopsis alkenal double bond reductase and leukotriene B4 12-hydroxydehydrogenase; This group includes proteins identified as the Arabidopsis alkenal double bond reductase and leukotriene B4 12-hydroxydehydrogenase. The Arabidopsis enzyme, a member of the medium chain dehydrogenase/reductase family, catalyzes the reduction of 7-8-double bond of phenylpropanal substrates as a plant defense mechanism. Prostaglandins and related eicosanoids (lipid mediators involved in host defense and inflamation) are metabolized by the oxidation of the 15(S)-hydroxyl group of the NAD+-dependent (type I 15-PGDH) 15-prostaglandin dehydrogenase (15-PGDH) followed by reduction by NADPH/NADH-dependent (type II 15-PGDH) delta-13 15-prostaglandin reductase (13-PGR) to 15-keto-13,14,-dihydroprostaglandins. 13-PGR is a bifunctional enzyme, since it also has leukotriene B(4) 12-hydroxydehydrogenase activity. Leukotriene B4 (LTB4) can be metabolized by LTB4 20-hydroxylase in inflamatory cells, and in other cells by bifunctional LTB4 12-HD/PGR. These 15-PGDH and related enzymes are members of the medium chain dehydrogenase/reductase family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of an beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. Pssm-ID: 176255 [Multi-domain] Cd Length: 338 Bit Score: 224.89 E-value: 6.26e-71
|
||||||||||
B4_12hDH | TIGR02825 | leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase; Leukotriene B4 ... |
31-364 | 7.25e-53 | ||||||
leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase; Leukotriene B4 12-hydroxydehydrogenase is an NADP-dependent enzyme of arachidonic acid metabolism, responsible for converting leukotriene B4 to the much less active metabolite 12-oxo-leukotriene B4. The BRENDA database lists leukotriene B4 12-hydroxydehydrogenase as one of the synonyms of 2-alkenal reductase (EC 1.3.1.74), while 1.3.1.48 is 15-oxoprostaglandin 13-reductase. Pssm-ID: 131872 [Multi-domain] Cd Length: 325 Bit Score: 177.88 E-value: 7.25e-53
|
||||||||||
PLN03154 | PLN03154 | putative allyl alcohol dehydrogenase; Provisional |
55-364 | 3.23e-43 | ||||||
putative allyl alcohol dehydrogenase; Provisional Pssm-ID: 215606 [Multi-domain] Cd Length: 348 Bit Score: 153.07 E-value: 3.23e-43
|
||||||||||
Qor | COG0604 | NADPH:quinone reductase or related Zn-dependent oxidoreductase [Energy production and ... |
91-365 | 2.62e-41 | ||||||
NADPH:quinone reductase or related Zn-dependent oxidoreductase [Energy production and conversion, General function prediction only]; Pssm-ID: 440369 [Multi-domain] Cd Length: 322 Bit Score: 147.22 E-value: 2.62e-41
|
||||||||||
Mgc45594_like | cd08250 | Mgc45594 gene product and other MDR family members; Includes Human Mgc45594 gene product of ... |
88-364 | 2.25e-38 | ||||||
Mgc45594 gene product and other MDR family members; Includes Human Mgc45594 gene product of undetermined function. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. Pssm-ID: 176212 [Multi-domain] Cd Length: 329 Bit Score: 139.70 E-value: 2.25e-38
|
||||||||||
QOR1 | cd08241 | Quinone oxidoreductase (QOR); QOR catalyzes the conversion of a quinone + NAD(P)H to a ... |
91-364 | 3.93e-26 | ||||||
Quinone oxidoreductase (QOR); QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR acts in the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176203 [Multi-domain] Cd Length: 323 Bit Score: 106.43 E-value: 3.93e-26
|
||||||||||
zeta_crystallin | cd08253 | Zeta-crystallin with NADP-dependent quinone reductase activity (QOR); Zeta-crystallin is a eye ... |
82-365 | 5.96e-26 | ||||||
Zeta-crystallin with NADP-dependent quinone reductase activity (QOR); Zeta-crystallin is a eye lens protein with NADP-dependent quinone reductase activity (QOR). It has been cited as a structural component in mammalian eyes, but also has homology to quinone reductases in unrelated species. QOR catalyzes the conversion of a quinone and NAD(P)H to a hydroquinone and NAD(P+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR acts in the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176215 [Multi-domain] Cd Length: 325 Bit Score: 106.13 E-value: 5.96e-26
|
||||||||||
QOR2 | cd05286 | Quinone oxidoreductase (QOR); Quinone oxidoreductase (QOR) and 2-haloacrylate reductase. QOR ... |
91-365 | 2.06e-24 | ||||||
Quinone oxidoreductase (QOR); Quinone oxidoreductase (QOR) and 2-haloacrylate reductase. QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR actin the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. 2-haloacrylate reductase, a member of this subgroup, catalyzes the NADPH-dependent reduction of a carbon-carbon double bond in organohalogen compounds. Although similar to QOR, Burkholderia 2-haloacrylate reductase does not act on the quinones 1,4-benzoquinone and 1,4-naphthoquinone. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176189 [Multi-domain] Cd Length: 320 Bit Score: 101.75 E-value: 2.06e-24
|
||||||||||
MDR1 | cd08267 | Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
88-363 | 1.16e-23 | ||||||
Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176228 [Multi-domain] Cd Length: 319 Bit Score: 99.60 E-value: 1.16e-23
|
||||||||||
MDR_like_2 | cd05289 | alcohol dehydrogenase and quinone reductase-like medium chain degydrogenases/reductases; ... |
91-360 | 1.53e-23 | ||||||
alcohol dehydrogenase and quinone reductase-like medium chain degydrogenases/reductases; Members identified as zinc-dependent alcohol dehydrogenases and quinone oxidoreductase. QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR actin the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176191 [Multi-domain] Cd Length: 309 Bit Score: 99.17 E-value: 1.53e-23
|
||||||||||
MDR | cd05188 | Medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
91-281 | 1.25e-22 | ||||||
Medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family; The medium chain reductase/dehydrogenases (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH) , quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Other MDR members have only a catalytic zinc, and some contain no coordinated zinc. Pssm-ID: 176178 [Multi-domain] Cd Length: 271 Bit Score: 95.85 E-value: 1.25e-22
|
||||||||||
ADH_N_2 | pfam16884 | N-terminal domain of oxidoreductase; N-terminal region of oxidoreductase and prostaglandin ... |
17-136 | 5.58e-20 | ||||||
N-terminal domain of oxidoreductase; N-terminal region of oxidoreductase and prostaglandin reductase and alcohol dehydrogenase. Pssm-ID: 465297 [Multi-domain] Cd Length: 108 Bit Score: 84.17 E-value: 5.58e-20
|
||||||||||
MDR3 | cd08275 | Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
89-365 | 1.54e-19 | ||||||
Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176236 [Multi-domain] Cd Length: 337 Bit Score: 88.41 E-value: 1.54e-19
|
||||||||||
enoyl_red | cd05195 | enoyl reductase of polyketide synthase; Putative enoyl reductase of polyketide synthase. ... |
80-363 | 3.52e-17 | ||||||
enoyl reductase of polyketide synthase; Putative enoyl reductase of polyketide synthase. Polyketide synthases produce polyketides in step by step mechanism that is similar to fatty acid synthesis. Enoyl reductase reduces a double to single bond. Erythromycin is one example of a polyketide generated by 3 complex enzymes (megasynthases). 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains, at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Pssm-ID: 176179 [Multi-domain] Cd Length: 293 Bit Score: 80.69 E-value: 3.52e-17
|
||||||||||
MDR5 | cd08271 | Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
72-296 | 2.20e-15 | ||||||
Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176232 [Multi-domain] Cd Length: 325 Bit Score: 76.16 E-value: 2.20e-15
|
||||||||||
MDR6 | cd08272 | Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
91-364 | 2.15e-14 | ||||||
Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176233 [Multi-domain] Cd Length: 326 Bit Score: 72.98 E-value: 2.15e-14
|
||||||||||
PRK13771 | PRK13771 | putative alcohol dehydrogenase; Provisional |
89-365 | 4.67e-14 | ||||||
putative alcohol dehydrogenase; Provisional Pssm-ID: 184316 [Multi-domain] Cd Length: 334 Bit Score: 72.38 E-value: 4.67e-14
|
||||||||||
Zn_ADH5 | cd08259 | Alcohol dehydrogenases of the MDR family; NAD(P)(H)-dependent oxidoreductases are the major ... |
91-364 | 4.69e-14 | ||||||
Alcohol dehydrogenases of the MDR family; NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. This group contains proteins that share the characteristic catalytic and structural zinc-binding sites of the zinc-dependent alcohol dehydrogenase family. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine (His-51), the ribose of NAD, a serine (Ser-48), then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176220 [Multi-domain] Cd Length: 332 Bit Score: 72.35 E-value: 4.69e-14
|
||||||||||
sugar_DH | cd08236 | NAD(P)-dependent sugar dehydrogenases; This group contains proteins identified as sorbitol ... |
159-356 | 1.14e-13 | ||||||
NAD(P)-dependent sugar dehydrogenases; This group contains proteins identified as sorbitol dehydrogenases and other sugar dehydrogenases of the medium-chain dehydrogenase/reductase family (MDR), which includes zinc-dependent alcohol dehydrogenase and related proteins. Sorbitol and aldose reductase are NAD(+) binding proteins of the polyol pathway, which interconverts glucose and fructose. Sorbitol dehydrogenase is tetrameric and has a single catalytic zinc per subunit. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Related proteins include threonine dehydrogenase, formaldehyde dehydrogenase, and butanediol dehydrogenase. The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Horse liver alcohol dehydrogenase is a dimeric enzyme and each subunit has two domains. The NAD binding domain is in a Rossmann fold and the catalytic domain contains a zinc ion to which substrates bind. There is a cleft between the domains that closes upon formation of the ternary complex. Pssm-ID: 176198 [Multi-domain] Cd Length: 343 Bit Score: 71.10 E-value: 1.14e-13
|
||||||||||
Zn_ADH_like1 | cd08266 | Alcohol dehydrogenases of the MDR family; This group contains proteins related to the ... |
91-365 | 2.26e-13 | ||||||
Alcohol dehydrogenases of the MDR family; This group contains proteins related to the zinc-dependent alcohol dehydrogenases. However, while the group has structural zinc site characteristic of these enzymes, it lacks the consensus site for a catalytic zinc. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176227 [Multi-domain] Cd Length: 342 Bit Score: 70.36 E-value: 2.26e-13
|
||||||||||
MDR9 | cd08274 | Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
177-277 | 3.53e-13 | ||||||
Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176235 [Multi-domain] Cd Length: 350 Bit Score: 69.63 E-value: 3.53e-13
|
||||||||||
ADH_zinc_N | pfam00107 | Zinc-binding dehydrogenase; |
188-303 | 4.43e-13 | ||||||
Zinc-binding dehydrogenase; Pssm-ID: 395057 [Multi-domain] Cd Length: 129 Bit Score: 65.32 E-value: 4.43e-13
|
||||||||||
polyketide_synthase | cd08251 | polyketide synthase; Polyketide synthases produce polyketides in step by step mechanism that ... |
89-363 | 9.68e-13 | ||||||
polyketide synthase; Polyketide synthases produce polyketides in step by step mechanism that is similar to fatty acid synthesis. Enoyl reductase reduces a double to single bond. Erythromycin is one example of a polyketide generated by 3 complex enzymes (megasynthases). 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Pssm-ID: 176213 [Multi-domain] Cd Length: 303 Bit Score: 67.84 E-value: 9.68e-13
|
||||||||||
p53_inducible_oxidoreductase | cd05276 | PIG3 p53-inducible quinone oxidoreductase; PIG3 p53-inducible quinone oxidoreductase, a medium ... |
176-274 | 1.62e-12 | ||||||
PIG3 p53-inducible quinone oxidoreductase; PIG3 p53-inducible quinone oxidoreductase, a medium chain dehydrogenase/reductase family member, acts in the apoptotic pathway. PIG3 reduces ortho-quinones, but its apoptotic activity has been attributed to oxidative stress generation, since overexpression of PIG3 accumulates reactive oxygen species. PIG3 resembles the MDR family member quinone reductases, which catalyze the reduction of quinone to hydroxyquinone. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176180 [Multi-domain] Cd Length: 323 Bit Score: 67.47 E-value: 1.62e-12
|
||||||||||
ETR_like | cd05282 | 2-enoyl thioester reductase-like; 2-enoyl thioester reductase (ETR) catalyzes the ... |
38-364 | 1.74e-12 | ||||||
2-enoyl thioester reductase-like; 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. Pssm-ID: 176645 [Multi-domain] Cd Length: 323 Bit Score: 67.30 E-value: 1.74e-12
|
||||||||||
Tdh | COG1063 | Threonine dehydrogenase or related Zn-dependent dehydrogenase [Amino acid transport and ... |
93-365 | 2.25e-12 | ||||||
Threonine dehydrogenase or related Zn-dependent dehydrogenase [Amino acid transport and metabolism, General function prediction only]; Threonine dehydrogenase or related Zn-dependent dehydrogenase is part of the Pathway/BioSystem: Non-phosphorylated Entner-Doudoroff pathway Pssm-ID: 440683 [Multi-domain] Cd Length: 341 Bit Score: 67.09 E-value: 2.25e-12
|
||||||||||
MDR8 | cd08273 | Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
89-364 | 6.03e-12 | ||||||
Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176234 [Multi-domain] Cd Length: 331 Bit Score: 65.75 E-value: 6.03e-12
|
||||||||||
MDR2 | cd08268 | Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
91-284 | 1.47e-11 | ||||||
Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176229 [Multi-domain] Cd Length: 328 Bit Score: 64.54 E-value: 1.47e-11
|
||||||||||
CAD3 | cd08297 | Cinnamyl alcohol dehydrogenases (CAD); These alcohol dehydrogenases are related to the ... |
91-364 | 5.96e-11 | ||||||
Cinnamyl alcohol dehydrogenases (CAD); These alcohol dehydrogenases are related to the cinnamyl alcohol dehydrogenases (CAD), members of the medium chain dehydrogenase/reductase family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Cinnamyl alcohol dehydrogenases (CAD) reduce cinnamaldehydes to cinnamyl alcohols in the last step of monolignal metabolism in plant cells walls. CAD binds 2 zinc ions and is NADPH- dependent. CAD family members are also found in non-plant species, e.g. in yeast where they have an aldehyde reductase activity. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176257 [Multi-domain] Cd Length: 341 Bit Score: 62.94 E-value: 5.96e-11
|
||||||||||
enoyl_reductase_like | cd08249 | enoyl_reductase_like; Member identified as possible enoyl reductase of the MDR family. 2-enoyl ... |
38-365 | 1.26e-10 | ||||||
enoyl_reductase_like; Member identified as possible enoyl reductase of the MDR family. 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. Pssm-ID: 176211 [Multi-domain] Cd Length: 339 Bit Score: 61.83 E-value: 1.26e-10
|
||||||||||
PKS_ER | smart00829 | Enoylreductase; Enoylreductase in Polyketide synthases. |
79-363 | 4.28e-10 | ||||||
Enoylreductase; Enoylreductase in Polyketide synthases. Pssm-ID: 214840 [Multi-domain] Cd Length: 287 Bit Score: 59.71 E-value: 4.28e-10
|
||||||||||
ETR | cd08290 | 2-enoyl thioester reductase (ETR); 2-enoyl thioester reductase (ETR) catalyzes the ... |
39-333 | 1.07e-09 | ||||||
2-enoyl thioester reductase (ETR); 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains, at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers, with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. Pssm-ID: 176250 [Multi-domain] Cd Length: 341 Bit Score: 59.16 E-value: 1.07e-09
|
||||||||||
ADH_zinc_N_2 | pfam13602 | Zinc-binding dehydrogenase; |
220-363 | 1.51e-08 | ||||||
Zinc-binding dehydrogenase; Pssm-ID: 433341 [Multi-domain] Cd Length: 131 Bit Score: 52.72 E-value: 1.51e-08
|
||||||||||
Zn_ADH10 | cd08263 | Alcohol dehydrogenases of the MDR family; NAD(P)(H)-dependent oxidoreductases are the major ... |
122-274 | 1.93e-08 | ||||||
Alcohol dehydrogenases of the MDR family; NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176224 [Multi-domain] Cd Length: 367 Bit Score: 55.45 E-value: 1.93e-08
|
||||||||||
PRK10754 | PRK10754 | NADPH:quinone reductase; |
91-253 | 2.91e-08 | ||||||
NADPH:quinone reductase; Pssm-ID: 182701 [Multi-domain] Cd Length: 327 Bit Score: 54.74 E-value: 2.91e-08
|
||||||||||
Zn_ADH9 | cd08269 | Alcohol dehydrogenases of the MDR family; The medium chain dehydrogenases/reductase (MDR) ... |
91-289 | 7.59e-08 | ||||||
Alcohol dehydrogenases of the MDR family; The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. Pssm-ID: 176230 [Multi-domain] Cd Length: 312 Bit Score: 53.13 E-value: 7.59e-08
|
||||||||||
AL_MDR | cd08252 | Arginate lyase and other MDR family members; This group contains a structure identified as an ... |
17-256 | 8.66e-08 | ||||||
Arginate lyase and other MDR family members; This group contains a structure identified as an arginate lyase. Other members are identified quinone reductases, alginate lyases, and other proteins related to the zinc-dependent dehydrogenases/reductases. QOR catalyzes the conversion of a quinone and NAD(P)H to a hydroquinone and NAD(P+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR acts in the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176214 [Multi-domain] Cd Length: 336 Bit Score: 53.30 E-value: 8.66e-08
|
||||||||||
MDR_enoyl_red | cd08244 | Possible enoyl reductase; Member identified as possible enoyl reductase of the MDR family. ... |
157-274 | 5.66e-07 | ||||||
Possible enoyl reductase; Member identified as possible enoyl reductase of the MDR family. 2-enoyl thioester reductase (ETR) catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers, with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. Pssm-ID: 176206 [Multi-domain] Cd Length: 324 Bit Score: 50.83 E-value: 5.66e-07
|
||||||||||
alcohol_DH_plants | cd08301 | Plant alcohol dehydrogenase; NAD(P)(H)-dependent oxidoreductases are the major enzymes in the ... |
121-255 | 9.26e-07 | ||||||
Plant alcohol dehydrogenase; NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. There are 7 vertebrate ADH 7 classes, 6 of which have been identified in humans. Class III, glutathione-dependent formaldehyde dehydrogenase, has been identified as the primordial form and exists in diverse species, including plants, micro-organisms, vertebrates, and invertebrates. Class I, typified by liver dehydrogenase, is an evolving form. Gene duplication and functional specialization of ADH into ADH classes and subclasses created numerous forms in vertebrates. For example, the A, B and C (formerly alpha, beta, gamma) human class I subunits have high overall structural similarity, but differ in the substrate binding pocket and therefore in substrate specificity. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine (His-51), the ribose of NAD, a serine (Ser-48) , then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of an beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Pssm-ID: 176261 [Multi-domain] Cd Length: 369 Bit Score: 50.37 E-value: 9.26e-07
|
||||||||||
ETR_like_2 | cd08292 | 2-enoyl thioester reductase (ETR) like proteins, child 2; 2-enoyl thioester reductase (ETR) ... |
91-364 | 1.39e-06 | ||||||
2-enoyl thioester reductase (ETR) like proteins, child 2; 2-enoyl thioester reductase (ETR) like proteins. ETR catalyzes the NADPH-dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the 2-enoyl thioester reductase (ETR) like proteins. ETR catalyzes the NADPH-dependent dependent conversion of trans-2-enoyl acyl carrier protein/coenzyme A (ACP/CoA) to acyl-(ACP/CoA) in fatty acid synthesis. 2-enoyl thioester reductase activity has been linked in Candida tropicalis as essential in maintaining mitiochondrial respiratory function. This ETR family is a part of the medium chain dehydrogenase/reductase family, but lack the zinc coordination sites characteristic of the alcohol dehydrogenases in this family. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site, and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains, at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Candida tropicalis enoyl thioester reductase (Etr1p) catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis. Etr1p forms homodimers, with each subunit containing a nucleotide-binding Rossmann fold domain and a catalytic domain. Pssm-ID: 176252 [Multi-domain] Cd Length: 324 Bit Score: 49.64 E-value: 1.39e-06
|
||||||||||
benzyl_alcohol_DH | cd08278 | Benzyl alcohol dehydrogenase; Benzyl alcohol dehydrogenase is similar to liver alcohol ... |
91-274 | 3.28e-06 | ||||||
Benzyl alcohol dehydrogenase; Benzyl alcohol dehydrogenase is similar to liver alcohol dehydrogenase, but has some amino acid substitutions near the active site, which may determine the enzyme's specificity of oxidizing aromatic substrates. Also known as aryl-alcohol dehydrogenases, they catalyze the conversion of an aromatic alcohol + NAD+ to an aromatic aldehyde + NADH + H+. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176239 [Multi-domain] Cd Length: 365 Bit Score: 48.65 E-value: 3.28e-06
|
||||||||||
PTZ00354 | PTZ00354 | alcohol dehydrogenase; Provisional |
20-363 | 3.60e-06 | ||||||
alcohol dehydrogenase; Provisional Pssm-ID: 173547 [Multi-domain] Cd Length: 334 Bit Score: 48.10 E-value: 3.60e-06
|
||||||||||
2-desacetyl-2-hydroxyethyl_bacteriochlorophyllide_ | cd08255 | 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide and other MDR family members; This subgroup ... |
91-274 | 4.88e-06 | ||||||
2-desacetyl-2-hydroxyethyl bacteriochlorophyllide and other MDR family members; This subgroup of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family has members identified as 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide A dehydrogenase and alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. Pssm-ID: 176217 [Multi-domain] Cd Length: 277 Bit Score: 47.65 E-value: 4.88e-06
|
||||||||||
MDR_yhdh_yhfp | cd05280 | Yhdh and yhfp-like putative quinone oxidoreductases; Yhdh and yhfp-like putative quinone ... |
91-364 | 1.39e-05 | ||||||
Yhdh and yhfp-like putative quinone oxidoreductases; Yhdh and yhfp-like putative quinone oxidoreductases (QOR). QOR catalyzes the conversion of a quinone + NAD(P)H to a hydroquinone + NAD(P)+. Quinones are cyclic diones derived from aromatic compounds. Membrane bound QOR actin the respiratory chains of bacteria and mitochondria, while soluble QOR acts to protect from toxic quinones (e.g. DT-diaphorase) or as a soluble eye-lens protein in some vertebrates (e.g. zeta-crystalin). QOR reduces quinones through a semi-quinone intermediate via a NAD(P)H-dependent single electron transfer. QOR is a member of the medium chain dehydrogenase/reductase family, but lacks the zinc-binding sites of the prototypical alcohol dehydrogenases of this group. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176183 [Multi-domain] Cd Length: 325 Bit Score: 46.38 E-value: 1.39e-05
|
||||||||||
FDH_like | cd05278 | Formaldehyde dehydrogenases; Formaldehyde dehydrogenase (FDH) is a member of the ... |
91-290 | 3.97e-05 | ||||||
Formaldehyde dehydrogenases; Formaldehyde dehydrogenase (FDH) is a member of the zinc-dependent/medium chain alcohol dehydrogenase family. Formaldehyde dehydrogenase (aka ADH3) may be the ancestral form of alcohol dehydrogenase, which evolved to detoxify formaldehyde. This CD contains glutathione dependant FDH, glutathione independent FDH, and related alcohol dehydrogenases. FDH converts formaldehyde and NAD(P) to formate and NAD(P)H. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. Unlike typical FDH, Pseudomonas putida aldehyde-dismutating FDH (PFDH) is glutathione-independent. The medium chain alcohol dehydrogenase family (MDR) have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Pssm-ID: 176181 [Multi-domain] Cd Length: 347 Bit Score: 44.96 E-value: 3.97e-05
|
||||||||||
MDR4 | cd08270 | Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
77-360 | 1.10e-04 | ||||||
Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family; This group is a member of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, but lacks the zinc-binding sites of the zinc-dependent alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176231 [Multi-domain] Cd Length: 305 Bit Score: 43.51 E-value: 1.10e-04
|
||||||||||
liver_alcohol_DH_like | cd08277 | Liver alcohol dehydrogenase; NAD(P)(H)-dependent oxidoreductases are the major enzymes in the ... |
89-246 | 1.66e-04 | ||||||
Liver alcohol dehydrogenase; NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. There are 7 vertebrate ADH 7 classes, 6 of which have been identified in humans. Class III, glutathione-dependent formaldehyde dehydrogenase, has been identified as the primordial form and exists in diverse species, including plants, micro-organisms, vertebrates, and invertebrates. Class I, typified by liver dehydrogenase, is an evolving form. Gene duplication and functional specialization of ADH into ADH classes and subclasses created numerous forms in vertebrates. For example, the A, B and C (formerly alpha, beta, gamma) human class I subunits have high overall structural similarity, but differ in the substrate binding pocket and therefore in substrate specificity. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine (His-51), the ribose of NAD, a serine (Ser-48) , then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of an beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. Pssm-ID: 176238 [Multi-domain] Cd Length: 365 Bit Score: 43.10 E-value: 1.66e-04
|
||||||||||
CAD | cd08245 | Cinnamyl alcohol dehydrogenases (CAD) and related proteins; Cinnamyl alcohol dehydrogenases ... |
89-356 | 4.34e-04 | ||||||
Cinnamyl alcohol dehydrogenases (CAD) and related proteins; Cinnamyl alcohol dehydrogenases (CAD), members of the medium chain dehydrogenase/reductase family, reduce cinnamaldehydes to cinnamyl alcohols in the last step of monolignal metabolism in plant cells walls. CAD binds 2 zinc ions and is NADPH- dependent. CAD family members are also found in non-plant species, e.g. in yeast where they have an aldehyde reductase activity. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes, or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176207 [Multi-domain] Cd Length: 330 Bit Score: 41.92 E-value: 4.34e-04
|
||||||||||
oxido_YhdH | TIGR02823 | putative quinone oxidoreductase, YhdH/YhfP family; This model represents a subfamily of ... |
154-364 | 8.57e-04 | ||||||
putative quinone oxidoreductase, YhdH/YhfP family; This model represents a subfamily of pfam00107 as defined by Pfam, a superfamily in which some members are zinc-binding medium-chain alcohol dehydrogenases while others are quinone oxidoreductases with no bound zinc. This subfamily includes proteins studied crystallographically for insight into function: YhdH from Escherichia coli and YhfP from Bacillus subtilis. Members bind NADPH or NAD, but not zinc. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 274315 [Multi-domain] Cd Length: 323 Bit Score: 41.00 E-value: 8.57e-04
|
||||||||||
liver_ADH_like1 | cd08281 | Zinc-dependent alcohol dehydrogenases (ADH) and class III ADG (AKA formaldehyde dehydrogenase); ... |
91-255 | 1.20e-03 | ||||||
Zinc-dependent alcohol dehydrogenases (ADH) and class III ADG (AKA formaldehyde dehydrogenase); NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. This group contains members identified as zinc dependent alcohol dehydrogenases (ADH), and class III ADG (aka formaldehyde dehydrogenase, FDH). Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. Class III ADH are also know as glutathione-dependent formaldehyde dehydrogenase (FDH), which convert aldehydes to the corresponding carboxylic acid and alcohol. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H) binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176241 [Multi-domain] Cd Length: 371 Bit Score: 40.44 E-value: 1.20e-03
|
||||||||||
NADP_ADH | cd08285 | NADP(H)-dependent alcohol dehydrogenases; This group is predominated by atypical alcohol ... |
182-291 | 2.10e-03 | ||||||
NADP(H)-dependent alcohol dehydrogenases; This group is predominated by atypical alcohol dehydrogenases; they exist as tetramers and exhibit specificity for NADP(H) as a cofactor in the interconversion of alcohols and aldehydes, or ketones. Like other zinc-dependent alcohol dehydrogenases (ADH) of the medium chain alcohol dehydrogenase/reductase family (MDR), tetrameric ADHs have a catalytic zinc that resides between the catalytic and NAD(H)binding domains; however, they do not have and a structural zinc in a lobe of the catalytic domain. The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Pssm-ID: 176245 [Multi-domain] Cd Length: 351 Bit Score: 39.53 E-value: 2.10e-03
|
||||||||||
AST1_like | cd08247 | AST1 is a cytoplasmic protein associated with the periplasmic membrane in yeast; This group ... |
96-364 | 3.19e-03 | ||||||
AST1 is a cytoplasmic protein associated with the periplasmic membrane in yeast; This group contains members identified in targeting of yeast membrane proteins ATPase. AST1 is a cytoplasmic protein associated with the periplasmic membrane in yeast, identified as a multicopy suppressor of pma1 mutants which cause temperature sensitive growth arrest due to the inability of ATPase to target to the cell surface. This family is homologous to the medium chain family of dehydrogenases and reductases. Medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of an beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. Pssm-ID: 176209 [Multi-domain] Cd Length: 352 Bit Score: 39.17 E-value: 3.19e-03
|
||||||||||
Blast search parameters | ||||
|