LIM/homeobox protein lim-6 [Caenorhabditis elegans]
LIM and homeodomain domain-containing protein( domain architecture ID 10912166)
LIM and homeodomain domain-containing protein
List of domain hits
Name | Accession | Description | Interval | E-value | ||
Homeodomain | pfam00046 | Homeodomain; |
187-243 | 2.94e-21 | ||
Homeodomain; : Pssm-ID: 459649 [Multi-domain] Cd Length: 57 Bit Score: 85.24 E-value: 2.94e-21
|
||||||
LIM super family | cl02475 | LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains ... |
42-95 | 1.51e-13 | ||
LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid). The actual alignment was detected with superfamily member cd09373: Pssm-ID: 413332 [Multi-domain] Cd Length: 54 Bit Score: 64.32 E-value: 1.51e-13
|
||||||
LIM super family | cl02475 | LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains ... |
101-157 | 6.32e-11 | ||
LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid). The actual alignment was detected with superfamily member cd09377: Pssm-ID: 413332 Cd Length: 59 Bit Score: 56.90 E-value: 6.32e-11
|
||||||
Name | Accession | Description | Interval | E-value | |||
Homeodomain | pfam00046 | Homeodomain; |
187-243 | 2.94e-21 | |||
Homeodomain; Pssm-ID: 459649 [Multi-domain] Cd Length: 57 Bit Score: 85.24 E-value: 2.94e-21
|
|||||||
HOX | smart00389 | Homeodomain; DNA-binding factors that are involved in the transcriptional regulation of key ... |
186-242 | 6.61e-19 | |||
Homeodomain; DNA-binding factors that are involved in the transcriptional regulation of key developmental processes Pssm-ID: 197696 [Multi-domain] Cd Length: 57 Bit Score: 78.83 E-value: 6.61e-19
|
|||||||
homeodomain | cd00086 | Homeodomain; DNA binding domains involved in the transcriptional regulation of key eukaryotic ... |
187-243 | 3.81e-18 | |||
Homeodomain; DNA binding domains involved in the transcriptional regulation of key eukaryotic developmental processes; may bind to DNA as monomers or as homo- and/or heterodimers, in a sequence-specific manner. Pssm-ID: 238039 [Multi-domain] Cd Length: 59 Bit Score: 76.90 E-value: 3.81e-18
|
|||||||
LIM1_AWH | cd09373 | The first LIM domain of Arrowhead (AWH); The first LIM domain of Arrowhead (AWH): Arrowhead ... |
42-95 | 1.51e-13 | |||
The first LIM domain of Arrowhead (AWH); The first LIM domain of Arrowhead (AWH): Arrowhead belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. During embryogenesis of Drosophila, Arrowhead is expressed in each abdominal segment and in the labial segment. Late in embryonic development, expression of arrowhead is refined to the abdominal histoblasts and salivary gland imaginal ring cells themselves. The Arrowhead gene required for establishment of a subset of imaginal tissues: the abdominal histoblasts and the salivary gland imaginal rings. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188759 [Multi-domain] Cd Length: 54 Bit Score: 64.32 E-value: 1.51e-13
|
|||||||
COG5576 | COG5576 | Homeodomain-containing transcription factor [Transcription]; |
174-269 | 1.47e-12 | |||
Homeodomain-containing transcription factor [Transcription]; Pssm-ID: 227863 [Multi-domain] Cd Length: 156 Bit Score: 64.38 E-value: 1.47e-12
|
|||||||
LIM | pfam00412 | LIM domain; This family represents two copies of the LIM structural domain. |
42-99 | 1.35e-11 | |||
LIM domain; This family represents two copies of the LIM structural domain. Pssm-ID: 395333 [Multi-domain] Cd Length: 57 Bit Score: 58.88 E-value: 1.35e-11
|
|||||||
LIM2_Lhx2_Lhx9 | cd09377 | The second LIM domain of Lhx2 and Lhx9 family; The second LIM domain of Lhx2 and Lhx9 family: ... |
101-157 | 6.32e-11 | |||
The second LIM domain of Lhx2 and Lhx9 family; The second LIM domain of Lhx2 and Lhx9 family: Lhx2 and Lhx9 are highly homologous LHX regulatory proteins. They belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Although Lhx2 and Lhx9 are highly homologous, they seems to play regulatory roles in different organs. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. Lhx9 is expressed in several regions of the developing mouse brain, the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188763 Cd Length: 59 Bit Score: 56.90 E-value: 6.32e-11
|
|||||||
LIM | smart00132 | Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM ... |
102-156 | 1.08e-09 | |||
Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways. Pssm-ID: 214528 [Multi-domain] Cd Length: 54 Bit Score: 53.54 E-value: 1.08e-09
|
|||||||
LIM | smart00132 | Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM ... |
42-94 | 6.79e-08 | |||
Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways. Pssm-ID: 214528 [Multi-domain] Cd Length: 54 Bit Score: 48.53 E-value: 6.79e-08
|
|||||||
LIM | pfam00412 | LIM domain; This family represents two copies of the LIM structural domain. |
103-158 | 2.08e-06 | |||
LIM domain; This family represents two copies of the LIM structural domain. Pssm-ID: 395333 [Multi-domain] Cd Length: 57 Bit Score: 44.25 E-value: 2.08e-06
|
|||||||
Name | Accession | Description | Interval | E-value | |||
Homeodomain | pfam00046 | Homeodomain; |
187-243 | 2.94e-21 | |||
Homeodomain; Pssm-ID: 459649 [Multi-domain] Cd Length: 57 Bit Score: 85.24 E-value: 2.94e-21
|
|||||||
HOX | smart00389 | Homeodomain; DNA-binding factors that are involved in the transcriptional regulation of key ... |
186-242 | 6.61e-19 | |||
Homeodomain; DNA-binding factors that are involved in the transcriptional regulation of key developmental processes Pssm-ID: 197696 [Multi-domain] Cd Length: 57 Bit Score: 78.83 E-value: 6.61e-19
|
|||||||
homeodomain | cd00086 | Homeodomain; DNA binding domains involved in the transcriptional regulation of key eukaryotic ... |
187-243 | 3.81e-18 | |||
Homeodomain; DNA binding domains involved in the transcriptional regulation of key eukaryotic developmental processes; may bind to DNA as monomers or as homo- and/or heterodimers, in a sequence-specific manner. Pssm-ID: 238039 [Multi-domain] Cd Length: 59 Bit Score: 76.90 E-value: 3.81e-18
|
|||||||
LIM1_AWH | cd09373 | The first LIM domain of Arrowhead (AWH); The first LIM domain of Arrowhead (AWH): Arrowhead ... |
42-95 | 1.51e-13 | |||
The first LIM domain of Arrowhead (AWH); The first LIM domain of Arrowhead (AWH): Arrowhead belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. During embryogenesis of Drosophila, Arrowhead is expressed in each abdominal segment and in the labial segment. Late in embryonic development, expression of arrowhead is refined to the abdominal histoblasts and salivary gland imaginal ring cells themselves. The Arrowhead gene required for establishment of a subset of imaginal tissues: the abdominal histoblasts and the salivary gland imaginal rings. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188759 [Multi-domain] Cd Length: 54 Bit Score: 64.32 E-value: 1.51e-13
|
|||||||
LIM1_Lmx1b | cd09371 | The first LIM domain of Lmx1b; The first LIM domain of Lmx1b: Lmx1b belongs to the LHX protein ... |
42-96 | 2.64e-13 | |||
The first LIM domain of Lmx1b; The first LIM domain of Lmx1b: Lmx1b belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. In mouse, Lmx1b functions in the developing limbs and eyes, the kidneys, the brain, and in cranial mesenchyme. The disruption of Lmx1b gene results kidney and limb defects. In the brain, Lmx1b is important for generation of mesencephalic dopamine neurons and the differentiation of serotonergic neurons. In the mouse eye, Lmx1b regulates anterior segment (cornea, iris, ciliary body, trabecular meshwork, and lens) development. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188757 [Multi-domain] Cd Length: 53 Bit Score: 63.55 E-value: 2.64e-13
|
|||||||
LIM1_Lhx2_Lhx9 | cd09369 | The first LIM domain of Lhx2 and Lhx9 family; The first LIM domain of Lhx2 and Lhx9 family: ... |
42-95 | 8.19e-13 | |||
The first LIM domain of Lhx2 and Lhx9 family; The first LIM domain of Lhx2 and Lhx9 family: Lhx2 and Lhx9 are highly homologous LHX regulatory proteins. They belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Although Lhx2 and Lhx9 are highly homologous, they seems to play regulatory roles in different organs. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. Lhx9 is expressed in several regions of the developing mouse brain , the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188755 [Multi-domain] Cd Length: 54 Bit Score: 61.97 E-value: 8.19e-13
|
|||||||
COG5576 | COG5576 | Homeodomain-containing transcription factor [Transcription]; |
174-269 | 1.47e-12 | |||
Homeodomain-containing transcription factor [Transcription]; Pssm-ID: 227863 [Multi-domain] Cd Length: 156 Bit Score: 64.38 E-value: 1.47e-12
|
|||||||
LIM | cd08368 | LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains ... |
42-95 | 1.19e-11 | |||
LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid). Pssm-ID: 259829 [Multi-domain] Cd Length: 53 Bit Score: 58.87 E-value: 1.19e-11
|
|||||||
LIM | pfam00412 | LIM domain; This family represents two copies of the LIM structural domain. |
42-99 | 1.35e-11 | |||
LIM domain; This family represents two copies of the LIM structural domain. Pssm-ID: 395333 [Multi-domain] Cd Length: 57 Bit Score: 58.88 E-value: 1.35e-11
|
|||||||
LIM2_Lhx2_Lhx9 | cd09377 | The second LIM domain of Lhx2 and Lhx9 family; The second LIM domain of Lhx2 and Lhx9 family: ... |
101-157 | 6.32e-11 | |||
The second LIM domain of Lhx2 and Lhx9 family; The second LIM domain of Lhx2 and Lhx9 family: Lhx2 and Lhx9 are highly homologous LHX regulatory proteins. They belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Although Lhx2 and Lhx9 are highly homologous, they seems to play regulatory roles in different organs. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. Lhx9 is expressed in several regions of the developing mouse brain, the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188763 Cd Length: 59 Bit Score: 56.90 E-value: 6.32e-11
|
|||||||
LIM1_Lhx3_Lhx4 | cd09368 | The first LIM domain of Lhx3 and Lhx4 family; The first LIM domain of Lhx3-Lhx4 family: Lhx3 ... |
42-94 | 3.28e-10 | |||
The first LIM domain of Lhx3 and Lhx4 family; The first LIM domain of Lhx3-Lhx4 family: Lhx3 and Lhx4 belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Although LHX3 and LHX4 share marked sequence homology, the genes have different expression patterns. They play overlapping, but distinct functions during the establishment of the specialized cells of the mammalian pituitary gland and the nervous system. Lhx3 proteins have been demonstrated the ability to directly bind to the promoters/enhancers of several pituitary hormone gene promoters to cause increased transcription. Lhx3a and Lhx3b, whose mRNAs have distinct temporal expression profiles during development, are two isoforms of Lhx3. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188754 Cd Length: 52 Bit Score: 54.73 E-value: 3.28e-10
|
|||||||
LIM1_Lhx4 | cd09468 | The first LIM domain of Lhx4; The first LIM domain of Lhx4. Lhx4 belongs to the LHX protein ... |
42-94 | 3.34e-10 | |||
The first LIM domain of Lhx4; The first LIM domain of Lhx4. Lhx4 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188852 Cd Length: 52 Bit Score: 54.98 E-value: 3.34e-10
|
|||||||
LIM1_Lhx3a | cd09466 | The first LIM domain of Lhx3a; The first LIM domain of Lhx3a: Lhx3a is a member of LHX protein ... |
41-94 | 6.55e-10 | |||
The first LIM domain of Lhx3a; The first LIM domain of Lhx3a: Lhx3a is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx3a is one of the two isoforms of Lhx3. The Lhx3 gene is expressed in the ventral spinal cord, the pons, the medulla oblongata, and the pineal gland of the developing nervous system during mouse embryogenesis, and transcripts are found in the emergent pituitary gland. Lhx3 functions in concert with other transcription factors to specify interneuron and motor neuron fates during development. Lhx3 proteins have been demonstrated to directly bind to the promoters of several pituitary hormone gene promoters. The Lhx3 gene encodes two isoforms, LHX3a and LHX3b that differ in their amino-terminal sequences, where Lhx3a has longer N-terminal. They show differential activation of pituitary hormone genes and distinct DNA binding properties. In human, Lhx3a trans-activated the alpha-glycoprotein subunit promoter and genes containing a high-affinity Lhx3 binding site more effectively than the hLhx3b isoform. In addition, hLhx3a induce transcription of the TSHbeta-subunit gene by acting on pituitary POU domain factor, Pit-1, while hLhx3b does not. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188850 [Multi-domain] Cd Length: 56 Bit Score: 54.01 E-value: 6.55e-10
|
|||||||
LIM | smart00132 | Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM ... |
102-156 | 1.08e-09 | |||
Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways. Pssm-ID: 214528 [Multi-domain] Cd Length: 54 Bit Score: 53.54 E-value: 1.08e-09
|
|||||||
LIM1_Isl | cd09366 | The first LIM domain of Isl, a member of LHX protein family; The first LIM domain of Isl: Isl ... |
42-95 | 2.50e-09 | |||
The first LIM domain of Isl, a member of LHX protein family; The first LIM domain of Isl: Isl is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Isl1 and Isl2 are the two conserved members of this family. Proteins in this group are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Isl-1 is one of the LHX proteins isolated originally by virtue of its ability to bind DNA sequences from the 5'-flanking region of the rat insulin gene in pancreatic insulin-producing cells. Mice deficient in Isl-1 fail to form the dorsal exocrine pancreas and islet cells fail to differentiate. On the other hand, Isl-1 takes part in the pituitary development by activating the gonadotropin-releasing hormone receptor gene together with LHX3 and steroidogenic factor 1. Mouse Is l2 is expressed in the retinal ganglion cells and the developing spinal cord where it plays a role in motor neuron development. Same as Isl1, Isl2 may also be able to bind to the insulin gene enhancer to promote gene activation. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188752 [Multi-domain] Cd Length: 55 Bit Score: 52.35 E-value: 2.50e-09
|
|||||||
LIM1_LMO4 | cd09386 | The first LIM domain of LMO4 (LIM domain only protein 4); The first LIM domain of LMO4 (LIM ... |
42-95 | 2.74e-09 | |||
The first LIM domain of LMO4 (LIM domain only protein 4); The first LIM domain of LMO4 (LIM domain only protein 4): LMO4 is a nuclear protein that plays important roles in transcriptional regulation and development. LMO4 is involved in various functions in tumorigenesis and cellular differentiation. LMO4 proteins regulate gene expression by interacting with a wide variety of transcription factors and cofactors to form large transcription complexes. It can interact with Smad proteins, and associate with the promoter of the PAI-1 (plasminogen activator inhibitor-1) gene in a TGFbeta (transforming growth factor beta)-dependent manner. LMO4 can also form a complex with transcription regulator CREB (cAMP response element-binding protein) and interact with CLIM1 and CLIM2. In breast tissue, LMO4 interacts with multiple proteins, including the cofactor CtIP [CtBP (C-terminal binding protein)-interacting protein], the breast and ovarian tumor suppressor BRCA1 (breast-cancer susceptibility gene 1) and the LIM-domain-binding protein LDB1. Functionally, LMO4 is shown to repress BRCA1-mediated transcription activation, thus invoking a potential role for LMO4 as a negative regulator of BRCA1 in sporadic breast cancer. LMO4 also forms complex to both ERa (oestrogen receptor alpha), MTA1 (metastasis tumor antigen 1), and HDACs (histone deacetylases), implying that LMO4 is also a component of the MTA1 corepressor complex. Over-expressed LMO4 represses ERa transactivation functions in an HDAC-dependent manner, and contributes to the process of breast cancer progression by allowing the development of Era-negative phenotypes. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188772 [Multi-domain] Cd Length: 55 Bit Score: 52.43 E-value: 2.74e-09
|
|||||||
LIM1_Lhx2 | cd09469 | The first LIM domain of Lhx2; The first LIM domain of Lhx2: Lhx2 belongs to the LHX protein ... |
41-95 | 3.68e-09 | |||
The first LIM domain of Lhx2; The first LIM domain of Lhx2: Lhx2 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. The Lhx2 protein has been shown to bind to the mouse M71 olfactory receptor promoter. Similar to other LIM domains, this domain family is 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188853 Cd Length: 64 Bit Score: 52.32 E-value: 3.68e-09
|
|||||||
LIM1_Lhx3b | cd09467 | The first LIM domain of Lhx3b; The first LIM domain of Lhx3b. Lhx3b is a member of LHX protein ... |
41-94 | 5.25e-09 | |||
The first LIM domain of Lhx3b; The first LIM domain of Lhx3b. Lhx3b is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx3b is one of the two isoforms of Lhx3. The Lhx3 gene is expressed in the ventral spinal cord, the pons, the medulla oblongata, and the pineal gland of the developing nervous system during mouse embryogenesis, and transcripts are found in the emergent pituitary gland. Lhx3 functions in concert with other transcription factors to specify interneuron and motor neuron fates during development. Lhx3 proteins have been demonstrated to directly bind to the promoters of several pituitary hormone gene promoters. The Lhx3 gene encodes two isoforms, LHX3a and LHX3b that differ in their amino-terminal sequences, where Lhx3a has longer N-terminal. They show differential activation of pituitary hormone genes and distinct DNA binding properties. In human, Lhx3a trans-activated the alpha-glycoprotein subunit promoter and genes containing a high-affinity Lhx3 binding site more effectively than the hLhx3b isoform. In addition, hLhx3a induce transcription of the TSHbeta-subunit gene by acting on pituitary POU domain factor, Pit-1, while hLhx3b does not. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188851 [Multi-domain] Cd Length: 55 Bit Score: 51.47 E-value: 5.25e-09
|
|||||||
LIM2_Lhx1_Lhx5 | cd09375 | The second LIM domain of Lhx1 (also known as Lim1) and Lhx5; The second LIM domain of Lhx1 ... |
103-157 | 1.56e-08 | |||
The second LIM domain of Lhx1 (also known as Lim1) and Lhx5; The second LIM domain of Lhx1 (also known as Lim1) and Lhx5. Lhx1 and Lhx5 are closely related members of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx1 is required for regulating the vertebrate head organizer, the nervous system, and female reproductive tract development. During embryogenesis in the mouse, Lhx1 is expressed early in mesodermal tissue, then later during urogenital, kidney, liver, and nervous system development. In the adult, expression is restricted to the kidney and brain. A mouse embryos with Lhx1 gene knockout cannot grow normal anterior head structures, kidneys, and gonads, but with normally developed trunk and tail morphology. In the developing nervous system, Lhx1 is required to direct the trajectories of motor axons in the limb. Lhx1 null female mice lack the oviducts and uterus. Lhx5 protein may play complementary or overlapping roles with Lhx1. The expression of Lhx5 in the anterior portion of the mouse neural tube suggests a role in patterning of the forebrain. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188761 Cd Length: 56 Bit Score: 50.44 E-value: 1.56e-08
|
|||||||
LIM2_Lmx1a_Lmx1b | cd09378 | The second LIM domain of Lmx1a and Lmx1b; The second LIM domain of Lmx1a and Lmx1b: Lmx1a and ... |
103-157 | 2.41e-08 | |||
The second LIM domain of Lmx1a and Lmx1b; The second LIM domain of Lmx1a and Lmx1b: Lmx1a and Lmx1b belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Mouse Lmx1a is expressed in multiple tissues, including the roof plate of the neural tube, the developing brain, the otic vesicles, the notochord, and the pancreas. In mouse, mutations in Lmx1a result in failure of the roof plate to develop. Lmx1a may act upstream of other roof plate markers such as MafB, Gdf7, Bmp6, and Bmp7. Further characterization of these mice reveals numerous defects including disorganized cerebellum, hippocampus, and cortex; altered pigmentation; female sterility, skeletal defects, and behavioral abnormalities. In the mouse, Lmx1b functions in the developing limbs and eyes, the kidneys, the brain, and in cranial mesenchyme. The disruption of Lmx1b gene results kidney and limb defects. In the brain, Lmx1b is important for generation of mesencephalic dopamine neurons and the differentiation of serotonergic neurons. In the mouse eye, Lmx1b regulates anterior segment (cornea, iris, ciliary body, trabecular meshwork, and lens) development. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188764 Cd Length: 55 Bit Score: 49.75 E-value: 2.41e-08
|
|||||||
LIM1_LIMK2 | cd09463 | The first LIM domain of LIMK2 (LIM domain Kinase 2); The first LIM domain of LIMK2 (LIM domain ... |
42-95 | 3.68e-08 | |||
The first LIM domain of LIMK2 (LIM domain Kinase 2); The first LIM domain of LIMK2 (LIM domain Kinase 2): LIMK2 is a member of the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, altering the rate of actin depolymerization. LIMK activity is activated by phosphorylation of a threonine residue within the activation loop of the kinase by p21-activated kinases 1 and 4 and by Rho kinase. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK2 is expressed in all tissues. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The activity of LIM kinase 2 to regulate cofilin phosphorylation is inhibited by the direct binding of Par-3. LIMK2 activation promotes cell cycle progression. The phenotype of Limk2 knockout mice shows a defect in spermatogenesis. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188847 [Multi-domain] Cd Length: 53 Bit Score: 49.10 E-value: 3.68e-08
|
|||||||
LIM | smart00132 | Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM ... |
42-94 | 6.79e-08 | |||
Zinc-binding domain present in Lin-11, Isl-1, Mec-3; Zinc-binding domain family. Some LIM domains bind protein partners via tyrosine-containing motifs. LIM domains are found in many key regulators of developmental pathways. Pssm-ID: 214528 [Multi-domain] Cd Length: 54 Bit Score: 48.53 E-value: 6.79e-08
|
|||||||
LIM1_Lhx9 | cd09470 | The first LIM domain of Lhx9; The first LIM domain of Lhx9: Lhx9 belongs to the LHX protein ... |
42-95 | 7.60e-08 | |||
The first LIM domain of Lhx9; The first LIM domain of Lhx9: Lhx9 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx9 is highly homologous to Lhx2. It is expressed in several regions of the developing mouse brain, the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice have reduced levels of the Sf1 nuclear receptor that is required for gonadogenesis, and recent studies have shown that Lhx9 is able to activate the Sf1/FtzF1 gene. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188854 Cd Length: 54 Bit Score: 48.12 E-value: 7.60e-08
|
|||||||
LIM2_AWH | cd09379 | The second LIM domain of Arrowhead (AWH); The second LIM domain of Arrowhead (AWH): Arrowhead ... |
103-157 | 1.70e-07 | |||
The second LIM domain of Arrowhead (AWH); The second LIM domain of Arrowhead (AWH): Arrowhead belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. During embryogenesis of Drosophila, Arrowhead is expressed in each abdominal segment and in the labial segment. Late in embryonic development, expression of arrowhead is refined to the abdominal histoblasts and salivary gland imaginal ring cells themselves. The Arrowhead gene required for establishment of a subset of imaginal tissues: the abdominal histoblasts and the salivary gland imaginal rings. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188765 Cd Length: 55 Bit Score: 47.42 E-value: 1.70e-07
|
|||||||
LIM1_Lhx1_Lhx5 | cd09367 | The first LIM domain of Lhx1 (also known as Lim1) and Lhx5; The first LIM domain of Lhx1 (also ... |
42-94 | 1.80e-07 | |||
The first LIM domain of Lhx1 (also known as Lim1) and Lhx5; The first LIM domain of Lhx1 (also known as Lim1) and Lhx5. Lhx1 and Lhx5 are closely related members of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx1 is required for regulating the vertebrate head organizer, the nervous system, and female reproductive tract development. During embryogenesis in the mouse, Lhx1 is expressed early in mesodermal tissue, then later during urogenital, kidney, liver, and nervous system development. In the adult, expression is restricted to the kidney and brain. A mouse embryos with Lhx1 gene knockout cannot grow normal anterior head structures, kidneys, and gonads, but with normally developed trunk and tail morphology. In the developing nervous system, Lhx1 is required to direct the trajectories of motor axons in the limb. Lhx1 null female mice lack the oviducts and uterus. Lhx5 protein may play complementary or overlapping roles with Lhx1. The expression of Lhx5 in the anterior portion of the mouse neural tube suggests a role in patterning of the forebrain. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188753 [Multi-domain] Cd Length: 52 Bit Score: 47.04 E-value: 1.80e-07
|
|||||||
LIM1_Lhx7_Lhx8 | cd09381 | The first LIM domain of Lhx7 and Lhx8; The first LIM domain of Lhx7 and Lhx8: Lhx7 and Lhx8 ... |
41-95 | 2.56e-07 | |||
The first LIM domain of Lhx7 and Lhx8; The first LIM domain of Lhx7 and Lhx8: Lhx7 and Lhx8 belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Studies using mutant mice have revealed roles for Lhx7 and Lhx8 in the development of cholinergic neurons in the telencephalon and in basal forebrain development. Mice lacking alleles of the LIM-homeobox gene Lhx7 or Lhx8 display dramatically reduced number of forebrain cholinergic neurons. In addition, Lhx7 mutation affects male and female mice differently, with females appearing more affected than males. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188767 [Multi-domain] Cd Length: 56 Bit Score: 46.89 E-value: 2.56e-07
|
|||||||
LIM1_Lmx1a | cd09370 | The first LIM domain of Lmx1a; The first LIM domain of Lmx1a: Lmx1a belongs to the LHX protein ... |
42-95 | 2.66e-07 | |||
The first LIM domain of Lmx1a; The first LIM domain of Lmx1a: Lmx1a belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Mouse Lmx1a is expressed in multiple tissues, including the roof plate of the neural tube, the developing brain, the otic vesicles, the notochord, and the pancreas. Human Lmx1a can be found in pancreas, skeletal muscle, adipose tissue, developing brain, mammary glands, and pituitary. The functions of Lmx1a in the developing nervous system were revealed by studies of mutant mouse. In mouse, mutations in Lmx1a result in failure of the roof plate to develop. Lmx1a may act upstream of other roof plate markers such as MafB, Gdf7, Bmp 6, and Bmp7. Further characterization of these mice reveals numerous defects including disorganized cerebellum, hippocampus, and cortex; altered pigmentation; female sterility; skeletal defects; and behavioral abnormalities. Within pancreatic cells, the Lmx1a protein interacts synergistically with the bHLH transcription factor E47 to activate the insulin gene enhancer/promoter. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188756 [Multi-domain] Cd Length: 52 Bit Score: 46.69 E-value: 2.66e-07
|
|||||||
LIM2_LMO4 | cd09387 | The second LIM domain of LMO4 (LIM domain only protein 4); The second LIM domain of LMO4 (LIM ... |
103-156 | 3.32e-07 | |||
The second LIM domain of LMO4 (LIM domain only protein 4); The second LIM domain of LMO4 (LIM domain only protein 4): LMO4 is a nuclear protein that plays important roles in transcriptional regulation and development. LMO4 is involved in various functions in tumorigenesis and cellular differentiation. LMO4 proteins regulate gene expression by interacting with a wide variety of transcription factors and cofactors to form large transcription complexes. It can interact with Smad proteins, and associate with the promoter of the PAI-1 (plasminogen activator inhibitor-1) gene in a TGFbeta (transforming growth factor beta)-dependent manner. LMO4 can also form a complex with transcription regulator CREB (cAMP response element-binding protein) and interact with CLIM1 and CLIM2. In breast tissue, LMO4 interacts with multiple proteins, including the cofactor CtIP [CtBP (C-terminal binding protein)-interacting protein], the breast and ovarian tumor suppressor BRCA1 (breast-cancer susceptibility gene 1) and the LIM-domain-binding protein LDB1. Functionally, LMO4 is shown to repress BRCA1-mediated transcription activation, thus invoking a potential role for LMO4 as a negative regulator of BRCA1 in sporadic breast cancer. LMO4 also forms complex to both ERa (oestrogen receptor alpha), MTA1 (metastasis tumor antigen 1), and HDACs (histone deacetylases), implying that LMO4 is also a component of the MTA1 corepressor complex. Over-expressed LMO4 represses ERa transactivation functions in an HDAC-dependent manner, and contributes to the process of breast cancer progression by allowing the development of Era-negative phenotypes. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188773 Cd Length: 55 Bit Score: 46.32 E-value: 3.32e-07
|
|||||||
LIM | cd08368 | LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains ... |
103-157 | 6.54e-07 | |||
LIM is a small protein-protein interaction domain, containing two zinc fingers; LIM domains are identified in a diverse group of proteins with wide variety of biological functions, including gene expression regulation, cell fate determination, cytoskeleton organization, tumor formation and development. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. They perform their functions through interactions with other protein partners. LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. The consensus sequence of LIM domain has been defined as C-x(2)-C-x(16,23)-H-x(2)-[CH]-x(2)-C-x(2)-C-x(16,21)-C-x(2,3)-[CHD] (where X denotes any amino acid). Pssm-ID: 259829 [Multi-domain] Cd Length: 53 Bit Score: 45.77 E-value: 6.54e-07
|
|||||||
LIM1_Lhx6 | cd09380 | The first LIM domain of Lhx6; The first LIM domain of Lhx6. Lhx6 is a member of LHX protein ... |
42-95 | 8.88e-07 | |||
The first LIM domain of Lhx6; The first LIM domain of Lhx6. Lhx6 is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Lhx6 functions in the brain and nervous system. It is expressed at high levels in several regions of the embryonic mouse CNS, including the telencephalon and hypothalamus, and the first branchial arch. Lhx6 is proposed to have a role in patterning of the mandible and maxilla, and in signaling during odontogenesis. In brain sections, knockdown of Lhx6 gene blocks the normal migration of neurons to the cortex. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188766 [Multi-domain] Cd Length: 54 Bit Score: 45.40 E-value: 8.88e-07
|
|||||||
LIM1_LIMK | cd09364 | The first LIM domain of LIMK (LIM domain Kinase ); The first LIM domain of LIMK (LIM domain ... |
42-95 | 1.49e-06 | |||
The first LIM domain of LIMK (LIM domain Kinase ); The first LIM domain of LIMK (LIM domain Kinase ): LIMK protein family is comprised of two members LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerisation. LIMKs can function in both cytoplasm and nucleus and are expressed in all tissues. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. However, LIMK1 and LIMk2 have different cellular locations. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The LIM domains of LIMK have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188750 [Multi-domain] Cd Length: 53 Bit Score: 44.79 E-value: 1.49e-06
|
|||||||
LIM1_LMO1_LMO3 | cd09388 | The first LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3); The first LIM domain ... |
42-95 | 1.54e-06 | |||
The first LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3); The first LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3): LMO1 and LMO3 are highly homologous and belong to the LMO protein family. LMO1 and LMO3 are nuclear protein that plays important roles in transcriptional regulation and development. As LIM domains lack intrinsic DNA-binding activity, nuclear LMOs are involved in transcriptional regulation by forming complexes with other transcription factors or cofactors. For example, LMO1 interacts with the the bHLH domain of bHLH transcription factor, TAL1 (T-cell acute leukemia1)/SCL (stem cell leukemia) . LMO1 inhibits the expression of TAL1/SCL target genes. LMO3 facilitates p53 binding to its response elements, which suggests that LMO3 acts as a co-repressor of p53, suppressing p53-dependent transcriptional regulation. In addition, LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Another binding partner of LMO3 is calcium- and integrin-binding protein CIB, which binds via the second LIM domain (LIM2) of LMO3. One role of the CIB/LMO3 complex is to inhibit cell proliferation. Although LMO1 and LMO3 are highly homologous proteins, they play different roles in the regulation of the pituitary glycoprotein hormone alpha-subunit (alpha GSU) gene. Alpha GSU promoter activity was markedly repressed by LMO1 but activated by LMO3. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188774 Cd Length: 55 Bit Score: 44.46 E-value: 1.54e-06
|
|||||||
LIM2_Isl | cd09374 | The second LIM domain of Isl, a member of LHX protein family; The second LIM domain of Isl: ... |
103-157 | 1.74e-06 | |||
The second LIM domain of Isl, a member of LHX protein family; The second LIM domain of Isl: Isl is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Isl1 and Isl2 are the two conserved members of this family. Proteins in this group are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Isl-1 is one of the LHX proteins isolated originally by virtue of its ability to bind DNA sequences from the 5'-flanking region of the rat insulin gene in pancreatic insulin-producing cells. Mice deficient in Isl-1 fail to form the dorsal exocrine pancreas and islet cells fail to differentiate. On the other hand, Isl-1 takes part in the pituitary development by activating the gonadotropin-releasing hormone receptor gene together with LHX3 and steroidogenic factor 1. Mouse Isl2 is expressed in the retinal ganglion cells and the developing spinal cord where it plays a role in motor neuron development. Same as Isl1, Isl2 may also be able to bind to the insulin gene enhancer to promote gene activation. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188760 Cd Length: 55 Bit Score: 44.35 E-value: 1.74e-06
|
|||||||
LIM | pfam00412 | LIM domain; This family represents two copies of the LIM structural domain. |
103-158 | 2.08e-06 | |||
LIM domain; This family represents two copies of the LIM structural domain. Pssm-ID: 395333 [Multi-domain] Cd Length: 57 Bit Score: 44.25 E-value: 2.08e-06
|
|||||||
LIM2_Lhx3_Lhx4 | cd09376 | The second LIM domain of Lhx3-Lhx4 family; The second LIM domain of Lhx3-Lhx4 family: Lhx3 and ... |
103-157 | 3.91e-06 | |||
The second LIM domain of Lhx3-Lhx4 family; The second LIM domain of Lhx3-Lhx4 family: Lhx3 and Lhx4 belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Although LHX3 and LHX4 share marked sequence homology, the genes have different expression patterns. They play overlapping, but distinct functions during the establishment of the specialized cells of the mammalian pituitary gland and the nervous system. Lhx3 proteins have been demonstrated the ability to directly bind to the promoters/enhancers of several pituitary hormone gene promoters to cause increased transcription.Lhx3a and Lhx3b, whose mRNAs have distinct temporal expression profiles during development, are two isoforms of Lhx3. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188762 Cd Length: 56 Bit Score: 43.49 E-value: 3.91e-06
|
|||||||
LIM2_Lhx3b | cd09472 | The second LIM domain of Lhx3b; The second LIM domain of Lhx3b. Lhx3b is a member of LHX ... |
102-157 | 4.90e-06 | |||
The second LIM domain of Lhx3b; The second LIM domain of Lhx3b. Lhx3b is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx3b is one of the two isoforms of Lhx3. The Lhx3 gene is expressed in the ventral spinal cord, the pons, the medulla oblongata, and the pineal gland of the developing nervous system during mouse embryogenesis, and transcripts are found in the emergent pituitary gland. Lhx3 functions in concert with other transcription factors to specify interneuron and motor neuron fates during development. Lhx3 proteins have been demonstrated to directly bind to the promoters of several pituitary hormone gene promoters. The Lhx3 gene encodes two isoforms, LHX3a and LHX3b that differ in their amino-terminal sequences, where Lhx3a has longer N-terminal. They show differential activation of pituitary hormone genes and distinct DNA binding properties. In human, Lhx3a trans-activated the alpha-glycoprotein subunit promoter and genes containing a high-affinity Lhx3 binding site more effectively than the hLhx3b isoform. In addition, hLhx3a induce transcription of the TSHbeta-subunit gene by acting on pituitary POU domain factor, Pit-1, while hLhx3b does not. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein Pssm-ID: 188856 Cd Length: 57 Bit Score: 43.14 E-value: 4.90e-06
|
|||||||
LIM2_Lhx4 | cd09473 | The second LIM domain of Lhx4; The second LIM domain of Lhx4. Lhx4 belongs to the LHX protein ... |
103-157 | 8.61e-06 | |||
The second LIM domain of Lhx4; The second LIM domain of Lhx4. Lhx4 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. LHX4 plays essential roles in pituitary gland and nervous system development. In mice, the lhx4 gene is expressed in the developing hindbrain, cerebral cortex, pituitary gland, and spinal cord. LHX4 shows significant sequence similarity to LHX3, particularly to isoforms Lhx3a. In gene regulation experiments, the LHX4 protein exhibits regulation roles towards pituitary genes, acting on their promoters/enhancers. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188857 Cd Length: 56 Bit Score: 42.70 E-value: 8.61e-06
|
|||||||
LIM2_Lhx7_Lhx8 | cd09383 | The second LIM domain of Lhx7 and Lhx8; The second LIM domain of Lhx7 and Lhx8: Lhx7 and Lhx8 ... |
103-157 | 1.36e-05 | |||
The second LIM domain of Lhx7 and Lhx8; The second LIM domain of Lhx7 and Lhx8: Lhx7 and Lhx8 belong to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Studies using mutant mice have revealed roles for Lhx7 and Lhx8 in the development of cholinergic neurons in the telencephalon and in basal forebrain development. Mice lacking alleles of the LIM-homeobox gene Lhx7 or Lhx8 display dramatically reduced number of forebrain cholinergic neurons. In addition, Lhx7 mutation affects male and female mice differently, with females appearing more affected than males. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188769 Cd Length: 55 Bit Score: 41.95 E-value: 1.36e-05
|
|||||||
LIM2_Lhx6 | cd09382 | The second LIM domain of Lhx6; The second LIM domain of Lhx6. Lhx6 is a member of LHX protein ... |
103-157 | 3.69e-05 | |||
The second LIM domain of Lhx6; The second LIM domain of Lhx6. Lhx6 is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs such as the pituitary gland and the pancreas. Lhx6 functions in brain and nervous system. It is expressed at high levels in several regions of the embryonic mouse CNS, including the telencephalon and hypothalamus, and the first branchial arch. Lhx6 is proposed to have a role in patterning of the mandible and maxilla, and in signaling during odontogenesis. In brain sections, knockdown of Lhx6 gene blocks the normal migration of neurons to the cortex. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188768 Cd Length: 55 Bit Score: 40.84 E-value: 3.69e-05
|
|||||||
LIM2_Lhx2 | cd09474 | The second LIM domain of Lhx2; The second LIM domain of Lhx2: Lhx2 belongs to the LHX protein ... |
101-154 | 3.95e-05 | |||
The second LIM domain of Lhx2; The second LIM domain of Lhx2: Lhx2 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. In animals, Lhx2 plays important roles in eye, cerebral cortex, limb, the olfactory organs, and erythrocyte development. Lhx2 gene knockout mice exhibit impaired patterning of the cortical hem and the telencephalon of the developing brain, and a lack of development in olfactory structures. The Lhx2 protein has been shown to bind to the mouse M71 olfactory receptor promoter. Similar to other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188858 Cd Length: 59 Bit Score: 40.84 E-value: 3.95e-05
|
|||||||
LIM1_LMO2 | cd09384 | The first LIM domain of LMO2 (LIM domain only protein 2); The first LIM domain of LMO2 (LIM ... |
42-95 | 4.45e-05 | |||
The first LIM domain of LMO2 (LIM domain only protein 2); The first LIM domain of LMO2 (LIM domain only protein 2): LMO2 is a nuclear protein that plays important roles in transcriptional regulation and development. The two tandem LIM domains of LMO2 support the assembly of a crucial cell-regulatory complex by interacting with both the TAL1-E47 and GATA1 transcription factors to form a DNA-binding complex that is capable of transcriptional activation. LMOs have also been shown to be involved in oncogenesis. LMO1 and LMO2 are activated in T-cell acute lymphoblastic leukemia by distinct chromosomal translocations. LMO2 was also shown to be involved in erythropoiesis and is required for the hematopoiesis in the adult animals. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188770 Cd Length: 56 Bit Score: 40.60 E-value: 4.45e-05
|
|||||||
LIM2_dLMO | cd09390 | The second LIM domain of dLMO (Beaderx); The second LIM domain of dLMO (Beaderx): dLMO is a ... |
103-157 | 5.92e-05 | |||
The second LIM domain of dLMO (Beaderx); The second LIM domain of dLMO (Beaderx): dLMO is a nuclear protein that plays important roles in transcriptional regulation and development. In Drosophila dLMO modulates the activity of LIM-homeodomain protein Apterous (Ap), which regulates the formation of the dorsal-ventral axis of the Drosophila wing. Biochemical analysis shows that dLMO protein influences the activity of Apterous by binding of its cofactor Chip. Further studies shown that dLMO proteins might function in an evolutionarily conserved mechanism involved in patterning the appendages. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188776 Cd Length: 55 Bit Score: 40.23 E-value: 5.92e-05
|
|||||||
LIM2_Isl2 | cd09471 | The second LIM domain of Isl2; The second LIM domain of Isl2: Isl is a member of LHX protein ... |
103-157 | 7.21e-05 | |||
The second LIM domain of Isl2; The second LIM domain of Isl2: Isl is a member of LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Isl proteins are found in the nucleus and act as transcription factors or cofactors. Isl1 and Isl2 are the two conserved members of this family. Mouse Isl2 is expressed in the retinal ganglion cells and the developing spinal cord where it plays a role in motor neuron development. Isl2 may be able to bind to the insulin gene enhancer to promote gene activation. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188855 Cd Length: 55 Bit Score: 39.91 E-value: 7.21e-05
|
|||||||
Homeobox_KN | pfam05920 | Homeobox KN domain; This is a homeobox transcription factor KN domain conserved from fungi to ... |
211-238 | 1.04e-04 | |||
Homeobox KN domain; This is a homeobox transcription factor KN domain conserved from fungi to human and plants. They were first identified as TALE homeobox genes in eukaryotes, (including KNOX and MEIS genes). They have been recently classified. Pssm-ID: 428673 Cd Length: 39 Bit Score: 39.04 E-value: 1.04e-04
|
|||||||
LIM1_UF1 | cd09397 | LIM domain in proteins of unknown function; The first Lim domain of a LIM domain containing ... |
124-157 | 1.96e-04 | |||
LIM domain in proteins of unknown function; The first Lim domain of a LIM domain containing protein: The functions of the proteins are unknown. The members of this family contain two copies of LIM domain. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188783 [Multi-domain] Cd Length: 58 Bit Score: 38.78 E-value: 1.96e-04
|
|||||||
LIM2_Lhx9 | cd09475 | The second LIM domain of Lhx9; The second LIM domain of Lhx9: Lhx9 belongs to the LHX protein ... |
101-154 | 2.18e-04 | |||
The second LIM domain of Lhx9; The second LIM domain of Lhx9: Lhx9 belongs to the LHX protein family, which features two tandem N-terminal LIM domains and a C-terminal DNA binding homeodomain. Members of LHX family are found in the nucleus and act as transcription factors or cofactors. LHX proteins are critical for the development of specialized cells in multiple tissue types, including the nervous system, skeletal muscle, the heart, the kidneys, and endocrine organs, such as the pituitary gland and the pancreas. Lhx9 is highly homologous to Lhx2. It is expressed in several regions of the developing mouse brain, the spinal cord, the pancreas, in limb mesenchyme, and in the urogenital region. Lhx9 plays critical roles in gonad development. Homozygous mice lacking functional Lhx9 alleles exhibit numerous urogenital defects, such as gonadal agenesis, infertility, and undetectable levels of testosterone and estradiol coupled with high FSH levels. Lhx9 null mice have reduced levels of the Sf1 nuclear receptor that is required for gonadogenesis, and recent studies have shown that Lhx9 is able to activate the Sf1/FtzF1 gene. Lhx9 null mice are phenotypically female, even those that are genotypically male. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188859 Cd Length: 59 Bit Score: 38.53 E-value: 2.18e-04
|
|||||||
LIM2_Paxillin_like | cd09337 | The second LIM domain of the paxillin like protein family; The second LIM domain of the ... |
124-157 | 2.35e-04 | |||
The second LIM domain of the paxillin like protein family; The second LIM domain of the paxillin like protein family: This family consists of paxillin, leupaxin, Hic-5 (ARA55), and other related proteins. There are four LIM domains in the C-terminal of the proteins and leucine-rich LD-motifs in the N-terminal region. Members of this family are adaptor proteins to recruit key components of signal-transduction machinery to specific sub-cellular locations. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. Paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. Leupaxin is a cytoskeleton adaptor protein, which is preferentially expressed in hematopoietic cells. It associates with focal adhesion kinases PYK2 and pp125FAK and identified to be a component of the osteoclast pososomal signaling complex. Hic-5 controls cell proliferation, migration and senescence by functioning as coactivator for steroid receptors such as androgen receptor, glucocorticoid receptor and progesterone receptor. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188723 [Multi-domain] Cd Length: 52 Bit Score: 38.52 E-value: 2.35e-04
|
|||||||
LIM2_LMO4 | cd09387 | The second LIM domain of LMO4 (LIM domain only protein 4); The second LIM domain of LMO4 (LIM ... |
42-95 | 2.99e-04 | |||
The second LIM domain of LMO4 (LIM domain only protein 4); The second LIM domain of LMO4 (LIM domain only protein 4): LMO4 is a nuclear protein that plays important roles in transcriptional regulation and development. LMO4 is involved in various functions in tumorigenesis and cellular differentiation. LMO4 proteins regulate gene expression by interacting with a wide variety of transcription factors and cofactors to form large transcription complexes. It can interact with Smad proteins, and associate with the promoter of the PAI-1 (plasminogen activator inhibitor-1) gene in a TGFbeta (transforming growth factor beta)-dependent manner. LMO4 can also form a complex with transcription regulator CREB (cAMP response element-binding protein) and interact with CLIM1 and CLIM2. In breast tissue, LMO4 interacts with multiple proteins, including the cofactor CtIP [CtBP (C-terminal binding protein)-interacting protein], the breast and ovarian tumor suppressor BRCA1 (breast-cancer susceptibility gene 1) and the LIM-domain-binding protein LDB1. Functionally, LMO4 is shown to repress BRCA1-mediated transcription activation, thus invoking a potential role for LMO4 as a negative regulator of BRCA1 in sporadic breast cancer. LMO4 also forms complex to both ERa (oestrogen receptor alpha), MTA1 (metastasis tumor antigen 1), and HDACs (histone deacetylases), implying that LMO4 is also a component of the MTA1 corepressor complex. Over-expressed LMO4 represses ERa transactivation functions in an HDAC-dependent manner, and contributes to the process of breast cancer progression by allowing the development of Era-negative phenotypes. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188773 Cd Length: 55 Bit Score: 38.23 E-value: 2.99e-04
|
|||||||
LIM2_Ajuba_like | cd09355 | The second LIM domain of Ajuba-like proteins; The second LIM domain of Ajuba-like proteins: ... |
42-95 | 4.86e-04 | |||
The second LIM domain of Ajuba-like proteins; The second LIM domain of Ajuba-like proteins: Ajuba like LIM protein family includes three highly homologous proteins Ajuba, Limd1, and WTIP. Members of the family contain three tandem C-terminal LIM domains and a proline-rich N-terminal region. This family of proteins functions as scaffolds, participating in the assembly of numerous protein complexes. In the cytoplasm, Ajuba binds Grb2 to modulate serum-stimulated ERK activation. Ajuba also recruits the TNF receptor-associated factor 6 (TRAF6) to p62 and activates PKCKappa activity. Ajuba interacts with alpha-catenin and F-actin to contribute to the formation or stabilization of adheren junctions by linking adhesive receptors to the actin cytoskeleton. Although Ajuba is a cytoplasmic protein, it can shuttle into the nucleus. In nucleus, Ajuba functions as a corepressor for the zinc finger-protein Snail. It binds to the SNAG repression domain of Snail through its LIM region. Arginine methyltransferase-5 (Prmt5), a protein in the complex, is recruited to Snai l through an interaction with Ajuba. This ternary complex functions to repress E-cadherin, a Snail target gene. In addition, Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) to negatively regulate retinoic acid signaling. Wtip, the Wt1-interacting protein, was originally identified as an interaction partner of the Wilms tumour protein 1 (WT1). Wtip is involved in kidney and neural crest development. Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signaling. LIMD1 was reported to inhibit cell growth and metastases. The inhibition may be mediated through an interaction with the protein barrier-to-autointegration (BAF), a component of SWI/SNF chromatin-remodeling protein; or through the interaction with retinoblastoma protein (pRB), resulting in inhibition of E2F-mediated transcription, and expression of the majority of genes with E2F1- responsive elements. Recently, Limd1 was shown to interact with the p62/sequestosome protein and influence IL-1 and RANKL signaling by facilitating the assembly of a p62/TRAF6/a-PKC multi-protein complex. The Limd1-p62 interaction affects both NF-kappaB and AP-1 activity in epithelial cells and osteoclasts. Moreover, LIMD1 functions as tumor repressor to block lung tumor cell line in vitro and in vivo. Recent studies revealed that LIM proteins Wtip, LIMD1 and Ajuba interact with components of RNA induced silencing complexes (RISC) as well as eIF4E and the mRNA m7GTP cap-protein complex and are required for microRNA-mediated gene silencing. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188741 [Multi-domain] Cd Length: 53 Bit Score: 37.32 E-value: 4.86e-04
|
|||||||
LIM1_PINCH | cd09331 | The first LIM domain of protein PINCH; The first LIM domain of paxillin: Paxillin is an ... |
103-158 | 4.91e-04 | |||
The first LIM domain of protein PINCH; The first LIM domain of paxillin: Paxillin is an adaptor protein, which recruits key components of the signal-transduction machinery to specific sub-cellular locations to respond to environmental changes rapidly. The C-terminal region of paxillin contains four LIM domains which target paxillin to focal adhesions, presumably through a direct association with the cytoplasmic tail of beta-integrin. The N-terminal of paxillin is leucine-rich LD-motifs. Paxillin is found at the interface between the plasma membrane and the actin cytoskeleton. The binding partners of paxillin are diverse and include protein tyrosine kinases, such as Src and FAK, structural proteins, such as vinculin and actopaxin, and regulators of actin organization. Paxillin recruits these proteins to their function sites to control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188717 Cd Length: 59 Bit Score: 37.70 E-value: 4.91e-04
|
|||||||
LIM2_Enigma_like | cd09362 | The second LIM domain of Enigma-like family; The second LIM domain of Enigma-like family: The ... |
103-157 | 8.96e-04 | |||
The second LIM domain of Enigma-like family; The second LIM domain of Enigma-like family: The Enigma LIM domain family is comprised of three members: Enigma, ENH, and Cypher (mouse)/ZASP (human). These subfamily members contain a single PDZ domain at the N-terminus and three LIM domains at the C-terminus. Enigma was initially characterized in humans and is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. The second member, ENH protein, was first identified in rat brain. It has been shown that ENH interacts with protein kinase D1 (PKD1) via its LIM domains and forms a complex with PKD1 and the alpha1C subunit of cardiac L-type voltage-gated calcium channel in rat neonatal cardiomyocytes. The N-terminal PDZ domain interacts with alpha-actinin at the Z-line. ZASP/Cypher is required for maintenance of Z-line structure during muscle contraction, but not required for Z-line assembly. In heart, Cypher/ZASP plays a structural role through its interaction with cytoskeletal Z-line proteins. In addition, there is increasing evidence that Cypher/ZASP also performs signaling functions. Studies reveal that Cypher/ZASP interacts with and directs PKC to the Z-line, where PKC phosphorylates downstream signaling targets. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188748 [Multi-domain] Cd Length: 52 Bit Score: 36.69 E-value: 8.96e-04
|
|||||||
LIM2_LMO2 | cd09385 | The second LIM domain of LMO2 (LIM domain only protein 2); The second LIM domain of LMO2 (LIM ... |
103-156 | 1.36e-03 | |||
The second LIM domain of LMO2 (LIM domain only protein 2); The second LIM domain of LMO2 (LIM domain only protein 2): LMO2 is a nuclear protein that plays important roles in transcriptional regulation and development. The two tandem LIM domains of LMO2 support the assembly of a crucial cell-regulatory complex by interacting with both the TAL1-E47 and GATA1 transcription factors to form a DNA-binding complex that is capable of transcriptional activation. LMOs have also been shown to be involved in oncogenesis. LMO1 and LMO2 are activated in T-cell acute lymphoblastic leukemia by distinct chromosomal translocations. LMO2 was also shown to be involved in erythropoiesis and is required for the hematopoiesis in the adult animals. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188771 Cd Length: 56 Bit Score: 36.53 E-value: 1.36e-03
|
|||||||
LIM1_Ajuba_like | cd09352 | The first LIM domain of Ajuba-like proteins; The first LIM domain of Ajuba-like proteins: ... |
124-157 | 1.70e-03 | |||
The first LIM domain of Ajuba-like proteins; The first LIM domain of Ajuba-like proteins: Ajuba like LIM protein family includes three highly homologous proteins Ajuba, Limd1, and WTIP. Members of the family contain three tandem C-terminal LIM domains and a proline-rich N-terminal region. This family of proteins functions as scaffolds, participating in the assembly of numerous protein complexes. In the cytoplasm, Ajuba binds Grb2 to modulate serum-stimulated ERK activation. Ajuba also recruits the TNF receptor-associated factor 6 (TRAF6) to p62 and activates PKCKappa activity. Ajuba interacts with alpha-catenin and F-actin to contribute to the formation or stabilization of adheren junctions by linking adhesive receptors to the actin cytoskeleton. Although Ajuba is a cytoplasmic protein, it can shuttle into the nucleus. In nucleus, Ajuba functions as a corepressor for the zinc finger-protein Snail. It binds to the SNAG repression domain of Snail through its LIM region. Arginine methyltransferase-5 (Prmt5), a protein in the complex, is recruited to Snai l through an interaction with Ajuba. This ternary complex functions to repress E-cadherin, a Snail target gene. In addition, Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) to negatively regulate retinoic acid signaling. Wtip, the Wt1-interacting protein, was originally identified as an interaction partner of the Wilms tumour protein 1 (WT1). Wtip is involved in kidney and neural crest development. Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signaling. LIMD1 was reported to inhibit cell growth and metastases. The inhibition may be mediated through an interaction with the protein barrier-to-autointegration (BAF), a component of SWI/SNF chromatin-remodeling protein; or through the interaction with retinoblastoma protein (pRB), resulting in inhibition of E2F-mediated transcription, and expression of the majority of genes with E2F1- responsive elements. Recently, Limd1 was shown to interact with the p62/sequestosome protein and influence IL-1 and RANKL signaling by facilitating the assembly of a p62/TRAF6/a-PKC multi-protein complex. The Limd1-p62 interaction affects both NF-kappaB and AP-1 activity in epithelial cells and osteoclasts. Moreover, LIMD1 functions as tumor repressor to block lung tumor cell line in vitro and in vivo. Recent studies revealed that LIM proteins Wtip, LIMD1 and Ajuba interact with components of RNA induced silencing complexes (RISC) as well as eIF4E and the mRNA m7GTP cap-protein complex and are required for microRNA-mediated gene silencing. As in other LIM domains, this domain family is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188738 Cd Length: 54 Bit Score: 35.87 E-value: 1.70e-03
|
|||||||
LIM1_LIMK | cd09364 | The first LIM domain of LIMK (LIM domain Kinase ); The first LIM domain of LIMK (LIM domain ... |
103-157 | 1.85e-03 | |||
The first LIM domain of LIMK (LIM domain Kinase ); The first LIM domain of LIMK (LIM domain Kinase ): LIMK protein family is comprised of two members LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerisation. LIMKs can function in both cytoplasm and nucleus and are expressed in all tissues. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. However, LIMK1 and LIMk2 have different cellular locations. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. The LIM domains of LIMK have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188750 [Multi-domain] Cd Length: 53 Bit Score: 35.93 E-value: 1.85e-03
|
|||||||
LIM2_abLIM | cd09328 | The second LIM domain on actin binding LIM (abLIM) proteins; The second LIM domain of actin ... |
100-153 | 2.75e-03 | |||
The second LIM domain on actin binding LIM (abLIM) proteins; The second LIM domain of actin binding LIM (abLIM) proteins: Three homologous members of the abLIM protein family have been identified; abLIM-1, abLIM-2 and abLIM-3. The N-terminal of abLIM consists of four tandem repeats of LIM domains and the C-terminal of acting binding LIM protein is a villin headpiece domain, which has strong actin binding activity. The abLIM-1, which is expressed in retina, brain, and muscle tissue, has been indicated to function as a tumor suppressor. AbLIM-2 and -3, mainly expressed in muscle and neuronal tissue, bind to F-actin strongly. They may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription. It has shown that LIM domains of abLIMs interact with STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. All LIM domains are 50-60 amino acids in size and share two characteristic highly conserved zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188714 Cd Length: 56 Bit Score: 35.40 E-value: 2.75e-03
|
|||||||
LIM2_Lrg1p_like | cd09392 | The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein; The second LIM ... |
124-157 | 3.35e-03 | |||
The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein; The second LIM domain of Lrg1p, a LIM and RhoGap domain containing protein: The members of this family contain three tandem repeats of LIM domains and a Rho-type GTPase activating protein (RhoGap) domain. Lrg1p is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Lrg1p-GAP domain strongly and specifically stimulates the GTPase activity of Rho1p, a regulator of beta (1-3)-glucan synthase in vitro. The LIM domain is 50-60 amino acids in size and shares two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188778 [Multi-domain] Cd Length: 53 Bit Score: 35.03 E-value: 3.35e-03
|
|||||||
LIM2_Enigma | cd09456 | The second LIM domain of Enigma; The second LIM domain of Enigma: Enigma was initially ... |
103-157 | 3.56e-03 | |||
The second LIM domain of Enigma; The second LIM domain of Enigma: Enigma was initially characterized in humans as a protein containing three LIM domains at the C-terminus and a PDZ domain at N-terminus. The third LIM domain specifically interacts with the insulin receptor and the second LIM domain interacts with the receptor tyrosine kinase Ret and the adaptor protein APS. Thus Enigma is implicated in signal transduction processes, such as mitogenic activity, insulin related actin organization, and glucose metabolism. Enigma is expressed in multiple tissues, such as skeletal muscle, heart, bone and brain. LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188840 [Multi-domain] Cd Length: 52 Bit Score: 34.97 E-value: 3.56e-03
|
|||||||
LIM2_FBLP-1 | cd09372 | The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1); The second LIM domain of ... |
103-157 | 4.56e-03 | |||
The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1); The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1): Fblp-1 contains a proline-rich domain near its N terminus and two LIM domains at its C terminus. FBLP-1 mRNA was detected in a variety of tissues and cells including platelets and endothelial cells. FBLP-1 binds to Filamins. The association between filamin B and FBLP-1 may play an unknown role in cytoskeletal function, cell adhesion, and cell motility. As in other LIM domains, this domain family is 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188758 [Multi-domain] Cd Length: 53 Bit Score: 34.71 E-value: 4.56e-03
|
|||||||
LIM1_LIMK1 | cd09462 | The first LIM domain of LIMK1 (LIM domain Kinase 1); The first LIM domain of LIMK1 (LIM domain ... |
124-157 | 5.20e-03 | |||
The first LIM domain of LIMK1 (LIM domain Kinase 1); The first LIM domain of LIMK1 (LIM domain Kinase 1): LIMK1 belongs to the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerization. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK1 is expressed in all tissues and is localized to focal adhesions in the cell. LIMK1 can form homodimers upon binding of HSP90 and is activated by Rho effector Rho kinase and MAPKAPK2. LIMK1 is important for normal central nervous system development, and its deletion has been implicated in the development of the human genetic disorder Williams syndrome. Moreover, LIMK1 up-regulates the promoter activity of urokinase type plasminogen activator and induces its mRNA and protein expression in breast cancer cells. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188846 [Multi-domain] Cd Length: 74 Bit Score: 35.25 E-value: 5.20e-03
|
|||||||
LIM2_LMO1_LMO3 | cd09389 | The second LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3); The second LIM ... |
103-157 | 6.26e-03 | |||
The second LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3); The second LIM domain of LMO1 and LMO3 (LIM domain only protein 1 and 3): LMO1 and LMO3 are highly homologous and belong to the LMO protein family. LMO1 and LMO3 are nuclear protein that plays important roles in transcriptional regulation and development. As LIM domains lack intrinsic DNA-binding activity, nuclear LMOs are involved in transcriptional regulation by forming complexes with other transcription factors or cofactors. For example, LMO1 interacts with the the bHLH domain of bHLH transcription factor, TAL1 (T-cell acute leukemia1)/SCL (stem cell leukemia) . LMO1 inhibits the expression of TAL1/SCL target genes. LMO3 facilitates p53 binding to its response elements, which suggests that LMO3 acts as a co-repressor of p53, suppressing p53-dependent transcriptional regulation. In addition, LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Another binding partner of LMO3 is calcium- and integrin-binding protein CIB, which binds via the second LIM domain (LIM2) of LMO3. One role of the CIB/LMO3 complex is to inhibit cell proliferation. Although LMO1 and LMO3 are highly homologous proteins, they play different roles in the regulation of the pituitary glycoprotein hormone alpha-subunit (alpha GSU) gene. Alpha GSU promoter activity was markedly repressed by LMO1 but activated by LMO3. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188775 Cd Length: 55 Bit Score: 34.63 E-value: 6.26e-03
|
|||||||
LIM1_LIMK1 | cd09462 | The first LIM domain of LIMK1 (LIM domain Kinase 1); The first LIM domain of LIMK1 (LIM domain ... |
41-95 | 6.65e-03 | |||
The first LIM domain of LIMK1 (LIM domain Kinase 1); The first LIM domain of LIMK1 (LIM domain Kinase 1): LIMK1 belongs to the LIMK protein family, which comprises LIMK1 and LIMK2. LIMK contains two LIM domains, a PDZ domain, and a kinase domain. LIMK is involved in the regulation of actin polymerization and microtubule disassembly. LIMK influences architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2, and destrin. The mechanism of the activation is to phosphorylates cofilin on serine 3 and inactivates its actin-severing activity, and altering the rate of actin depolymerization. LIMKs can function in both cytoplasm and nucleus. Both LIMK1 and LIMK2 can act in the nucleus to suppress Rac/Cdc42-dependent cyclin D1 expression. LIMK1 is expressed in all tissues and is localized to focal adhesions in the cell. LIMK1 can form homodimers upon binding of HSP90 and is activated by Rho effector Rho kinase and MAPKAPK2. LIMK1 is important for normal central nervous system development, and its deletion has been implicated in the development of the human genetic disorder Williams syndrome. Moreover, LIMK1 up-regulates the promoter activity of urokinase type plasminogen activator and induces its mRNA and protein expression in breast cancer cells. The LIM domains have been shown to play an important role in regulating kinase activity and likely also contribute to LIMK function by acting as sites of protein-to-protein interactions. All LIM domains are 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein complexes. Pssm-ID: 188846 [Multi-domain] Cd Length: 74 Bit Score: 34.86 E-value: 6.65e-03
|
|||||||
LIM2_FBLP-1 | cd09372 | The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1); The second LIM domain of ... |
42-94 | 8.24e-03 | |||
The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1); The second LIM domain of the filamin-binding LIM protein-1 (FBLP-1): Fblp-1 contains a proline-rich domain near its N terminus and two LIM domains at its C terminus. FBLP-1 mRNA was detected in a variety of tissues and cells including platelets and endothelial cells. FBLP-1 binds to Filamins. The association between filamin B and FBLP-1 may play an unknown role in cytoskeletal function, cell adhesion, and cell motility. As in other LIM domains, this domain family is 50-60 amino acids in size and share two characteristic zinc finger motifs. The two zinc fingers contain eight conserved residues, mostly cysteines and histidines, which coordinately bond to two zinc atoms. LIM domains function as adaptors or scaffolds to support the assembly of multimeric protein. Pssm-ID: 188758 [Multi-domain] Cd Length: 53 Bit Score: 33.94 E-value: 8.24e-03
|
|||||||
Blast search parameters | ||||
|