NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|762006021|ref|NP_001292118|]
View 

pleckstrin homology domain-containing family A member 7 isoform 4 [Mus musculus]

Protein Classification

PEPP family PH domain-containing protein( domain architecture ID 10192544)

PEPP (phosphoinositol 3-phosphate-binding protein) family PH (pleckstrin homology) domain-containing protein similar to PH domain region of vertebrate pleckstrin homology domain-containing family A member 7 (PLEKHA7) that is required for zonula adherens biogenesis and maintenance

CATH:  2.30.29.30
Gene Ontology:  GO:0005515
SCOP:  4002395

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
53-175 8.82e-58

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270068  Cd Length: 104  Bit Score: 193.64  E-value: 8.82e-58
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   53 RNLNVPVVVRGWLHKQDSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKAvhtgm 132
Cdd:cd13248     1 RDPNAPVVMSGWLHKQGGSGLKNWRKRWFVLKDNCLYYYKDPEEEKALGSILLPSYTISPAPPSDEISRKFAFKA----- 75
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 762006021  133 raliystttagsqmEHSGMRTYYFSADTLEDMNAWVRAMNQAA 175
Cdd:cd13248    76 --------------EHANMRTYYFAADTAEEMEQWMNAMSLAA 104
PHA03247 super family cl33720
large tegument protein UL36; Provisional
731-837 2.08e-06

large tegument protein UL36; Provisional


The actual alignment was detected with superfamily member PHA03247:

Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 52.25  E-value: 2.08e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  731 PERKTVPLFPHPSVPSLSPTESKPAlQPSPPTSPVRTPL----------EVRLFPQLQTYVPY---RPHPPQLRKVMSPL 797
Cdd:PHA03247 2813 APAAALPPAASPAGPLPPPTSAQPT-APPPPPGPPPPSLplggsvapggDVRRRPPSRSPAAKpaaPARPPVRRLARPAV 2891
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|
gi 762006021  798 QSPTKAKPQAEDEaPPRPPLPELYSPEDQPPAVPPLPREA 837
Cdd:PHA03247 2892 SRSTESFALPPDQ-PERPPQPQAPPPPQPQPQPPPPPQPQ 2930
CCDC90-like super family cl06708
Coiled-coil domain-containing protein 90-like; This entry includes coiled-coil ...
604-704 1.09e-04

Coiled-coil domain-containing protein 90-like; This entry includes coiled-coil domain-containing proteins 90 (CCDC90) and related proteins. CCDC90A is a key regulator of the mitochondrial calcium uniporter (MCU) and hence was renamed MCUR1. A study in mammals and in yeast homolog fmp32 has reported that MCUR1 is a cytochrome c oxidase assembly factor and that it has an indirect role as a regulator of MCU, however, subsequent publications confirmed the function of MCUR1 as a regulator of MCU. The role of CCDC90B proteins is still not known.


The actual alignment was detected with superfamily member pfam07798:

Pssm-ID: 462268 [Multi-domain]  Cd Length: 175  Bit Score: 44.04  E-value: 1.09e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   604 IRALKEN---KDQLESVLEVLHRQTEQ-----YRD--QPQHLEKITCQQRllqEDLVHIRAEL-CRESTEMENAWNEYLK 672
Cdd:pfam07798    7 VRQLEEAgftEEQAEAIMKALRDLLNDslenvSKDlvTKEDLENETYLQK---ADLAELRSELqILEKSEFAALRSENEK 83
                           90       100       110
                   ....*....|....*....|....*....|..
gi 762006021   673 LEKDVEQLKQTLQEQHRRAfffqeKSQIQKDL 704
Cdd:pfam07798   84 LRRELEKLKQRLREEITKL-----KADVRLDL 110
PRK10263 super family cl35903
DNA translocase FtsK; Provisional
740-946 6.54e-03

DNA translocase FtsK; Provisional


The actual alignment was detected with superfamily member PRK10263:

Pssm-ID: 236669 [Multi-domain]  Cd Length: 1355  Bit Score: 40.45  E-value: 6.54e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  740 PHPSVPSLSPTESKPALQPSPPTSPVRTPLEVRLfPQLQTYVPYRPHPPQLRKVMSPLQSPTKAKP-QAEDEAPPRPPLP 818
Cdd:PRK10263  382 QQSQYAQPAVQYNEPLQQPVQPQQPYYAPAAEQP-AQQPYYAPAPEQPAQQPYYAPAPEQPVAGNAwQAEEQQSTFAPQS 460
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  819 --ELYSPEDQPPAVPPLPREATIIRHTSVRGLKRQSDERKRDREQGQCVNgdlKVELRSYVSEPELASLSGDVPQPSLSL 896
Cdd:PRK10263  461 tyQTEQTYQQPAAQEPLYQQPQPVEQQPVVEPEPVVEETKPARPPLYYFE---EVEEKRAREREQLAAWYQPIPEPVKEP 537
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|.
gi 762006021  897 VGSESRYQTLPGRGLSGSTSrlqqSSTIAPYVT-LRRGLNAENSSATFSRP 946
Cdd:PRK10263  538 EPIKSSLKAPSVAAVPPVEA----AAAVSPLASgVKKATLATGAAATVAAP 584
 
Name Accession Description Interval E-value
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
53-175 8.82e-58

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 193.64  E-value: 8.82e-58
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   53 RNLNVPVVVRGWLHKQDSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKAvhtgm 132
Cdd:cd13248     1 RDPNAPVVMSGWLHKQGGSGLKNWRKRWFVLKDNCLYYYKDPEEEKALGSILLPSYTISPAPPSDEISRKFAFKA----- 75
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 762006021  133 raliystttagsqmEHSGMRTYYFSADTLEDMNAWVRAMNQAA 175
Cdd:cd13248    76 --------------EHANMRTYYFAADTAEEMEQWMNAMSLAA 104
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
59-176 4.61e-20

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 86.06  E-value: 4.61e-20
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021     59 VVVRGWLHKQDSSGMRLWKRRWFVLADYCLFYYKDSREE---AVLGSIPLPSYVISPVAPEDRISRKYSFKaVHTGMRal 135
Cdd:smart00233    1 VIKEGWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKDKksyKPKGSIDLSGCTVREAPDPDSSKKPHCFE-IKTSDR-- 77
                            90       100       110       120
                    ....*....|....*....|....*....|....*....|.
gi 762006021    136 iystttagsqmehsgmRTYYFSADTLEDMNAWVRAMNQAAQ 176
Cdd:smart00233   78 ----------------KTLLLQAESEEEREKWVEALRKAIA 102
PH pfam00169
PH domain; PH stands for pleckstrin homology.
59-174 2.55e-19

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 84.15  E-value: 2.55e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021    59 VVVRGWLHKQDSSGMRLWKRRWFVLADYCLFYYKDS---REEAVLGSIPLPSYVISPVAPEDRISRKYSFKaVHTGMRal 135
Cdd:pfam00169    1 VVKEGWLLKKGGGKKKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVEVVASDSPKRKFCFE-LRTGER-- 77
                           90       100       110
                   ....*....|....*....|....*....|....*....
gi 762006021   136 iystttagsqmehSGMRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:pfam00169   78 -------------TGKRTYLLQAESEEERKDWIKAIQSA 103
PHA03247 PHA03247
large tegument protein UL36; Provisional
731-837 2.08e-06

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 52.25  E-value: 2.08e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  731 PERKTVPLFPHPSVPSLSPTESKPAlQPSPPTSPVRTPL----------EVRLFPQLQTYVPY---RPHPPQLRKVMSPL 797
Cdd:PHA03247 2813 APAAALPPAASPAGPLPPPTSAQPT-APPPPPGPPPPSLplggsvapggDVRRRPPSRSPAAKpaaPARPPVRRLARPAV 2891
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|
gi 762006021  798 QSPTKAKPQAEDEaPPRPPLPELYSPEDQPPAVPPLPREA 837
Cdd:PHA03247 2892 SRSTESFALPPDQ-PERPPQPQAPPPPQPQPQPPPPPQPQ 2930
Amelogenin smart00818
Amelogenins, cell adhesion proteins, play a role in the biomineralisation of teeth; They seem ...
737-837 6.59e-05

Amelogenins, cell adhesion proteins, play a role in the biomineralisation of teeth; They seem to regulate formation of crystallites during the secretory stage of tooth enamel development and are thought to play a major role in the structural organisation and mineralisation of developing enamel. The extracellular matrix of the developing enamel comprises two major classes of protein: the hydrophobic amelogenins and the acidic enamelins. Circular dichroism studies of porcine amelogenin have shown that the protein consists of 3 discrete folding units: the N-terminal region appears to contain beta-strand structures, while the C-terminal region displays characteristics of a random coil conformation. Subsequent studies on the bovine protein have indicated the amelogenin structure to contain a repetitive beta-turn segment and a "beta-spiral" between Gln112 and Leu138, which sequester a (Pro, Leu, Gln) rich region. The beta-spiral offers a probable site for interactions with Ca2+ ions. Muatations in the human amelogenin gene (AMGX) cause X-linked hypoplastic amelogenesis imperfecta, a disease characterised by defective enamel. A 9bp deletion in exon 2 of AMGX results in the loss of codons for Ile5, Leu6, Phe7 and Ala8, and replacement by a new threonine codon, disrupting the 16-residue (Met1-Ala16) amelogenin signal peptide.


Pssm-ID: 197891 [Multi-domain]  Cd Length: 165  Bit Score: 44.40  E-value: 6.59e-05
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021    737 PLFPHPSVPSLSPTESKPALQPSPPTSP----VRTPLEVRLFPQLQTYvPYRPHPPQLRKVMSPLQSPTKAKPQaeDEAP 812
Cdd:smart00818   51 TLQPHHHIPVLPAQQPVVPQQPLMPVPGqhsmTPTQHHQPNLPQPAQQ-PFQPQPLQPPQPQQPMQPQPPVHPI--PPLP 127
                            90       100
                    ....*....|....*....|....*
gi 762006021    813 PRPPLPELYSPEDQPPAVPPLPREA 837
Cdd:smart00818  128 PQPPLPPMFPMQPLPPLLPDLPLEA 152
CCDC90-like pfam07798
Coiled-coil domain-containing protein 90-like; This entry includes coiled-coil ...
604-704 1.09e-04

Coiled-coil domain-containing protein 90-like; This entry includes coiled-coil domain-containing proteins 90 (CCDC90) and related proteins. CCDC90A is a key regulator of the mitochondrial calcium uniporter (MCU) and hence was renamed MCUR1. A study in mammals and in yeast homolog fmp32 has reported that MCUR1 is a cytochrome c oxidase assembly factor and that it has an indirect role as a regulator of MCU, however, subsequent publications confirmed the function of MCUR1 as a regulator of MCU. The role of CCDC90B proteins is still not known.


Pssm-ID: 462268 [Multi-domain]  Cd Length: 175  Bit Score: 44.04  E-value: 1.09e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   604 IRALKEN---KDQLESVLEVLHRQTEQ-----YRD--QPQHLEKITCQQRllqEDLVHIRAEL-CRESTEMENAWNEYLK 672
Cdd:pfam07798    7 VRQLEEAgftEEQAEAIMKALRDLLNDslenvSKDlvTKEDLENETYLQK---ADLAELRSELqILEKSEFAALRSENEK 83
                           90       100       110
                   ....*....|....*....|....*....|..
gi 762006021   673 LEKDVEQLKQTLQEQHRRAfffqeKSQIQKDL 704
Cdd:pfam07798   84 LRRELEKLKQRLREEITKL-----KADVRLDL 110
YhaN COG4717
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown];
592-719 1.75e-04

Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown];


Pssm-ID: 443752 [Multi-domain]  Cd Length: 641  Bit Score: 45.53  E-value: 1.75e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  592 EQDRILQDLEDKIRALKENKDQLESVLEVLHRQTEQYRDQPQHLEKITCQQRLLQEDLVHIRAELC-RESTEMENAWNEY 670
Cdd:COG4717   122 EKLLQLLPLYQELEALEAELAELPERLEELEERLEELRELEEELEELEAELAELQEELEELLEQLSlATEEELQDLAEEL 201
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*....
gi 762006021  671 LKLEKDVEQLKQTLQEQHrrafffQEKSQIQKDLWRIEDVMAGLSANKE 719
Cdd:COG4717   202 EELQQRLAELEEELEEAQ------EELEELEEELEQLENELEAAALEER 244
SMC_prok_B TIGR02168
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
579-720 3.85e-04

chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]


Pssm-ID: 274008 [Multi-domain]  Cd Length: 1179  Bit Score: 44.66  E-value: 3.85e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   579 AESDIDVKLSIFCEQDRILQDLEDKIRALKENKDQLESVLEVLHRQTEQYRDQPQHLEKITCQqrlLQEDLVHIRAELCR 658
Cdd:TIGR02168  279 LEEEIEELQKELYALANEISRLEQQKQILRERLANLERQLEELEAQLEELESKLDELAEELAE---LEEKLEELKEELES 355
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 762006021   659 ESTEMENAWNEYLKLEKDVEQLKQTLQEQhRRAFF--FQEKSQIQKDLWRIEDVMAGLSANKEN 720
Cdd:TIGR02168  356 LEAELEELEAELEELESRLEELEEQLETL-RSKVAqlELQIASLNNEIERLEARLERLEDRRER 418
PRK12704 PRK12704
phosphodiesterase; Provisional
594-716 1.50e-03

phosphodiesterase; Provisional


Pssm-ID: 237177 [Multi-domain]  Cd Length: 520  Bit Score: 42.46  E-value: 1.50e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  594 DRILQDLEDKIRALKENKdQLESVLEVLHRQTE---QYRDQPQHLEKItcQQRLLQ--EDLVHIRAELCRESTEMENAWN 668
Cdd:PRK12704   41 KRILEEAKKEAEAIKKEA-LLEAKEEIHKLRNEfekELRERRNELQKL--EKRLLQkeENLDRKLELLEKREEELEKKEK 117
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*...
gi 762006021  669 EYLKLEKDVEQLKQTLQEQHrrafffqeKSQIQKdLWRIedvmAGLSA 716
Cdd:PRK12704  118 ELEQKQQELEKKEEELEELI--------EEQLQE-LERI----SGLTA 152
PspC_subgroup_2 NF033839
pneumococcal surface protein PspC, LPXTG-anchored form; The pneumococcal surface protein PspC, ...
731-856 2.22e-03

pneumococcal surface protein PspC, LPXTG-anchored form; The pneumococcal surface protein PspC, as described in Streptococcus pneumoniae, is a repetitive and highly variable protein, recognized by a conserved N-terminal domain and also by genomic location. This form, subgroup 2, is anchored covalently after cleavage by sortase at a C-terminal LPXTG site. The other form, subgroup 1, has variable numbers of a choline-binding repeat in the C-terminal region, and is also known as choline-binding protein A.


Pssm-ID: 468202 [Multi-domain]  Cd Length: 557  Bit Score: 41.68  E-value: 2.22e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  731 PERKTVPLFPHPSVPSlSPTESKPALQPSPPT-------SPVRTPLEVRlfPQLQTYVPY---RPHPPQLRKVMSPLQSP 800
Cdd:NF033839  363 PEVKPQPEKPKPEVKP-QPETPKPEVKPQPEKpkpevkpQPEKPKPEVK--PQPEKPKPEvkpQPEKPKPEVKPQPEKPK 439
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 762006021  801 TKAKPQAEDEAPPRPPLPELYSPEDQPPAVPPLPREATIIRHTSVRGLKRQSDERK 856
Cdd:NF033839  440 PEVKPQPEKPKPEVKPQPETPKPEVKPQPEKPKPEVKPQPEKPKPDNSKPQADDKK 495
PRK10263 PRK10263
DNA translocase FtsK; Provisional
740-946 6.54e-03

DNA translocase FtsK; Provisional


Pssm-ID: 236669 [Multi-domain]  Cd Length: 1355  Bit Score: 40.45  E-value: 6.54e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  740 PHPSVPSLSPTESKPALQPSPPTSPVRTPLEVRLfPQLQTYVPYRPHPPQLRKVMSPLQSPTKAKP-QAEDEAPPRPPLP 818
Cdd:PRK10263  382 QQSQYAQPAVQYNEPLQQPVQPQQPYYAPAAEQP-AQQPYYAPAPEQPAQQPYYAPAPEQPVAGNAwQAEEQQSTFAPQS 460
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  819 --ELYSPEDQPPAVPPLPREATIIRHTSVRGLKRQSDERKRDREQGQCVNgdlKVELRSYVSEPELASLSGDVPQPSLSL 896
Cdd:PRK10263  461 tyQTEQTYQQPAAQEPLYQQPQPVEQQPVVEPEPVVEETKPARPPLYYFE---EVEEKRAREREQLAAWYQPIPEPVKEP 537
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|.
gi 762006021  897 VGSESRYQTLPGRGLSGSTSrlqqSSTIAPYVT-LRRGLNAENSSATFSRP 946
Cdd:PRK10263  538 EPIKSSLKAPSVAAVPPVEA----AAAVSPLASgVKKATLATGAAATVAAP 584
Atrophin-1 pfam03154
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ...
737-842 9.11e-03

Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity.


Pssm-ID: 460830 [Multi-domain]  Cd Length: 991  Bit Score: 40.14  E-value: 9.11e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   737 PLFPHPSVPSLSPTESKPAL--QPSPPTSPVRTPLEVRLFPQLQTYVPYRPHPPQLRKVMSPLQSPTKAKPQAEDEAPPR 814
Cdd:pfam03154  187 PPPGTTQAATAGPTPSAPSVppQGSPATSQPPNQTQSTAAPHTLIQQTPTLHPQRLPSPHPPLQPMTQPPPPSQVSPQPL 266
                           90       100
                   ....*....|....*....|....*...
gi 762006021   815 PPlPELYSPedQPPAVPPLPREATIIRH 842
Cdd:pfam03154  267 PQ-PSLHGQ--MPPMPHSLQTGPSHMQH 291
 
Name Accession Description Interval E-value
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
53-175 8.82e-58

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 193.64  E-value: 8.82e-58
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   53 RNLNVPVVVRGWLHKQDSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKAvhtgm 132
Cdd:cd13248     1 RDPNAPVVMSGWLHKQGGSGLKNWRKRWFVLKDNCLYYYKDPEEEKALGSILLPSYTISPAPPSDEISRKFAFKA----- 75
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|...
gi 762006021  133 raliystttagsqmEHSGMRTYYFSADTLEDMNAWVRAMNQAA 175
Cdd:cd13248    76 --------------EHANMRTYYFAADTAEEMEQWMNAMSLAA 104
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
59-176 4.61e-20

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 86.06  E-value: 4.61e-20
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021     59 VVVRGWLHKQDSSGMRLWKRRWFVLADYCLFYYKDSREE---AVLGSIPLPSYVISPVAPEDRISRKYSFKaVHTGMRal 135
Cdd:smart00233    1 VIKEGWLYKKSGGGKKSWKKRYFVLFNSTLLYYKSKKDKksyKPKGSIDLSGCTVREAPDPDSSKKPHCFE-IKTSDR-- 77
                            90       100       110       120
                    ....*....|....*....|....*....|....*....|.
gi 762006021    136 iystttagsqmehsgmRTYYFSADTLEDMNAWVRAMNQAAQ 176
Cdd:smart00233   78 ----------------KTLLLQAESEEEREKWVEALRKAIA 102
PH pfam00169
PH domain; PH stands for pleckstrin homology.
59-174 2.55e-19

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 84.15  E-value: 2.55e-19
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021    59 VVVRGWLHKQDSSGMRLWKRRWFVLADYCLFYYKDS---REEAVLGSIPLPSYVISPVAPEDRISRKYSFKaVHTGMRal 135
Cdd:pfam00169    1 VVKEGWLLKKGGGKKKSWKKRYFVLFDGSLLYYKDDksgKSKEPKGSISLSGCEVVEVVASDSPKRKFCFE-LRTGER-- 77
                           90       100       110
                   ....*....|....*....|....*....|....*....
gi 762006021   136 iystttagsqmehSGMRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:pfam00169   78 -------------TGKRTYLLQAESEEERKDWIKAIQSA 103
PH_CNK_mammalian-like cd01260
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
63-176 3.89e-19

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and, with the exception of CNK3, a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from mammals, chickens, amphibians, fish, and crustacea. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269962  Cd Length: 114  Bit Score: 84.00  E-value: 3.89e-19
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQDSSG---MRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPvAPEDRisRKYSFKAVhtgmraliyst 139
Cdd:cd01260    17 GWLWKKKEAKsffGQKWKKYWFVLKGSSLYWYSNQQDEKAEGFINLPDFKIER-ASECK--KKYAFKAC----------- 82
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 762006021  140 ttagsqmeHSGMRTYYFSADTLEDMNAWVRAMNQAAQ 176
Cdd:cd01260    83 --------HPKIKTFYFAAENLDDMNKWLSKLNMAIN 111
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
63-171 9.90e-18

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 79.12  E-value: 9.90e-18
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQDSSGMRLWKRRWFVLADYCLFYYKDSREEAV--LGSIPLPSYVisPVAPEDRISRKYSFkavhtgmraliystt 140
Cdd:cd00821     3 GYLLKRGGGGLKSWKKRWFVLFEGVLLYYKSKKDSSYkpKGSIPLSGIL--EVEEVSPKERPHCF--------------- 65
                          90       100       110
                  ....*....|....*....|....*....|.
gi 762006021  141 tagsQMEHSGMRTYYFSADTLEDMNAWVRAM 171
Cdd:cd00821    66 ----ELVTPDGRTYYLQADSEEERQEWLKAL 92
PH_RhoGap25-like cd13263
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ...
59-175 1.55e-15

Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270083  Cd Length: 114  Bit Score: 73.57  E-value: 1.55e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   59 VVVRGWLHKQdSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKAVHTGmraliys 138
Cdd:cd13263     3 PIKSGWLKKQ-GSIVKNWQQRWFVLRGDQLYYYKDEDDTKPQGTIPLPGNKVKEVPFNPEEPGKFLFEIIPGG------- 74
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 762006021  139 tttaGSQMEHSGMRTYYFSADTLEDMNAWVRAMNQAA 175
Cdd:cd13263    75 ----GGDRMTSNHDSYLLMANSQAEMEEWVKVIRRVI 107
PH_GRP1-like cd01252
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ...
63-174 1.56e-15

General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269954  Cd Length: 119  Bit Score: 73.89  E-value: 1.56e-15
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQdSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVapEDRiSRKYSFKAVHTGMRALIYS--TT 140
Cdd:cd01252     7 GWLLKL-GGRVKSWKRRWFILTDNCLYYFEYTTDKEPRGIIPLENLSVREV--EDK-KKPFCFELYSPSNGQVIKAckTD 82
                          90       100       110
                  ....*....|....*....|....*....|....
gi 762006021  141 TAGSQMEHSGMrTYYFSADTLEDMNAWVRAMNQA 174
Cdd:cd01252    83 SDGKVVEGNHT-VYRISAASEEERDEWIKSIKAS 115
PH_CNK_insect-like cd13326
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ...
63-171 2.62e-14

Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from insects, spiders, mollusks, and nematodes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270135  Cd Length: 91  Bit Score: 69.29  E-value: 2.62e-14
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLH---KQDSSGMRlWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPvAPEDRiSRKYSFKAVHTGMraliyst 139
Cdd:cd13326     3 GWLYqrrRKGKGGGK-WAKRWFVLKGSNLYGFRSQESTKADCVIFLPGFTVSP-APEVK-SRKYAFKVYHTGT------- 72
                          90       100       110
                  ....*....|....*....|....*....|..
gi 762006021  140 ttagsqmehsgmrTYYFSADTLEDMNAWVRAM 171
Cdd:cd13326    73 -------------VFYFAAESQEDMKKWLDLL 91
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
63-189 1.03e-13

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 68.20  E-value: 1.03e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQ--DSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPvAPEDRISRKYSFKAVHTgmraliystt 140
Cdd:cd13308    13 GTLTKKggSQKTLQNWQLRYVIIHQGCVYYYKNDQSAKPKGVFSLNGYNRRA-AEERTSKLKFVFKIIHL---------- 81
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*....
gi 762006021  141 tagsqmeHSGMRTYYFSADTLEDMNAWvramnqaaqvlsRSSLRRDVDK 189
Cdd:cd13308    82 -------SPDHRTWYFAAKSEDEMSEW------------MEYIRREIDH 111
PH1_PH_fungal cd13298
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ...
59-176 4.15e-13

Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270110  Cd Length: 106  Bit Score: 66.50  E-value: 4.15e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   59 VVVRGWLHKQdSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSyvISPVAPEDRISRKYSFKavhtgmralIYS 138
Cdd:cd13298     6 VLKSGYLLKR-SRKTKNWKKRWVVLRPCQLSYYKDEKEYKLRRVINLSE--LLAVAPLKDKKRKNVFG---------IYT 73
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 762006021  139 TTtagsqmehsgmRTYYFSADTLEDMNAWVRAMNQAAQ 176
Cdd:cd13298    74 PS-----------KNLHFRATSEKDANEWVEALREEFR 100
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
63-181 4.51e-13

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 66.19  E-value: 4.51e-13
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQdSSGMRLWKRRWFVLADYCLFYYKDS---REEAVLGSIPLpSYVISPVAPEDRISRKYSFKAvhtgmraliyST 139
Cdd:cd13276     3 GWLEKQ-GEFIKTWRRRWFVLKQGKLFWFKEPdvtPYSKPRGVIDL-SKCLTVKSAEDATNKENAFEL----------ST 70
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 762006021  140 TTagsqmehsgmRTYYFSADTLEDMNAWVRAMNQAAQVLSRS 181
Cdd:cd13276    71 PE----------ETFYFIADNEKEKEEWIGAIGRAIVKHSRS 102
PH2_FARP1-like cd13235
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ...
70-175 4.59e-12

FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 2; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270055  Cd Length: 98  Bit Score: 63.11  E-value: 4.59e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   70 SSGmrlWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKavhtgmraLIYSTttagsqmeHs 149
Cdd:cd13235    16 SNG---WQKLWVVFTNFCLFFYKSHQDEFPLASLPLLGYSVGLPSEADNIDKDYVFK--------LQFKS--------H- 75
                          90       100
                  ....*....|....*....|....*.
gi 762006021  150 gmrTYYFSADTLEDMNAWVRAMNQAA 175
Cdd:cd13235    76 ---VYFFRAESEYTFERWMEVIRSAT 98
PH_TAAP2-like cd13255
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ...
55-182 9.11e-12

Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270075  Cd Length: 110  Bit Score: 62.82  E-value: 9.11e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   55 LNVPVVVRGWLHKQDSSgMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLpsYVISPVAPEDRISRKYSFKAVhtgmra 134
Cdd:cd13255     2 ISEAVLKAGYLEKKGER-RKTWKKRWFVLRPTKLAYYKNDKEYRLLRLIDL--TDIHTCTEVQLKKHDNTFGIV------ 72
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*...
gi 762006021  135 liystttagsqmehSGMRTYYFSADTLEDMNAWVRAMNQAAQVLSRSS 182
Cdd:cd13255    73 --------------TPARTFYVQADSKAEMESWISAINLARQALRATI 106
PH_anillin cd01263
Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin ...
62-178 1.85e-11

Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin homology domain-containing family K) is an actin binding protein involved in cytokinesis. It interacts with GTP-bound Rho proteins and results in the inhibition of their GTPase activity. Dysregulation of the Rho signal transduction pathway has been implicated in many forms of cancer. Anillin proteins have a N-terminal HRI domain/ACC (anti-parallel coiled-coil) finger domain or Rho-binding domain binds small GTPases from the Rho family. The C-terminal PH domain helps target anillin to ectopic septin containing foci. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269964  Cd Length: 121  Bit Score: 62.29  E-value: 1.85e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   62 RGWLH-KQDSSGMRLWKRRWFVLADYCLFYYK---DSREEAVLGSIPLPSYVISPV--APEDRISRKYSFkavhtgmraL 135
Cdd:cd01263     5 RGFLTvFEDVSGLGAWHRRWCVLRGGYLSFWKypdDEEKKKPIGSIDLTKCITEKVepAPRELCARPNTF---------L 75
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*
gi 762006021  136 IYSTTTAGSQMEHSGMRT--YYFSADTLEDMNAWVRAMNQAAQVL 178
Cdd:cd01263    76 LETLRPAEDDDRDDTNEKirVLLSADTKEERIEWLSALNQTLADL 120
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
63-177 3.99e-11

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 60.39  E-value: 3.99e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQdSSGMRLWKRRWFVLADYCLFYYKDSREEA--VLGSIPLPSYVispvapedRISRkysfkavhtGMRALIYSTT 140
Cdd:cd13282     3 GYLTKL-GGKVKTWKRRWFVLKNGELFYYKSPNDVIrkPQGQIALDGSC--------EIAR---------AEGAQTFEIV 64
                          90       100       110
                  ....*....|....*....|....*....|....*..
gi 762006021  141 TAGsqmehsgmRTYYFSADTLEDMNAWVRAMNQAAQV 177
Cdd:cd13282    65 TEK--------RTYYLTADSENDLDEWIRVIQNVLRR 93
PH2_MyoX cd13296
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ...
63-183 4.54e-11

Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270108  Cd Length: 103  Bit Score: 60.56  E-value: 4.54e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQ--DSSGM--RLWKRRWFVLADYCLFYYK-DSREEAVLGSIPLPSyvispvapedrISRKYSFKAVHTGmraliY 137
Cdd:cd13296     3 GWLTKKggGSSTLsrRNWKSRWFVLRDTVLKYYEnDQEGEKLLGTIDIRS-----------AKEIVDNDPKENR-----L 66
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 762006021  138 STTTAGsqmehsgmRTYYFSADTLEDMNAWVramNQAAQVLSRSSL 183
Cdd:cd13296    67 SITTEE--------RTYHLVAESPEDASQWV---NVLTRVISATDL 101
PH_Ses cd13288
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ...
56-193 4.99e-11

Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270105 [Multi-domain]  Cd Length: 120  Bit Score: 60.71  E-value: 4.99e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   56 NVPVVVRGWLHKQDSSGmRLWKRRWFVLADYCLFYY--KDSREEavLGSIPLPSYVISPVAPEDRisrkYSFKAVHTGmr 133
Cdd:cd13288     5 NSPVDKEGYLWKKGERN-TSYQKRWFVLKGNLLFYFekKGDREP--LGVIVLEGCTVELAEDAEP----YAFAIRFDG-- 75
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 762006021  134 aliystttagsqmehSGMRTYYFSADTLEDMNAWVRAmnqaaqvLSRSS---LRRDVDKVERQ 193
Cdd:cd13288    76 ---------------PGARSYVLAAENQEDMESWMKA-------LSRASydyLRLTVEELEKQ 116
PH_Boi cd13316
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ...
63-174 6.92e-11

Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270126  Cd Length: 97  Bit Score: 59.69  E-value: 6.92e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQdSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKAVHTgmraliysttta 142
Cdd:cd13316     4 GWMKKR-GERYGTWKTRYFVLKGTRLYYLKSENDDKEKGLIDLTGHRVVPDDSNSPFRGSYGFKLVPP------------ 70
                          90       100       110
                  ....*....|....*....|....*....|..
gi 762006021  143 gsqmehSGMRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:cd13316    71 ------AVPKVHYFAVDEKEELREWMKALMKA 96
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
63-172 8.97e-11

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 59.54  E-value: 8.97e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQDSSGMRLWKRRWFVLADYCLFYYKDSREEavlgsiPLPSYV----ISPVAPEDRISRKYSFKAVhtgmraliys 138
Cdd:cd13250     3 GYLFKRSSNAFKTWKRRWFSLQNGQLYYQKRDKKD------EPTVMVedlrLCTVKPTEDSDRRFCFEVI---------- 66
                          90       100       110
                  ....*....|....*....|....*....|....
gi 762006021  139 tttagsqmehSGMRTYYFSADTLEDMNAWVRAMN 172
Cdd:cd13250    67 ----------SPTKSYMLQAESEEDRQAWIQAIQ 90
PH_M-RIP cd13275
Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed ...
62-184 2.16e-10

Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed to play a role in myosin phosphatase regulation by RhoA. M-RIP contains 2 PH domains followed by a Rho binding domain (Rho-BD), and a C-terminal myosin binding subunit (MBS) binding domain (MBS-BD). The amino terminus of M-RIP with its adjacent PH domains and polyproline motifs mediates binding to both actin and Galpha. M-RIP brings RhoA and MBS into close proximity where M-RIP can target RhoA to the myosin phosphatase complex to regulate the myosin phosphorylation state. M-RIP does this via its C-terminal coiled-coil domain which interacts with the MBS leucine zipper domain of myosin phosphatase, while its Rho-BD, directly binds RhoA in a nucleotide-independent manner. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270094  Cd Length: 104  Bit Score: 58.50  E-value: 2.16e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   62 RGWLHKQDSSGMRlWKRRWFVLADYCLFYYKDSR-EEA--VLGSIPLPSyvISPVAPEDrISRKYSFkAVHTgmraliys 138
Cdd:cd13275     2 KGWLMKQGSRQGE-WSKHWFVLRGAALKYYRDPSaEEAgeLDGVIDLSS--CTEVTELP-VSRNYGF-QVKT-------- 68
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 762006021  139 tttagsqmeHSGMRtYYFSADTLEDMNAWVRAMNQAAQVLSRSSLR 184
Cdd:cd13275    69 ---------WDGKV-YVLSAMTSGIRTNWIQALRKAAGLPSPPALP 104
PH2_TAPP1_2 cd13271
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ...
52-182 2.83e-10

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270090  Cd Length: 114  Bit Score: 58.52  E-value: 2.83e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   52 RRNLNVPVVVRGWLHKQDSSgMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSyvISPVA---PEDRISRKYSFKAV 128
Cdd:cd13271     1 RQRAGRNVIKSGYCVKQGAV-RKNWKRRFFILDDNTISYYKSETDKEPLRTIPLRE--VLKVHeclVKSLLMRDNLFEII 77
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....
gi 762006021  129 HTGmraliystttagsqmehsgmRTYYFSADTLEDMNAWVRAMNQAAQVLSRSS 182
Cdd:cd13271    78 TTS--------------------RTFYIQADSPEEMHSWIKAISGAIVARRGPS 111
PH_RhoGap24 cd13379
Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ...
63-173 3.58e-10

Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ARHGAP24, p73RhoGAp, and Filamin-A-associated RhoGAP) like other RhoGAPs are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241530  Cd Length: 114  Bit Score: 58.44  E-value: 3.58e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQdSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKAVHTGMRaliySTTTA 142
Cdd:cd13379     7 GWLRKQ-GGFVKTWHTRWFVLKGDQLYYFKDEDETKPLGTIFLPGNRVTEHPCNEEEPGKFLFEVVPGGDR----ERMTA 81
                          90       100       110
                  ....*....|....*....|....*....|.
gi 762006021  143 GSQmehsgmrTYYFSADTLEDMNAWVRAMNQ 173
Cdd:cd13379    82 NHE-------TYLLMASTQNDMEDWVKSIRR 105
PH3_MyoX-like cd13297
Myosin X-like Pleckstrin homology (PH) domain, repeat 3; MyoX, a MyTH-FERM myosin, is a ...
59-171 1.40e-09

Myosin X-like Pleckstrin homology (PH) domain, repeat 3; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the third MyoX PH repeat. PLEKHH3/Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) member 3 is also part of this CD and like MyoX contains a FERM domain, a MyTH4 domain, and a single PH domain. Not much is known about the function of PLEKHH3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270109  Cd Length: 126  Bit Score: 57.06  E-value: 1.40e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   59 VVVRGWLHKQD-SSGMRLW---KRRWFVLADYCLFYYKDSREEAV-LGSIPLPSyVISPVAPEDRISRKysfkavhTGmr 133
Cdd:cd13297    13 VIERGWLYKEGgKGGARGNltkKKRWFVLTGNSLDYYKSSEKNSLkLGTLVLNS-LCSVVPPDEKMAKE-------TG-- 82
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 762006021  134 aliYSTTTAgsqmeHSGMRTYYFSADTLEDMNAWVRAM 171
Cdd:cd13297    83 ---YWTFTV-----HGRKHSFRLYTKLQEEAMRWVNAI 112
PH_RhoGAP2 cd13378
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ...
58-173 1.63e-09

Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241529  Cd Length: 116  Bit Score: 56.49  E-value: 1.63e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   58 PVVVRGWLHKQDSSgMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKAVHTGmraliy 137
Cdd:cd13378     2 GVLKAGWLKKQRSI-MKNWQQRWFVLRGDQLFYYKDEEETKPQGCISLQGSQVNELPPNPEEPGKHLFEILPGG------ 74
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 762006021  138 STTTAGSQMEHsgmRTYYFSADTLEDMNAWVRAMNQ 173
Cdd:cd13378    75 AGDREKVPMNH---EAFLLMANSQSDMEDWVKAIRR 107
PH2_FGD5_FGD6 cd13237
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin ...
63-171 3.24e-09

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270057  Cd Length: 91  Bit Score: 54.73  E-value: 3.24e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQDSSGmRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKAVHTGMRALIysttta 142
Cdd:cd13237     3 GYLQRRKKSK-KSWKRLWFVLKDKVLYTYKASEDVVALESVPLLGFTVVTIDESFEEDESLVFQLLHKGQLPII------ 75
                          90       100
                  ....*....|....*....|....*....
gi 762006021  143 gsqmehsgmrtyyFSADTLEDMNAWVRAM 171
Cdd:cd13237    76 -------------FRADDAETAQRWIEAL 91
PH1_Pleckstrin_2 cd13301
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ...
76-181 1.05e-08

Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270113  Cd Length: 108  Bit Score: 53.92  E-value: 1.05e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   76 WKRRWFVLADYCLFYYKDSREEAVLGSIPLP-SYVISPVapedrisRKYsfkavhtGMRALIYSTTTAGSQmehsgmrTY 154
Cdd:cd13301    19 WKARWFVLKEDGLEYYKKKTDSSPKGMIPLKgCTITSPC-------LEY-------GKRPLVFKLTTAKGQ-------EH 77
                          90       100
                  ....*....|....*....|....*..
gi 762006021  155 YFSADTLEDMNAWVRAMNQAAQVLSRS 181
Cdd:cd13301    78 FFQACSREERDAWAKDITKAITCLEGG 104
PH2_FGD1-4 cd13236
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) ...
60-175 4.99e-08

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) domain, C-terminus; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270056  Cd Length: 105  Bit Score: 51.97  E-value: 4.99e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   60 VVRGWLHKQDSSgmRLWKRRWFVLAD---YCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKAVHTGmrali 136
Cdd:cd13236     9 LLCGFLQYSEKG--KTWQKVWCVIPRtepLVLYLYGAPQDVRAQRTIPLPGCEVTVPPPEERLDGRHVFKLSQSK----- 81
                          90       100       110
                  ....*....|....*....|....*....|....*....
gi 762006021  137 ystttagsqmehsgmRTYYFSADTLEDMNAWVRAMNQAA 175
Cdd:cd13236    82 ---------------QSHYFSAESEELQQRWLEALSRAA 105
PH_RasGRF1_2 cd13261
Ras-specific guanine nucleotide-releasing factors 1 and 2 Pleckstrin homology (PH) domain; ...
62-174 6.93e-08

Ras-specific guanine nucleotide-releasing factors 1 and 2 Pleckstrin homology (PH) domain; RasGRF1 (also called GRF1; CDC25Mm/Ras-specific nucleotide exchange factor CDC25; GNRP/Guanine nucleotide-releasing protein) and RasGRF2 (also called GRF2; Ras guanine nucleotide exchange factor 2) are a family of guanine nucleotide exchange factors (GEFs). They both promote the exchange of Ras-bound GDP by GTP, thereby regulating the RAS signaling pathway. RasGRF1 and RasGRF2 form homooligomers and heterooligomers. GRF1 has 3 isoforms and GRF2 has 2 isoforms. The longest isoforms of RasGRF1 and RasGRF2 contain the following domains: a Rho-GEF domain sandwiched between 2 PH domains, IQ domains, a REM (Ras exchanger motif) domain, and a Ras-GEF domainwhich gives them the capacity to activate both Ras and Rac GTPases in response to signals from a variety of neurotransmitter receptors. Their IQ domains allow them to act as calcium sensors to mediate the actions of NMDA-type and calcium-permeable AMPA-type glutamate receptors. GRF1 also mediates the action of dopamine receptors that signal through cAMP. GRF1 and GRF2 play strikingly different roles in regulating MAP kinase family members, neuronal synaptic plasticity, specific forms of learning and memory, and behavioral responses to psychoactive drugs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270081  Cd Length: 136  Bit Score: 52.43  E-value: 6.93e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   62 RGWLHKQDSSGMRlWKRRWFVLADYCLFYYKDSREEAVLGSIPLP----SYVISP---VAPEDRISRKYSFkAVHTGmra 134
Cdd:cd13261     8 RGYLSKKTSDSGK-WHERWFALYQNLLFYFENESSSRPSGLYLLEgcycERLPTPkgaLKGKDHLEKQHYF-TISFR--- 82
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|
gi 762006021  135 liystttagsqmeHSGMRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:cd13261    83 -------------HENQRQYELRAETESDCDEWVEAIKQA 109
PH2_PH_fungal cd13299
Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal ...
59-170 9.77e-08

Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270111  Cd Length: 102  Bit Score: 51.09  E-value: 9.77e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   59 VVVRGWLHKQDSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSyvISPVAPEDRISR--KYSFkavhtgmraLI 136
Cdd:cd13299     6 VIEQGYLQVLKKKGVNQWKKYWLVLRNRSLSFYKDQSEYSPVKIIPIDD--IIDVVELDPLSKskKWCL---------QI 74
                          90       100       110
                  ....*....|....*....|....*....|....
gi 762006021  137 YSTTtagsqmehsgmRTYYFSADTLEDMNAWVRA 170
Cdd:cd13299    75 ITPE-----------KRIRFCADDEESLIKWLGA 97
PH_Gab2_2 cd13384
Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily ...
59-174 1.64e-07

Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. Members here include insect, nematodes, and crustacean Gab2s. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241535  Cd Length: 115  Bit Score: 50.90  E-value: 1.64e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   59 VVVRGWLHKQDSSG---MRLWKRRWFVL------ADYCLFYYKDSREEAVLGSIPLPSYvispvapeDRISRKYSFKAVH 129
Cdd:cd13384     3 VVYEGWLTKSPPEKriwRAKWRRRYFVLrqseipGQYFLEYYTDRTCRKLKGSIDLDQC--------EQVDAGLTFETKN 74
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*
gi 762006021  130 TGMRALIYSTTTAgsqmehsgMRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:cd13384    75 KLKDQHIFDIRTP--------KRTYYLVADTEDEMNKWVNCICTV 111
PH_Btk cd01238
Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of ...
76-179 1.82e-07

Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of cytoplasmic protein tyrosine kinases that includes BMX, IL2-inducible T-cell kinase (Itk) and Tec. Btk plays a role in the maturation of B cells. Tec proteins general have an N-terminal PH domain, followed by a Tek homology (TH) domain, a SH3 domain, a SH2 domain and a kinase domain. The Btk PH domain binds phosphatidylinositol 3,4,5-trisphosphate and responds to signalling via phosphatidylinositol 3-kinase. The PH domain is also involved in membrane anchoring which is confirmed by the discovery of a mutation of a critical arginine residue in the BTK PH domain. This results in severe human immunodeficiency known as X-linked agammaglobulinemia (XLA) in humans and a related disorder is mice.PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269944 [Multi-domain]  Cd Length: 140  Bit Score: 51.07  E-value: 1.82e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   76 WKRRWFVLADYCLFYYK-DSREEAVL-GSIPLPS-YVISPVAPEDRISRKYSFKAVHTGmraliystttagsqmehsgmR 152
Cdd:cd01238    20 YKERWFVLTKSSLSYYEgDGEKRGKEkGSIDLSKvRCVEEVKDEAFFERKYPFQVVYDD--------------------Y 79
                          90       100
                  ....*....|....*....|....*..
gi 762006021  153 TYYFSADTLEDMNAWVRAMNQAAQVLS 179
Cdd:cd01238    80 TLYVFAPSEEDRDEWIAALRKVCRNNS 106
PH_DOCK-D cd13267
Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also ...
58-176 3.01e-07

Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270087  Cd Length: 126  Bit Score: 50.40  E-value: 3.01e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   58 PVVVRGWLHKQ--------DSSGMRLWKRRWFVL---AD--YCLFYYKDSREEAVLGSIPLPSY--VISPVAPedrisRK 122
Cdd:cd13267     5 GITKEGYLYKGpenssdsfISLAMKSFKRRFFHLkqlVDgsYILEFYKDEKKKEAKGTIFLDSCtgVVQNSKR-----RK 79
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....
gi 762006021  123 YSFkavhtgmraliystttagsQMEHSGMRTYYFSADTLEDMNAWVRAMNQAAQ 176
Cdd:cd13267    80 FCF-------------------ELRMQDKKSYVLAAESEAEMDEWISKLNKILQ 114
PH_Gab-like cd13324
Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are ...
59-174 3.39e-07

Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270133  Cd Length: 112  Bit Score: 49.72  E-value: 3.39e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   59 VVVRGWLHKQDSS---GMRLWKRRWFVL-------ADYCLFYYKDSREEAVLGSIPLPS-YVISPVAPEDRISRKYSFka 127
Cdd:cd13324     1 VVYEGWLTKSPPEkkiWRAAWRRRWFVLrsgrlsgGQDVLEYYTDDHCKKLKGIIDLDQcEQVDAGLTFEKKKFKNQF-- 78
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*..
gi 762006021  128 vhtgmralIYSTTTAgsqmehsgMRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:cd13324    79 --------IFDIRTP--------KRTYYLVAETEEEMNKWVRCICQV 109
PH_11 pfam15413
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
61-174 3.74e-07

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405988  Cd Length: 105  Bit Score: 49.51  E-value: 3.74e-07
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021    61 VRGWLHKqdsSGMRLWKRRWF-VLADYCLFYYKDSREEAVLGSIPLPSYVISP---VAPEDRISRKYSFKAVHTGMRALI 136
Cdd:pfam15413    1 IEGYLKK---KGPKTWKHRWFaVLRNGVLFYYKSEKMKVVKHVIVLSNYIVGKlgtDIISGALFKIDNIRSETSDDLLLE 77
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 762006021   137 YSTTTagsqmehsgmRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:pfam15413   78 ISTET----------KIFFLYGDNNEETYEWVEALQEA 105
PH_evt cd13265
Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also ...
58-107 4.49e-07

Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also called pleckstrin homology domain containing, family B): evt-1 (also called PLEKHB1) and evt-2 (also called PLEKHB2). evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia. evt-2 is widely expressed in both neural and nonneural tissues. Evectins possess a single N-terminal PH domain and a C-terminal hydrophobic region. evt-1 is thought to function as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. It is a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and a susceptibility gene for multiple sclerosis. evt-2 is essential for retrograde endosomal membrane transport from the plasma membrane (PM) to the Golgi. Two membrane trafficking pathways pass through recycling endosomes: a recycling pathway and a retrograde pathway that links the PM to the Golgi/ER. Its PH domain that is unique in that it specifically recognizes phosphatidylserine (PS), but not polyphosphoinositides. PS is an anionic phospholipid class in eukaryotic biomembranes, is highly enriched in the PM, and plays key roles in various physiological processes such as the coagulation cascade, recruitment and activation of signaling molecules, and clearance of apoptotic cells. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270085  Cd Length: 108  Bit Score: 49.22  E-value: 4.49e-07
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 762006021   58 PVVVRGWLHKQdSSGMRLWKRRWFVL-ADYCLFYYKDSREEAVLGSIPLPS 107
Cdd:cd13265     2 ALVKSGWLLRQ-STILKRWKKNWFVLyGDGNLVYYEDETRREVEGRINMPR 51
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
63-174 5.32e-07

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 48.54  E-value: 5.32e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQDSSG-MRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISrkysfkaVHTGMRaliysttt 141
Cdd:cd13253     4 GYLDKQGGQGnNKGFQKRWVVFDGLSLRYFDSEKDAYSKRIIPLSAISTVRAVGDNKFE-------LVTTNR-------- 68
                          90       100       110
                  ....*....|....*....|....*....|...
gi 762006021  142 agsqmehsgmrTYYFSADTLEDMNAWVRAMNQA 174
Cdd:cd13253    69 -----------TFVFRAESDDERNLWCSTLQAA 90
PH_SWAP-70 cd13273
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ...
59-130 5.98e-07

Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270092  Cd Length: 110  Bit Score: 48.83  E-value: 5.98e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 762006021   59 VVVRGWLHKQDSSgMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPeDRISRKYSFkAVHT 130
Cdd:cd13273     8 VIKKGYLWKKGHL-LPTWTERWFVLKPNSLSYYKSEDLKEKKGEIALDSNCCVESLP-DREGKKCRF-LVKT 76
PH-GRAM1_AGT26 cd13215
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ...
59-170 7.54e-07

Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275402  Cd Length: 116  Bit Score: 48.77  E-value: 7.54e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   59 VVVRGWLHKQDSSGMRlWKRRWFVLADYCLFYYKDSREEAV-LGSIPLpSYVISPVAPEDRISRKYSFKAVhtgmraliy 137
Cdd:cd13215    21 VIKSGYLSKRSKRTLR-YTRYWFVLKGDTLSWYNSSTDLYFpAGTIDL-RYATSIELSKSNGEATTSFKIV--------- 89
                          90       100       110
                  ....*....|....*....|....*....|...
gi 762006021  138 stTTAgsqmehsgmRTYYFSADTLEDMNAWVRA 170
Cdd:cd13215    90 --TNS---------RTYKFKADSETSADEWVKA 111
PH_Skap_family cd13266
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ...
59-179 1.08e-06

Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270086  Cd Length: 106  Bit Score: 48.29  E-value: 1.08e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   59 VVVRGWLHKQD---SSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRK-YSFKAVhtgmra 134
Cdd:cd13266     1 VIKAGYLEKRRkdhSFFGSEWQKRWCAISKNVFYYYGSDKDKQQKGEFAINGYDVRMNPTLRKDGKKdCCFELV------ 74
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*
gi 762006021  135 liystttagsqmeHSGMRTYYFSADTLEDMNAWVRAMNQAAQVLS 179
Cdd:cd13266    75 -------------CPDKRTYQFTAASPEDAEDWVDQISFILQDLS 106
PH_Bem3 cd13277
Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain; Bud emergence in Saccharomyces ...
76-173 1.34e-06

Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain; Bud emergence in Saccharomyces cerevisiae involves cell cycle-regulated reorganizations of cortical cytoskeletal elements and requires the action of the Rho-type GTPase Cdc42. Bem3 contains a RhoGAP domain and a PH domain. Though Bem3 and Bem2 both contain a RhoGAP, but only Bem3 is able to stimulate the hydrolysis of GTP on Cdc42. Bem3 is thought to be the GAP for Cdc42. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270096  Cd Length: 111  Bit Score: 48.05  E-value: 1.34e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   76 WKRRWFVLADYCLFYYkDSREEAVLGSIPLPSYVIS--PVAPEDRISRKYSFkavhtgmraLIystttagsqMEH----- 148
Cdd:cd13277    23 WKLRYGVLDGNILELY-ESRGGQLLESIKLRNAQIErqPNLPDDKYGTRHGF---------LI---------NEHkksgl 83
                          90       100
                  ....*....|....*....|....*
gi 762006021  149 SGMRTYYFSADTLEDMNAWVRAMNQ 173
Cdd:cd13277    84 SSTTKYYLCAETDKERDEWVSALSE 108
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
63-169 1.35e-06

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 47.70  E-value: 1.35e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQDSSgMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSyvISPVAPEDRISRKYSFKAVHTGmraliysttta 142
Cdd:cd10573     7 GYLTKLGGI-VKNWKTRWFVLRRNELKYFKTRGDTKPIRVLDLRE--CSSVQRDYSQGKVNCFCLVFPE----------- 72
                          90       100
                  ....*....|....*....|....*..
gi 762006021  143 gsqmehsgmRTYYFSADTLEDMNAWVR 169
Cdd:cd10573    73 ---------RTFYMYANTEEEADEWVK 90
PHA03247 PHA03247
large tegument protein UL36; Provisional
731-837 2.08e-06

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 52.25  E-value: 2.08e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  731 PERKTVPLFPHPSVPSLSPTESKPAlQPSPPTSPVRTPL----------EVRLFPQLQTYVPY---RPHPPQLRKVMSPL 797
Cdd:PHA03247 2813 APAAALPPAASPAGPLPPPTSAQPT-APPPPPGPPPPSLplggsvapggDVRRRPPSRSPAAKpaaPARPPVRRLARPAV 2891
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|
gi 762006021  798 QSPTKAKPQAEDEaPPRPPLPELYSPEDQPPAVPPLPREA 837
Cdd:PHA03247 2892 SRSTESFALPPDQ-PERPPQPQAPPPPQPQPQPPPPPQPQ 2930
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
63-174 2.27e-06

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 46.93  E-value: 2.27e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHK--QDSSGMRLWKRRWFVLAD-YC-LFYYKDSREEAVLGSIPLPSYVISpVAPEDrisRKYSFKAvhtgmraliys 138
Cdd:cd01265     4 GYLNKleTRGLGLKGWKRRWFVLDEsKCqLYYYRSPQDATPLGSIDLSGAAFS-YDPEA---EPGQFEI----------- 68
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 762006021  139 tttagsqmeHSGMRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:cd01265    69 ---------HTPGRVHILKASTRQAMLYWLQALQSK 95
PH2_FGD4_insect-like cd13238
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) ...
70-171 2.47e-06

FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) domain, C-terminus, in insect and related arthropods; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. This cd contains insects, crustaceans, and chelicerates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270058  Cd Length: 97  Bit Score: 46.87  E-value: 2.47e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   70 SSGMRLWKRRWFVL-ADYCLFYYKDSREEAVLGSIPLPSYVISPVAPEDRISRKYSFKAVHTgmraliystttagSQMEH 148
Cdd:cd13238     9 TNGRKTWSRRWFALqPDFVLYSYKSQEDKLPLTATPVPGFLVTLLEKGSAVDPLNDPKRPRT-------------FKMFH 75
                          90       100
                  ....*....|....*....|...
gi 762006021  149 SgMRTYYFSADTLEDMNAWVRAM 171
Cdd:cd13238    76 V-KKSYYFQANDGDEQKKWVLTL 97
PH_ARHGAP21-like cd01253
ARHGAP21 and related proteins pleckstrin homology (PH) domain; ARHGAP family genes encode Rho ...
63-170 4.37e-06

ARHGAP21 and related proteins pleckstrin homology (PH) domain; ARHGAP family genes encode Rho/Rac/Cdc42-like GTPase activating proteins with a RhoGAP domain. These proteins functions as a GTPase-activating protein (GAP) for RHOA and CDC42. ARHGAP21 controls the Arp2/3 complex and F-actin dynamics at the Golgi complex by regulating the activity of the small GTPase Cdc42. It is recruited to the Golgi by to GTPase, ARF1, through its PH domain and its helical motif. It is also required for CTNNA1 recruitment to adherens junctions. ARHGAP21 and it related proteins all contains a PH domain and a RhoGAP domain. Some of the members have additional N-terminal domains including PDZ, SH3, and SPEC. The ARHGAP21 PH domain interacts with the GTPbound forms of both ARF1 and ARF6 ARF-binding domain/ArfBD. The members here include: ARHGAP15, ARHGAP21, and ARHGAP23. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269955  Cd Length: 113  Bit Score: 46.60  E-value: 4.37e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLH-KQD------SSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSyvispvapEDRISRK-------YSfkav 128
Cdd:cd01253     4 GWLHyKQIvtdkgkRVSDRSWKQAWAVLRGHSLYLYKDKREQTPALSIELGS--------EQRISIRgcivdiaYS---- 71
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 762006021  129 HTGMRALIYSTTTAGSQmehsgmrtYYFSADTLEDMNAWVRA 170
Cdd:cd01253    72 YTKRKHVFRLTTSDFSE--------YLFQAEDRDDMLGWIKA 105
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
63-180 5.14e-06

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 46.04  E-value: 5.14e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKqdsSGMRL---WKRRWFVLADYCLFYYKDSREEAVLGSIPLPS----YVISPVAP-EDRISRKYSFkAVHTgmra 134
Cdd:cd01251     6 GYLEK---TGPKQtdgFRKRWFTLDDRRLMYFKDPLDAFPKGEIFIGSkeegYSVREGLPpGIKGHWGFGF-TLVT---- 77
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*.
gi 762006021  135 liystttagsqmehsGMRTYYFSADTLEDMNAWVRAMNqaaQVLSR 180
Cdd:cd01251    78 ---------------PDRTFLLSAETEEERREWITAIQ---KVLER 105
PH_Cla4_Ste20 cd13279
Pleckstrin homology (PH) domain; Budding yeast contain two main p21-activated kinases (PAKs), ...
59-168 1.44e-05

Pleckstrin homology (PH) domain; Budding yeast contain two main p21-activated kinases (PAKs), Cla4 and Ste20. The yeast Ste20 protein kinase is involved in pheromone response, though the function of Ste20 mammalian homologs is unknown. Cla4 is involved in budding and cytokinesis and interacts with Cdc42, a GTPase required for polarized cell growth as is Pak. Cla4 and Ste20 kinases share a function in localizing cell growth with respect to the septin ring. They both contain a PH domain, a Cdc42/Rac interactive binding (CRIB) domain, and a C-terminal Protein Kinase catalytic (PKc) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270097  Cd Length: 92  Bit Score: 44.54  E-value: 1.44e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   59 VVVRGWLH-KQDSSGMRLWKRRWFVLADYCLFYYKDSREEAVLGSIPLpsYVISPVAPEDriSRKYSFKAVHTgmraliy 137
Cdd:cd13279     1 VVKSGWVSvKEDGLLSFRWSKRYLVLREQSLDFYKNESSSSASLSIPL--KDISNVSRTD--LKPYCFEIVRK------- 69
                          90       100       110
                  ....*....|....*....|....*....|.
gi 762006021  138 stttagsqmehSGMRTYYFSADTLEDMNAWV 168
Cdd:cd13279    70 -----------SSTKSIYISVKSDDELYDWM 89
PH_KIFIA_KIFIB cd01233
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ...
58-173 3.26e-05

KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269939  Cd Length: 103  Bit Score: 43.74  E-value: 3.26e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   58 PVVV-RGWLHKQDSSGMRlWKRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVI--SPvAPEDRISRKYSFKavhtgmra 134
Cdd:cd01233     4 PVVSkRGYLLFLEDATDG-WVRRWVVLRRPYLHIYSSEKDGDERGVINLSTARVeySP-DQEALLGRPNVFA-------- 73
                          90       100       110
                  ....*....|....*....|....*....|....*....
gi 762006021  135 lIYSTTtagsqmehsgmRTYYFSADTLEDMNAWVRAMNQ 173
Cdd:cd01233    74 -VYTPT-----------NSYLLQARSEKEMQDWLYAIDP 100
PH_Osh3p_yeast cd13289
Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is ...
60-174 3.34e-05

Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is proposed to function in sterol transport and regulation of nuclear fusion during mating and of pseudohyphal growth as well as sphingolipid metabolism. Osh3 contains a N-GOLD (Golgi dynamics) domain, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. GOLD domains are thought to mediate protein-protein interactions, but their role in ORPs are unknown. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241443  Cd Length: 90  Bit Score: 43.40  E-value: 3.34e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   60 VVRGWLHKQDSSGMRLWKRRWFVLAD-YCLFYYKDSREEAVLGSIPLPSYVISpVAPEDRisrkysfkavhtgmraliys 138
Cdd:cd13289     1 YLEGWLLKKRRKKMQGFARRYFVLNFkYGTLSYYFNPNSPVRGQIPLRLASIS-ASPRRR-------------------- 59
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 762006021  139 tttagsqMEH--SGMRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:cd13289    60 -------TIHidSGSEVWHLKALNDEDFQAWMKALRKF 90
Amelogenin smart00818
Amelogenins, cell adhesion proteins, play a role in the biomineralisation of teeth; They seem ...
737-837 6.59e-05

Amelogenins, cell adhesion proteins, play a role in the biomineralisation of teeth; They seem to regulate formation of crystallites during the secretory stage of tooth enamel development and are thought to play a major role in the structural organisation and mineralisation of developing enamel. The extracellular matrix of the developing enamel comprises two major classes of protein: the hydrophobic amelogenins and the acidic enamelins. Circular dichroism studies of porcine amelogenin have shown that the protein consists of 3 discrete folding units: the N-terminal region appears to contain beta-strand structures, while the C-terminal region displays characteristics of a random coil conformation. Subsequent studies on the bovine protein have indicated the amelogenin structure to contain a repetitive beta-turn segment and a "beta-spiral" between Gln112 and Leu138, which sequester a (Pro, Leu, Gln) rich region. The beta-spiral offers a probable site for interactions with Ca2+ ions. Muatations in the human amelogenin gene (AMGX) cause X-linked hypoplastic amelogenesis imperfecta, a disease characterised by defective enamel. A 9bp deletion in exon 2 of AMGX results in the loss of codons for Ile5, Leu6, Phe7 and Ala8, and replacement by a new threonine codon, disrupting the 16-residue (Met1-Ala16) amelogenin signal peptide.


Pssm-ID: 197891 [Multi-domain]  Cd Length: 165  Bit Score: 44.40  E-value: 6.59e-05
                            10        20        30        40        50        60        70        80
                    ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021    737 PLFPHPSVPSLSPTESKPALQPSPPTSP----VRTPLEVRLFPQLQTYvPYRPHPPQLRKVMSPLQSPTKAKPQaeDEAP 812
Cdd:smart00818   51 TLQPHHHIPVLPAQQPVVPQQPLMPVPGqhsmTPTQHHQPNLPQPAQQ-PFQPQPLQPPQPQQPMQPQPPVHPI--PPLP 127
                            90       100
                    ....*....|....*....|....*
gi 762006021    813 PRPPLPELYSPEDQPPAVPPLPREA 837
Cdd:smart00818  128 PQPPLPPMFPMQPLPPLLPDLPLEA 152
CCDC90-like pfam07798
Coiled-coil domain-containing protein 90-like; This entry includes coiled-coil ...
604-704 1.09e-04

Coiled-coil domain-containing protein 90-like; This entry includes coiled-coil domain-containing proteins 90 (CCDC90) and related proteins. CCDC90A is a key regulator of the mitochondrial calcium uniporter (MCU) and hence was renamed MCUR1. A study in mammals and in yeast homolog fmp32 has reported that MCUR1 is a cytochrome c oxidase assembly factor and that it has an indirect role as a regulator of MCU, however, subsequent publications confirmed the function of MCUR1 as a regulator of MCU. The role of CCDC90B proteins is still not known.


Pssm-ID: 462268 [Multi-domain]  Cd Length: 175  Bit Score: 44.04  E-value: 1.09e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   604 IRALKEN---KDQLESVLEVLHRQTEQ-----YRD--QPQHLEKITCQQRllqEDLVHIRAEL-CRESTEMENAWNEYLK 672
Cdd:pfam07798    7 VRQLEEAgftEEQAEAIMKALRDLLNDslenvSKDlvTKEDLENETYLQK---ADLAELRSELqILEKSEFAALRSENEK 83
                           90       100       110
                   ....*....|....*....|....*....|..
gi 762006021   673 LEKDVEQLKQTLQEQHRRAfffqeKSQIQKDL 704
Cdd:pfam07798   84 LRRELEKLKQRLREEITKL-----KADVRLDL 110
YhaN COG4717
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown];
592-719 1.75e-04

Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown];


Pssm-ID: 443752 [Multi-domain]  Cd Length: 641  Bit Score: 45.53  E-value: 1.75e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  592 EQDRILQDLEDKIRALKENKDQLESVLEVLHRQTEQYRDQPQHLEKITCQQRLLQEDLVHIRAELC-RESTEMENAWNEY 670
Cdd:COG4717   122 EKLLQLLPLYQELEALEAELAELPERLEELEERLEELRELEEELEELEAELAELQEELEELLEQLSlATEEELQDLAEEL 201
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*....
gi 762006021  671 LKLEKDVEQLKQTLQEQHrrafffQEKSQIQKDLWRIEDVMAGLSANKE 719
Cdd:COG4717   202 EELQQRLAELEEELEEAQ------EELEELEEELEQLENELEAAALEER 244
PHA03247 PHA03247
large tegument protein UL36; Provisional
737-831 2.06e-04

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 45.70  E-value: 2.06e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  737 PLFPHPSVPSLS---------PTESKPALQPSP--PTSPVRTPLEVRLFPQLQTYVPYRPHPPQLRKVMSPLQSPTKAKP 805
Cdd:PHA03247 2840 PPPPGPPPPSLPlggsvapggDVRRRPPSRSPAakPAAPARPPVRRLARPAVSRSTESFALPPDQPERPPQPQAPPPPQP 2919
                          90       100
                  ....*....|....*....|....*.
gi 762006021  806 QAEDEAPPRPPLPELYSPEDQPPAVP 831
Cdd:PHA03247 2920 QPQPPPPPQPQPPPPPPPRPQPPLAP 2945
PH1_TAPP1_2 cd13270
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal ...
63-177 2.42e-04

Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, N-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain binds PtdIns(3,4)P2. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270089  Cd Length: 118  Bit Score: 41.73  E-value: 2.42e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQDSSGMRLWKRRWFVL--ADYCLFYYKDSREE-----AVLGSIPLpSYvISPVAPEDRISRKYSFKAVHTGmral 135
Cdd:cd13270    12 GFLDIEENENSGKFLRRYFILdtAANLLLYYMDNPQNlpvgaAPVGSLNL-TY-ISKVSDATKQRPKAEFCFVINA---- 85
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|..
gi 762006021  136 iystttagsqmehsGMRTYYFSADTLEDMNAWVRAMNQAAQV 177
Cdd:cd13270    86 --------------LSRRYFLQANDQQDLVEWVEALNNASKI 113
COG4372 COG4372
Uncharacterized protein, contains DUF3084 domain [Function unknown];
567-721 2.95e-04

Uncharacterized protein, contains DUF3084 domain [Function unknown];


Pssm-ID: 443500 [Multi-domain]  Cd Length: 370  Bit Score: 44.51  E-value: 2.95e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  567 LLKDRSLKPMKIAESDIDVKLSIFcEQDRILQDLEDKIRALKENKDQLESVLEVLHRQTEQYRDQPQHLEKITCQQRLLQ 646
Cdd:COG4372    15 LFGLRPKTGILIAALSEQLRKALF-ELDKLQEELEQLREELEQAREELEQLEEELEQARSELEQLEEELEELNEQLQAAQ 93
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  647 EDLVHIRAELCRESTEMENAWNEYLKLEKDVEQLKQTLQE------QHRRAFFFQEK--SQIQKDLWRIEDVMAGLSANK 718
Cdd:COG4372    94 AELAQAQEELESLQEEAEELQEELEELQKERQDLEQQRKQleaqiaELQSEIAEREEelKELEEQLESLQEELAALEQEL 173

                  ...
gi 762006021  719 ENY 721
Cdd:COG4372   174 QAL 176
PH_ORP_plant cd13294
Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs ...
61-183 3.63e-04

Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs contain a N-terminal PH domain and a C-terminal OSBP-related domain. Not much is known about its specific function in plants to date. Members here include: Arabidopsis, spruce, and petunia. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241448  Cd Length: 100  Bit Score: 40.94  E-value: 3.63e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   61 VRGWLHKQDSSGMRlWKRRWFVLADYCLFYYKDSREEAV--LGSIPLPSYVISPVAPEDrisRKYSFkavhtgmraliys 138
Cdd:cd13294     1 VAGILYKWVNYGKG-WRSRWFVLQDGVLSYYKVHGPDKVkpSGEVHLKVSSIRESRSDD---KKFYI------------- 63
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*
gi 762006021  139 tttagsqmeHSGMRTYYFSADTLEDMNAWVRAMNQAAQVLSRSSL 183
Cdd:cd13294    64 ---------FTGTKTLHLRAESREDRAAWLEALQAAKDMFPRMSL 99
PH_RASA1 cd13260
RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 ...
58-173 3.69e-04

RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 (also called RasGap1 or p120) is a member of the RasGAP family of GTPase-activating proteins. RASA1 contains N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Splice variants lack the N-terminal domains. It is a cytosolic vertebrate protein that acts as a suppressor of RAS via its C-terminal GAP domain function, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. Additionally, it is involved in mitogenic signal transmission towards downstream interacting partners through its N-terminal SH2-SH3-SH2 domains. RASA1 interacts with a number of proteins including: G3BP1, SOCS3, ANXA6, Huntingtin, KHDRBS1, Src, EPHB3, EPH receptor B2, Insulin-like growth factor 1 receptor, PTK2B, DOK1, PDGFRB, HCK, Caveolin 2, DNAJA3, HRAS, GNB2L1 and NCK1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270080  Cd Length: 103  Bit Score: 40.79  E-value: 3.69e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   58 PVVVRGWLHKQdSSGMRLWKRRWFVL--ADYCLFYYKDSREEAVLGSIPLPSYVISPVApEDRISRKYSFKAVhtgMRAL 135
Cdd:cd13260     2 GIDKKGYLLKK-GGKNKKWKNLYFVLegKEQHLYFFDNEKRTKPKGLIDLSYCSLYPVH-DSLFGRPNCFQIV---VRAL 76
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 762006021  136 IYSTTtagsqmehsgmrtYYFSADTLEDMNAWVRAMNQ 173
Cdd:cd13260    77 NESTI-------------TYLCADTAELAQEWMRALRA 101
SMC_prok_B TIGR02168
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
579-720 3.85e-04

chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]


Pssm-ID: 274008 [Multi-domain]  Cd Length: 1179  Bit Score: 44.66  E-value: 3.85e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   579 AESDIDVKLSIFCEQDRILQDLEDKIRALKENKDQLESVLEVLHRQTEQYRDQPQHLEKITCQqrlLQEDLVHIRAELCR 658
Cdd:TIGR02168  279 LEEEIEELQKELYALANEISRLEQQKQILRERLANLERQLEELEAQLEELESKLDELAEELAE---LEEKLEELKEELES 355
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 762006021   659 ESTEMENAWNEYLKLEKDVEQLKQTLQEQhRRAFF--FQEKSQIQKDLWRIEDVMAGLSANKEN 720
Cdd:TIGR02168  356 LEAELEELEAELEELESRLEELEEQLETL-RSKVAqlELQIASLNNEIERLEARLERLEDRRER 418
PH_dynamin cd01256
Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle ...
58-168 6.92e-04

Dynamin pleckstrin homology (PH) domain; Dynamin is a GTPase that regulates endocytic vesicle formation. It has an N-terminal GTPase domain, followed by a PH domain, a GTPase effector domain and a C-terminal proline arginine rich domain. Dynamin-like proteins, which are found in metazoa, plants and yeast have the same domain architecture as dynamin, but lack the PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269958  Cd Length: 112  Bit Score: 40.38  E-value: 6.92e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   58 PVVVRGWLHKQDSSGMRLW-KRRWFVLADYCLFYYKDSREEAVLGSIPLPSYVISPVApEDRISRKYSFKAVHTGMRaLI 136
Cdd:cd01256     2 QVIRKGWLTINNIGFMKGGsKEYWFVLTAESLSWYKDEEEKEKKYMLPLDGLKLRDVE-KGFMSRKHIFALFNTDQR-NV 79
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 762006021  137 YstttagsqmehsgmRTYYF---SADTLEDMNAWV 168
Cdd:cd01256    80 Y--------------KDYKQlelSCETQEEVDSWK 100
PH_Sbf1_hMTMR5 cd01235
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ...
63-172 7.70e-04

Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269941  Cd Length: 106  Bit Score: 40.01  E-value: 7.70e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQdssGMRL--WKRRWFVL--ADYCLFYYKDSREEAVLGSIPLPSyvISPVAPED-------RISRKYSFKAvhtg 131
Cdd:cd01235     7 GYLYKR---GALLkgWKQRWFVLdsTKHQLRYYESREDTKCKGFIDLAE--VESVTPATpiigapkRADEGAFFDL---- 77
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|.
gi 762006021  132 mraliysTTTAgsqmehsgmRTYYFSADTLEDMNAWVRAMN 172
Cdd:cd01235    78 -------KTNK---------RVYNFCAFDAESAQQWIEKIQ 102
PHsplit_PLC_gamma cd13234
Phospholipase C-gamma Split pleckstrin homology (PH) domain; PLC-gamma (PLCgamma) is activated ...
63-176 8.17e-04

Phospholipase C-gamma Split pleckstrin homology (PH) domain; PLC-gamma (PLCgamma) is activated by receptor and non-receptor tyrosine kinases due to the presence of its SH2 and SH3 domains. There are two main isoforms of PLC-gamma expressed in human specimens, PLC-gamma1 and PLC-gamma2. PLC-gamma consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves internal to which is a PH domain split by two SH2 domains and a single SH3 domain, and a C-terminal C2 domain. The split PH domain is present in this hierarchy. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270054  Cd Length: 105  Bit Score: 39.76  E-value: 8.17e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQDSSGMRlWKRRWFVLADYCLfYYKDSREEAVLGS-----IPLPSYVISpVAPEDRISRKYSFKAVhtgmraliy 137
Cdd:cd13234     5 GILYLEDPINHE-WYPHFFVLTSNKI-YYSEETENSPLGSllrgiLDVPSCHVV-KRPEGKNSRPFVFILS--------- 72
                          90       100       110
                  ....*....|....*....|....*....|....*....
gi 762006021  138 stttagsqMEHSGMRTYYFSADTLEDMNAWVRAMNQAAQ 176
Cdd:cd13234    73 --------PKSLSDPPLDVAADSQEELQDWVQKIREVAQ 103
PH_8 pfam15409
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.
63-174 8.97e-04

Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species.


Pssm-ID: 405984  Cd Length: 89  Bit Score: 39.27  E-value: 8.97e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021    63 GWLHKQDSSGMRLWKRRWFVL-ADYC-LFYYKDSREEAVLGSIPLPSYVISpvAPEDRisrkysfkavhtgmRALIYStt 140
Cdd:pfam15409    1 GILLKKRRKKLQGYAKRFFVLnFKSGtLSYYRDDNSSALRGKIPLSLAAIS--ANAKT--------------REIIID-- 62
                           90       100       110
                   ....*....|....*....|....*....|....
gi 762006021   141 tagsqmehSGMRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:pfam15409   63 --------SGMEVWHLKALNEKDFQAWVDALEKA 88
PRK14950 PRK14950
DNA polymerase III subunits gamma and tau; Provisional
754-837 1.30e-03

DNA polymerase III subunits gamma and tau; Provisional


Pssm-ID: 237864 [Multi-domain]  Cd Length: 585  Bit Score: 42.49  E-value: 1.30e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  754 PALQPSPPTSPVRTPLEVRLFPQLQTYVPYRPHPPQLRKVMSPlqsPTKAKPQAEDEAPPRPPlpelyspedQPPAVPPL 833
Cdd:PRK14950  364 PAPQPAKPTAAAPSPVRPTPAPSTRPKAAAAANIPPKEPVRET---ATPPPVPPRPVAPPVPH---------TPESAPKL 431

                  ....
gi 762006021  834 PREA 837
Cdd:PRK14950  432 TRAA 435
PHA03378 PHA03378
EBNA-3B; Provisional
722-836 1.50e-03

EBNA-3B; Provisional


Pssm-ID: 223065 [Multi-domain]  Cd Length: 991  Bit Score: 42.75  E-value: 1.50e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  722 RVLVGSVKNPERKTVPLFPHPSVP-SLSPTESKPALQPSPPTSPVRTPLEVRLFPQLQTYVPYRPHPPQLRKVMSPLQSP 800
Cdd:PHA03378  612 QSHIPETSAPRQWPMPLRPIPMRPlRMQPITFNVLVFPTPHQPPQVEITPYKPTWTQIGHIPYQPSPTGANTMLPIQWAP 691
                          90       100       110
                  ....*....|....*....|....*....|....*.
gi 762006021  801 TKAKPqaedeaPPRPPLPElyspedQPPAVPPLPRE 836
Cdd:PHA03378  692 GTMQP------PPRAPTPM------RPPAAPPGRAQ 715
PRK12704 PRK12704
phosphodiesterase; Provisional
594-716 1.50e-03

phosphodiesterase; Provisional


Pssm-ID: 237177 [Multi-domain]  Cd Length: 520  Bit Score: 42.46  E-value: 1.50e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  594 DRILQDLEDKIRALKENKdQLESVLEVLHRQTE---QYRDQPQHLEKItcQQRLLQ--EDLVHIRAELCRESTEMENAWN 668
Cdd:PRK12704   41 KRILEEAKKEAEAIKKEA-LLEAKEEIHKLRNEfekELRERRNELQKL--EKRLLQkeENLDRKLELLEKREEELEKKEK 117
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*...
gi 762006021  669 EYLKLEKDVEQLKQTLQEQHrrafffqeKSQIQKdLWRIedvmAGLSA 716
Cdd:PRK12704  118 ELEQKQQELEKKEEELEELI--------EEQLQE-LERI----SGLTA 152
PHA03247 PHA03247
large tegument protein UL36; Provisional
729-834 1.91e-03

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 42.62  E-value: 1.91e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  729 KNPERKTVPLfphPSVPSLSPTESKPALQPSPPTSPVrtPLevrlfPQLQTYVPYRPHPPQLRKVMSPLQSPTKAKPQAE 808
Cdd:PHA03247 2865 RPPSRSPAAK---PAAPARPPVRRLARPAVSRSTESF--AL-----PPDQPERPPQPQAPPPPQPQPQPPPPPQPQPPPP 2934
                          90       100
                  ....*....|....*....|....*.
gi 762006021  809 DEAPPRPPLPELYSPEDQPPAVPPLP 834
Cdd:PHA03247 2935 PPPRPQPPLAPTTDPAGAGEPSGAVP 2960
PspC_subgroup_2 NF033839
pneumococcal surface protein PspC, LPXTG-anchored form; The pneumococcal surface protein PspC, ...
731-856 2.22e-03

pneumococcal surface protein PspC, LPXTG-anchored form; The pneumococcal surface protein PspC, as described in Streptococcus pneumoniae, is a repetitive and highly variable protein, recognized by a conserved N-terminal domain and also by genomic location. This form, subgroup 2, is anchored covalently after cleavage by sortase at a C-terminal LPXTG site. The other form, subgroup 1, has variable numbers of a choline-binding repeat in the C-terminal region, and is also known as choline-binding protein A.


Pssm-ID: 468202 [Multi-domain]  Cd Length: 557  Bit Score: 41.68  E-value: 2.22e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  731 PERKTVPLFPHPSVPSlSPTESKPALQPSPPT-------SPVRTPLEVRlfPQLQTYVPY---RPHPPQLRKVMSPLQSP 800
Cdd:NF033839  363 PEVKPQPEKPKPEVKP-QPETPKPEVKPQPEKpkpevkpQPEKPKPEVK--PQPEKPKPEvkpQPEKPKPEVKPQPEKPK 439
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*.
gi 762006021  801 TKAKPQAEDEAPPRPPLPELYSPEDQPPAVPPLPREATIIRHTSVRGLKRQSDERK 856
Cdd:NF033839  440 PEVKPQPEKPKPEVKPQPETPKPEVKPQPEKPKPEVKPQPEKPKPDNSKPQADDKK 495
PH_PLEKHJ1 cd13258
Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; ...
72-174 2.37e-03

Pleckstrin homology domain containing, family J member 1 Pleckstrin homology (PH) domain; PLEKHJ1 (also called GNRPX2/Guanine nucleotide-releasing protein x ). It contains a single PH domain. Very little information is known about PLEKHJ1. PLEKHJ1 has been shown to interact with IKBKG (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma) and KRT33B (keratin 33B). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270078  Cd Length: 123  Bit Score: 38.84  E-value: 2.37e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   72 GMRLW------KRRWFVLADYCLFYYKDSreEAVLGSIPLPSYVI--SPVAPEDRISRKYSFKAVHtgmraliystttag 143
Cdd:cd13258    26 QMGGPkksevfKERWFKLKGNLLFYFRTN--EFGDCSEPIGAIVLenCRVQMEEITEKPFAFSIVF-------------- 89
                          90       100       110
                  ....*....|....*....|....*....|.
gi 762006021  144 sQMEHSgmRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:cd13258    90 -NDEPE--KKYIFSCRSEEQCEQWIEALRQA 117
RecN COG0497
DNA repair ATPase RecN [Replication, recombination and repair];
595-687 2.41e-03

DNA repair ATPase RecN [Replication, recombination and repair];


Pssm-ID: 440263 [Multi-domain]  Cd Length: 555  Bit Score: 41.60  E-value: 2.41e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  595 RILQDLEDKIRALKENKDQLESV---LEVLHRQTEQYRDQ----PQHLEKItcQQRL-----LQ-------EDLVHIRAE 655
Cdd:COG0497   251 RALERLAEYDPSLAELAERLESAlieLEEAASELRRYLDSlefdPERLEEV--EERLallrrLArkygvtvEELLAYAEE 328
                          90       100       110
                  ....*....|....*....|....*....|..
gi 762006021  656 LCRESTEMENAWNEYLKLEKDVEQLKQTLQEQ 687
Cdd:COG0497   329 LRAELAELENSDERLEELEAELAEAEAELLEA 360
PHA03247 PHA03247
large tegument protein UL36; Provisional
731-855 3.04e-03

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 41.85  E-value: 3.04e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  731 PERKTVPLFPHPSVPSLSPTESKPALQPSPPTSPvrtPLEVRLFPQLQTYVPYRPHPPQLRKVMSPLQSPTKAKPQAEDE 810
Cdd:PHA03247 2878 PARPPVRRLARPAVSRSTESFALPPDQPERPPQP---QAPPPPQPQPQPPPPPQPQPPPPPPPRPQPPLAPTTDPAGAGE 2954
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*....
gi 762006021  811 APPRPPLPELYSPEDQPPAVP----PLPREATIIRHTSVRGLKRQSDER 855
Cdd:PHA03247 2955 PSGAVPQPWLGALVPGRVAVPrfrvPQPAPSREAPASSTPPLTGHSLSR 3003
PH_PLEKHD1 cd13281
Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH ...
76-177 3.22e-03

Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH domain; Human PLEKHD1 (also called UPF0639, pleckstrin homology domain containing, family D (with M protein repeats) member 1) is a single transcript and contains a single PH domain. PLEKHD1 is conserved in human, chimpanzee, , dog, cow, mouse, chicken, zebrafish, and Caenorhabditis elegans. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270099  Cd Length: 139  Bit Score: 38.84  E-value: 3.22e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   76 WKRRWFVLADYCLFYYKDSrEEAVL-----------GSIPLPSYVISPVapeDRISRKYSFKAVHTGMRALIystttags 144
Cdd:cd13281    30 WSKRFFIIKEGFLLYYSES-EKKDFektrhfnihpkGVIPLGGCSIEAV---EDPGKPYAISISHSDFKGNI-------- 97
                          90       100       110
                  ....*....|....*....|....*....|...
gi 762006021  145 qmehsgmrtyYFSADTLEDMNAWVRAMNQAAQV 177
Cdd:cd13281    98 ----------ILAADSEFEQEKWLDMLRESGKI 120
PH_CpORP2-like cd13293
Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) ...
63-174 3.68e-03

Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) domain; There are 2 types of ORPs found in Cryptosporidium: CpORP1 and CpORP2. Cryptosporium differs from other apicomplexans like Plasmodium, Toxoplasma, and Eimeria which possess only a single long-type ORP consisting of an N-terminal PH domain followed by a C-terminal ligand binding (LB) domain. CpORP2 is like this, but CpORP1 differs and has a truncated N-terminus resulting in only having a LB domain present. The exact functions of these proteins are largely unknown though CpORP1 is thought to be involved in lipid transport across the parasitophorous vacuole membrane. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241447  Cd Length: 88  Bit Score: 37.69  E-value: 3.68e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   63 GWLHKQdSSGMRLWKRRWFVLADyCLFYYKDSREEAVLGSIPLPSYVISPVaPED--RISRKYsfkavhtgmraliystt 140
Cdd:cd13293     3 GYLKKW-TNIFNSWKPRYFILYP-GILCYSKQKGGPKKGTIHLKICDIRLV-PDDplRIIINT----------------- 62
                          90       100       110
                  ....*....|....*....|....*....|....
gi 762006021  141 tagsqmehsGMRTYYFSADTLEDMNAWVRAMNQA 174
Cdd:cd13293    63 ---------GTNQLHLRASSVEEKLKWYNALKYA 87
PHA03379 PHA03379
EBNA-3A; Provisional
731-865 3.85e-03

EBNA-3A; Provisional


Pssm-ID: 223066 [Multi-domain]  Cd Length: 935  Bit Score: 41.20  E-value: 3.85e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  731 PERKTVPLFPHPSVP---SLSPTESKPALQ-PSPPTSPVRTPLEVRLFP------QLQTYVPYRPHPPQLRKVMSPLQSP 800
Cdd:PHA03379  526 PQPMPVEPVPVPTVAlerPVCPAPPLIAMQgPGETSGIVRVRERWRPAPwtpnppRSPSQMSVRDRLARLRAEAQPYQAS 605
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 762006021  801 TKAKPQAEDEAPPRPPLPELYSPEDQPPAVPPLPREATIIRHTSVRGLKRQSDER--KRDREQGQCV 865
Cdd:PHA03379  606 VEVQPPQLTQVSPQQPMEYPLEPEQQMFPGSPFSQVADVMRAGGVPAMQPQYFDLplQQPISQGAPL 672
PH_Osh1p_Osh2p_yeast cd13292
Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p ...
58-129 4.30e-03

Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p is proposed to function in postsynthetic sterol regulation, piecemeal microautophagy of the nucleus, and cell polarity establishment. Yeast Osh2p is proposed to function in sterol metabolism and cell polarity establishment. Both Osh1p and Osh2p contain 3 N-terminal ankyrin repeats, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBP andOsh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241446  Cd Length: 103  Bit Score: 37.67  E-value: 4.30e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   58 PVVVRGWLHKQdSSGMRLWKRRWFVLADYCLFYYKDSREE--AVLGSIPLPSYVISPVAPE---------DRISRKYSFK 126
Cdd:cd13292     1 PPTMKGYLKKW-TNYAKGYKTRWFVLEDGVLSYYRHQDDEgsACRGSINMKNARLVSDPSEklrfevsskTSGSPKWYLK 79

                  ...
gi 762006021  127 AVH 129
Cdd:cd13292    80 ANH 82
PRK10263 PRK10263
DNA translocase FtsK; Provisional
737-834 5.12e-03

DNA translocase FtsK; Provisional


Pssm-ID: 236669 [Multi-domain]  Cd Length: 1355  Bit Score: 40.84  E-value: 5.12e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  737 PLFPHPSVPSLSPTESKPALQPSPPTSPvRTPlEVRLFPQLQTYVPYRPHPPQLRKVMSPLQSPTKAKPQAEDEAPPRPP 816
Cdd:PRK10263  339 PVTQTPPVASVDVPPAQPTVAWQPVPGP-QTG-EPVIAPAPEGYPQQSQYAQPAVQYNEPLQQPVQPQQPYYAPAAEQPA 416
                          90
                  ....*....|....*...
gi 762006021  817 LPELYSPEDQPPAVPPLP 834
Cdd:PRK10263  417 QQPYYAPAPEQPAQQPYY 434
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
550-729 5.16e-03

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 40.82  E-value: 5.16e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  550 QLKK-DLEYLDLKMTGRDLLKDRSLKpmkiaesdIDVKLSIFCEQDRILQDLEDKIRALKENKDQLESVLEVLHRQTEQY 628
Cdd:PRK03918  511 KLKKyNLEELEKKAEEYEKLKEKLIK--------LKGEIKSLKKELEKLEELKKKLAELEKKLDELEEELAELLKELEEL 582
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  629 -------------------------RDQPQHLEKITCQQRLLQEDLVHIRAELCRESTEMEnawneylKLEKDVEQLKQT 683
Cdd:PRK03918  583 gfesveeleerlkelepfyneylelKDAEKELEREEKELKKLEEELDKAFEELAETEKRLE-------ELRKELEELEKK 655
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|....*..
gi 762006021  684 L-QEQHRRafffqeksqIQKDLWRIEDVMAGLSANKENYRVLVGSVK 729
Cdd:PRK03918  656 YsEEEYEE---------LREEYLELSRELAGLRAELEELEKRREEIK 693
PRK03918 PRK03918
DNA double-strand break repair ATPase Rad50;
552-718 5.38e-03

DNA double-strand break repair ATPase Rad50;


Pssm-ID: 235175 [Multi-domain]  Cd Length: 880  Bit Score: 40.82  E-value: 5.38e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  552 KKDLEYLDLKMTGRDLLKDRSLKPMKIAESDIDVKLSIFCEQDRILQDLEDKIRALKENKDQLESVLEvLHRQTEQYRDQ 631
Cdd:PRK03918  230 VKELEELKEEIEELEKELESLEGSKRKLEEKIRELEERIEELKKEIEELEEKVKELKELKEKAEEYIK-LSEFYEEYLDE 308
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  632 PQHLEKitcqqrlLQEDLVHIRAELCRESTEMENAWNEYLKLEKDVEQLKQTLQEQHRRAFFFQEKSQIQKDLWRIEDVM 711
Cdd:PRK03918  309 LREIEK-------RLSRLEEEINGIEERIKELEEKEERLEELKKKLKELEKRLEELEERHELYEEAKAKKEELERLKKRL 381

                  ....*..
gi 762006021  712 AGLSANK 718
Cdd:PRK03918  382 TGLTPEK 388
PRK10263 PRK10263
DNA translocase FtsK; Provisional
740-946 6.54e-03

DNA translocase FtsK; Provisional


Pssm-ID: 236669 [Multi-domain]  Cd Length: 1355  Bit Score: 40.45  E-value: 6.54e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  740 PHPSVPSLSPTESKPALQPSPPTSPVRTPLEVRLfPQLQTYVPYRPHPPQLRKVMSPLQSPTKAKP-QAEDEAPPRPPLP 818
Cdd:PRK10263  382 QQSQYAQPAVQYNEPLQQPVQPQQPYYAPAAEQP-AQQPYYAPAPEQPAQQPYYAPAPEQPVAGNAwQAEEQQSTFAPQS 460
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  819 --ELYSPEDQPPAVPPLPREATIIRHTSVRGLKRQSDERKRDREQGQCVNgdlKVELRSYVSEPELASLSGDVPQPSLSL 896
Cdd:PRK10263  461 tyQTEQTYQQPAAQEPLYQQPQPVEQQPVVEPEPVVEETKPARPPLYYFE---EVEEKRAREREQLAAWYQPIPEPVKEP 537
                         170       180       190       200       210
                  ....*....|....*....|....*....|....*....|....*....|.
gi 762006021  897 VGSESRYQTLPGRGLSGSTSrlqqSSTIAPYVT-LRRGLNAENSSATFSRP 946
Cdd:PRK10263  538 EPIKSSLKAPSVAAVPPVEA----AAAVSPLASgVKKATLATGAAATVAAP 584
PRK14950 PRK14950
DNA polymerase III subunits gamma and tau; Provisional
735-839 8.14e-03

DNA polymerase III subunits gamma and tau; Provisional


Pssm-ID: 237864 [Multi-domain]  Cd Length: 585  Bit Score: 40.18  E-value: 8.14e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  735 TVPLFPHPSVPSLSPTESKPALQPSPPTSPVRTPLEVRLFPQLQTyvpyrPHPPQLRKVMSPlqsPTKAKPQAEDEAPPR 814
Cdd:PRK14950  364 PAPQPAKPTAAAPSPVRPTPAPSTRPKAAAAANIPPKEPVRETAT-----PPPVPPRPVAPP---VPHTPESAPKLTRAA 435
                          90       100
                  ....*....|....*....|....*
gi 762006021  815 PPLPElySPEDQPPAVPPLPREATI 839
Cdd:PRK14950  436 IPVDE--KPKYTPPAPPKEEEKALI 458
PHA03247 PHA03247
large tegument protein UL36; Provisional
731-839 8.22e-03

large tegument protein UL36; Provisional


Pssm-ID: 223021 [Multi-domain]  Cd Length: 3151  Bit Score: 40.31  E-value: 8.22e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021  731 PERKTVPLFPHPSVPSLSPTESKPALQPSPPTSPVRTP---LEVRLFPQLQTYVPYRPHPPQLRKVMSPLQSPTKAKPQA 807
Cdd:PHA03247 2742 PAVPAGPATPGGPARPARPPTTAGPPAPAPPAAPAAGPprrLTRPAVASLSESRESLPSPWDPADPPAAVLAPAAALPPA 2821
                          90       100       110
                  ....*....|....*....|....*....|..
gi 762006021  808 EDEAPPRPPLPelySPEDQPPAVPPLPREATI 839
Cdd:PHA03247 2822 ASPAGPLPPPT---SAQPTAPPPPPGPPPPSL 2850
Atrophin-1 pfam03154
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ...
737-842 9.11e-03

Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity.


Pssm-ID: 460830 [Multi-domain]  Cd Length: 991  Bit Score: 40.14  E-value: 9.11e-03
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 762006021   737 PLFPHPSVPSLSPTESKPAL--QPSPPTSPVRTPLEVRLFPQLQTYVPYRPHPPQLRKVMSPLQSPTKAKPQAEDEAPPR 814
Cdd:pfam03154  187 PPPGTTQAATAGPTPSAPSVppQGSPATSQPPNQTQSTAAPHTLIQQTPTLHPQRLPSPHPPLQPMTQPPPPSQVSPQPL 266
                           90       100
                   ....*....|....*....|....*...
gi 762006021   815 PPlPELYSPedQPPAVPPLPREATIIRH 842
Cdd:pfam03154  267 PQ-PSLHGQ--MPPMPHSLQTGPSHMQH 291
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH