3'-5' exonuclease catalyzes the excision of nucleoside monophosphates at the DNA or RNA termini in the 3'-5' direction; similar to human ERI1 exoribonuclease 3
DEDDh 3'-5' exonuclease domain of Caenorhabditis elegans ERI-1, human 3' exonuclease, and ...
15-195
4.01e-83
DEDDh 3'-5' exonuclease domain of Caenorhabditis elegans ERI-1, human 3' exonuclease, and similar proteins; This subfamily is composed of Caenorhabditis elegans ERI-1, human 3' exonuclease (3'hExo), Drosophila exonuclease snipper (snp), and similar proteins from eukaryotes and bacteria. These are DEDDh-type DnaQ-like 3'-5' exonucleases containing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. ERI-1 has been implicated in the degradation of small interfering RNAs (RNAi). 3'hExo participates in the degradation of histone mRNAs. Snp is a non-essential exonuclease that efficiently degrades structured RNA and DNA substrates as long as there is a minimum of 2 nucleotides in the 3' overhang to initiate degradation. Snp is not a functional homolog of either ERI-1 or 3'hExo.
:
Pssm-ID: 99836 [Multi-domain] Cd Length: 176 Bit Score: 245.21 E-value: 4.01e-83
DEDDh 3'-5' exonuclease domain of Caenorhabditis elegans ERI-1, human 3' exonuclease, and ...
15-195
4.01e-83
DEDDh 3'-5' exonuclease domain of Caenorhabditis elegans ERI-1, human 3' exonuclease, and similar proteins; This subfamily is composed of Caenorhabditis elegans ERI-1, human 3' exonuclease (3'hExo), Drosophila exonuclease snipper (snp), and similar proteins from eukaryotes and bacteria. These are DEDDh-type DnaQ-like 3'-5' exonucleases containing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. ERI-1 has been implicated in the degradation of small interfering RNAs (RNAi). 3'hExo participates in the degradation of histone mRNAs. Snp is a non-essential exonuclease that efficiently degrades structured RNA and DNA substrates as long as there is a minimum of 2 nucleotides in the 3' overhang to initiate degradation. Snp is not a functional homolog of either ERI-1 or 3'hExo.
Pssm-ID: 99836 [Multi-domain] Cd Length: 176 Bit Score: 245.21 E-value: 4.01e-83
DEDDh 3'-5' exonuclease domain of Caenorhabditis elegans ERI-1, human 3' exonuclease, and ...
15-195
4.01e-83
DEDDh 3'-5' exonuclease domain of Caenorhabditis elegans ERI-1, human 3' exonuclease, and similar proteins; This subfamily is composed of Caenorhabditis elegans ERI-1, human 3' exonuclease (3'hExo), Drosophila exonuclease snipper (snp), and similar proteins from eukaryotes and bacteria. These are DEDDh-type DnaQ-like 3'-5' exonucleases containing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. ERI-1 has been implicated in the degradation of small interfering RNAs (RNAi). 3'hExo participates in the degradation of histone mRNAs. Snp is a non-essential exonuclease that efficiently degrades structured RNA and DNA substrates as long as there is a minimum of 2 nucleotides in the 3' overhang to initiate degradation. Snp is not a functional homolog of either ERI-1 or 3'hExo.
Pssm-ID: 99836 [Multi-domain] Cd Length: 176 Bit Score: 245.21 E-value: 4.01e-83
DnaQ-like (or DEDD) 3'-5' exonuclease domain superfamily; The DnaQ-like exonuclease superfamily is a structurally conserved group of 3'-5' exonucleases, which catalyze the excision of nucleoside monophosphates at the DNA or RNA termini in the 3'-5' direction. It is also called the DEDD superfamily, after the four invariant acidic residues present in the catalytic site of its members. The superfamily consists of DNA- and RNA-processing enzymes such as the proofreading domains of DNA polymerases, other DNA exonucleases, RNase D, RNase T, Oligoribonuclease and RNA exonucleases (REX). The DnaQ-like exonuclease domain contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, which are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The conservation patterns of the three motifs may vary among different subfamilies. DnaQ-like exonucleases are classified as DEDDy or DEDDh exonucleases depending on the variation of motif III as YX(3)D or HX(4)D, respectively. The significance of the motif differences is still unclear. Almost all RNase families in this superfamily are present only in eukaryotes and bacteria, but not in archaea, suggesting a later origin, which in some cases are accompanied by horizontal gene transfer.
Pssm-ID: 176647 [Multi-domain] Cd Length: 96 Bit Score: 67.85 E-value: 6.26e-15
an uncharacterized bacterial subgroup of the DEDDh 3'-5' exonuclease domain family with ...
50-193
2.55e-06
an uncharacterized bacterial subgroup of the DEDDh 3'-5' exonuclease domain family with similarity to the epsilon subunit of DNA polymerase III; This subfamily is composed of uncharacterized bacterial proteins with similarity to the epsilon subunit of DNA polymerase III (Pol III), a multisubunit polymerase which is the main DNA replicating enzyme in bacteria, functioning as the chromosomal replicase. The Pol III holoenzyme is a complex of ten different subunits, three of which (alpha, epsilon, and theta) compose the catalytic core. The Pol III epsilon subunit, encoded by the dnaQ gene, is a DEDDh-type 3'-5' exonuclease which is responsible for the proofreading activity of the polymerase, increasing the fidelity of DNA synthesis. It contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The epsilon subunit of Pol III also functions as a stabilizer of the holoenzyme complex.
Pssm-ID: 99834 [Multi-domain] Cd Length: 156 Bit Score: 45.97 E-value: 2.55e-06
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options