Cystathionine beta-synthase (CBS) protein [Arabidopsis thaliana]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
214-352 | 2.46e-11 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; : Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 60.65 E-value: 2.46e-11
|
||||||||
COG2524 super family | cl34478 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
2-188 | 3.56e-05 | ||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; The actual alignment was detected with superfamily member COG2524: Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 44.10 E-value: 3.56e-05
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
214-352 | 2.46e-11 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 60.65 E-value: 2.46e-11
|
||||||||
CBS | smart00116 | Domain in cystathionine beta-synthase and other proteins; Domain present in all 3 forms of ... |
300-347 | 9.43e-08 | ||||
Domain in cystathionine beta-synthase and other proteins; Domain present in all 3 forms of cellular life. Present in two copies in inosine monophosphate dehydrogenase, of which one is disordered in the crystal structure. A number of disease states are associated with CBS-containing proteins including homocystinuria, Becker's and Thomsen disease. Pssm-ID: 214522 [Multi-domain] Cd Length: 49 Bit Score: 47.89 E-value: 9.43e-08
|
||||||||
CBS | pfam00571 | CBS domain; CBS domains are small intracellular modules that pair together to form a stable ... |
299-349 | 3.84e-07 | ||||
CBS domain; CBS domains are small intracellular modules that pair together to form a stable globular domain. This family represents a single CBS domain. Pairs of these domains have been termed a Bateman domain. CBS domains have been shown to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet. CBS domains are found attached to a wide range of other protein domains suggesting that CBS domains may play a regulatory role making proteins sensitive to adenosyl carrying ligands. The region containing the CBS domains in Cystathionine-beta synthase is involved in regulation by S-AdoMet. CBS domain pairs from AMPK bind AMP or ATP. The CBS domains from IMPDH and the chloride channel CLC2 bind ATP. Pssm-ID: 425756 [Multi-domain] Cd Length: 57 Bit Score: 46.44 E-value: 3.84e-07
|
||||||||
CBS_euAMPK_gamma-like_repeat2 | cd04641 | CBS pair domain found in 5'-AMP (adenosine monophosphate)-activated protein kinase; The 5'-AMP ... |
301-347 | 1.41e-06 | ||||
CBS pair domain found in 5'-AMP (adenosine monophosphate)-activated protein kinase; The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Most of the members of this cd contain two Bateman domains, each of which is composed of a tandem pair of cystathionine beta-synthase (CBS) motifs. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341399 [Multi-domain] Cd Length: 124 Bit Score: 46.74 E-value: 1.41e-06
|
||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
2-188 | 3.56e-05 | ||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 44.10 E-value: 3.56e-05
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
25-186 | 2.72e-04 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 39.92 E-value: 2.72e-04
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
214-352 | 2.46e-11 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 60.65 E-value: 2.46e-11
|
||||||||
CBS | COG0517 | CBS domain [Signal transduction mechanisms]; |
211-348 | 3.03e-08 | ||||
CBS domain [Signal transduction mechanisms]; Pssm-ID: 440283 [Multi-domain] Cd Length: 128 Bit Score: 51.79 E-value: 3.03e-08
|
||||||||
CBS | smart00116 | Domain in cystathionine beta-synthase and other proteins; Domain present in all 3 forms of ... |
300-347 | 9.43e-08 | ||||
Domain in cystathionine beta-synthase and other proteins; Domain present in all 3 forms of cellular life. Present in two copies in inosine monophosphate dehydrogenase, of which one is disordered in the crystal structure. A number of disease states are associated with CBS-containing proteins including homocystinuria, Becker's and Thomsen disease. Pssm-ID: 214522 [Multi-domain] Cd Length: 49 Bit Score: 47.89 E-value: 9.43e-08
|
||||||||
CBS | pfam00571 | CBS domain; CBS domains are small intracellular modules that pair together to form a stable ... |
299-349 | 3.84e-07 | ||||
CBS domain; CBS domains are small intracellular modules that pair together to form a stable globular domain. This family represents a single CBS domain. Pairs of these domains have been termed a Bateman domain. CBS domains have been shown to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet. CBS domains are found attached to a wide range of other protein domains suggesting that CBS domains may play a regulatory role making proteins sensitive to adenosyl carrying ligands. The region containing the CBS domains in Cystathionine-beta synthase is involved in regulation by S-AdoMet. CBS domain pairs from AMPK bind AMP or ATP. The CBS domains from IMPDH and the chloride channel CLC2 bind ATP. Pssm-ID: 425756 [Multi-domain] Cd Length: 57 Bit Score: 46.44 E-value: 3.84e-07
|
||||||||
CBS_euAMPK_gamma-like_repeat2 | cd04641 | CBS pair domain found in 5'-AMP (adenosine monophosphate)-activated protein kinase; The 5'-AMP ... |
301-347 | 1.41e-06 | ||||
CBS pair domain found in 5'-AMP (adenosine monophosphate)-activated protein kinase; The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Most of the members of this cd contain two Bateman domains, each of which is composed of a tandem pair of cystathionine beta-synthase (CBS) motifs. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341399 [Multi-domain] Cd Length: 124 Bit Score: 46.74 E-value: 1.41e-06
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
211-345 | 1.43e-06 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 46.47 E-value: 1.43e-06
|
||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
214-347 | 4.55e-06 | ||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 46.80 E-value: 4.55e-06
|
||||||||
CBS_pair_BON_assoc | cd04586 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ... |
214-345 | 2.13e-05 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the BON (bacterial OsmY and nodulation domain) domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the BON (bacterial OsmY and nodulation domain) domain. BON is a putative phospholipid-binding domain found in a family of osmotic shock protection proteins. It is also found in some secretins and a group of potential haemolysins. Its likely function is attachment to phospholipid membranes. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341362 [Multi-domain] Cd Length: 137 Bit Score: 43.57 E-value: 2.13e-05
|
||||||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
299-350 | 2.68e-05 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 43.32 E-value: 2.68e-05
|
||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
2-188 | 3.56e-05 | ||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 44.10 E-value: 3.56e-05
|
||||||||
YtoI | COG4109 | Predicted transcriptional regulator containing CBS domains [Transcription]; |
211-348 | 3.81e-05 | ||||
Predicted transcriptional regulator containing CBS domains [Transcription]; Pssm-ID: 443285 [Multi-domain] Cd Length: 135 Bit Score: 42.98 E-value: 3.81e-05
|
||||||||
COG2905 | COG2905 | Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains ... |
211-349 | 1.21e-04 | ||||
Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains [Signal transduction mechanisms]; Pssm-ID: 442149 [Multi-domain] Cd Length: 124 Bit Score: 41.35 E-value: 1.21e-04
|
||||||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
21-188 | 1.24e-04 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 41.39 E-value: 1.24e-04
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
25-186 | 2.72e-04 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 39.92 E-value: 2.72e-04
|
||||||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
129-271 | 5.39e-04 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 39.46 E-value: 5.39e-04
|
||||||||
CBS_pair_Mg_transporter | cd04606 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the magnesium ... |
299-351 | 5.71e-04 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the magnesium transporter, MgtE; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domain in the magnesium transporter, MgtE. MgtE and its homologs are found in eubacteria, archaebacteria, and eukaryota. Members of this family transport Mg2+ or other divalent cations into the cell via two highly conserved aspartates. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341380 [Multi-domain] Cd Length: 121 Bit Score: 39.24 E-value: 5.71e-04
|
||||||||
CBS | COG0517 | CBS domain [Signal transduction mechanisms]; |
299-349 | 6.07e-04 | ||||
CBS domain [Signal transduction mechanisms]; Pssm-ID: 440283 [Multi-domain] Cd Length: 128 Bit Score: 39.46 E-value: 6.07e-04
|
||||||||
CBS_pair_HRP1_like | cd04622 | CBS pair domain found in Hypoxic Response Protein 1 (HRP1) -like proteinds; Mycobacterium ... |
299-343 | 6.69e-04 | ||||
CBS pair domain found in Hypoxic Response Protein 1 (HRP1) -like proteinds; Mycobacterium tuberculosis adapts to cellular stresses by upregulation of the dormancy survival regulon. Hypoxic response protein 1 (HRP1) is encoded by one of the most strongly upregulated genes in the dormancy survival regulon. HRP1 is a 'CBS-domain-only protein; however unlike other CBS containing proteins it does not appear to bind AMP. The biological function of the protein remains unclear, but is thought to contribute to the modulation of the host immune response. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341390 [Multi-domain] Cd Length: 115 Bit Score: 38.94 E-value: 6.69e-04
|
||||||||
CBS | COG0517 | CBS domain [Signal transduction mechanisms]; |
16-190 | 9.64e-04 | ||||
CBS domain [Signal transduction mechanisms]; Pssm-ID: 440283 [Multi-domain] Cd Length: 128 Bit Score: 38.69 E-value: 9.64e-04
|
||||||||
CBS_pair_bact_arch | cd17775 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria ... |
299-347 | 1.48e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria and archaea; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341411 [Multi-domain] Cd Length: 117 Bit Score: 37.91 E-value: 1.48e-03
|
||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
299-349 | 2.18e-03 | ||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 38.71 E-value: 2.18e-03
|
||||||||
CBS | COG0517 | CBS domain [Signal transduction mechanisms]; |
129-241 | 3.39e-03 | ||||
CBS domain [Signal transduction mechanisms]; Pssm-ID: 440283 [Multi-domain] Cd Length: 128 Bit Score: 37.15 E-value: 3.39e-03
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
299-347 | 3.83e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 36.84 E-value: 3.83e-03
|
||||||||
CBS_pair_arch | cd09836 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains; The CBS domain, ... |
299-347 | 4.39e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341405 [Multi-domain] Cd Length: 116 Bit Score: 36.73 E-value: 4.39e-03
|
||||||||
COG2905 | COG2905 | Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains ... |
25-191 | 5.70e-03 | ||||
Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains [Signal transduction mechanisms]; Pssm-ID: 442149 [Multi-domain] Cd Length: 124 Bit Score: 36.35 E-value: 5.70e-03
|
||||||||
MgtE | COG2239 | Mg/Co/Ni transporter MgtE (contains CBS domain) [Inorganic ion transport and metabolism]; |
299-351 | 6.11e-03 | ||||
Mg/Co/Ni transporter MgtE (contains CBS domain) [Inorganic ion transport and metabolism]; Pssm-ID: 441840 [Multi-domain] Cd Length: 443 Bit Score: 38.12 E-value: 6.11e-03
|
||||||||
CBS_pair_CBS | cd04608 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ... |
298-349 | 6.93e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the pyridoxal-phosphate (PALP) dependent enzyme domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the pyridoxal-phosphate (PALP) dependent enzyme domain upstream. Cystathionine beta-synthase (CBS ) contains, besides the C-terminal regulatory CBS-pair, an N-terminal heme-binding module, followed by a pyridoxal phosphate (PLP) domain, which houses the active site. It is the first enzyme in the transsulfuration pathway, catalyzing the conversion of serine and homocysteine to cystathionine and water. In general, CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341382 [Multi-domain] Cd Length: 120 Bit Score: 35.97 E-value: 6.93e-03
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
129-271 | 7.04e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 36.07 E-value: 7.04e-03
|
||||||||
CBS_pair_BON_assoc | cd04586 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ... |
299-345 | 9.40e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the BON (bacterial OsmY and nodulation domain) domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the BON (bacterial OsmY and nodulation domain) domain. BON is a putative phospholipid-binding domain found in a family of osmotic shock protection proteins. It is also found in some secretins and a group of potential haemolysins. Its likely function is attachment to phospholipid membranes. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341362 [Multi-domain] Cd Length: 137 Bit Score: 35.87 E-value: 9.40e-03
|
||||||||
CBS_pair_ParBc_assoc | cd04610 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ... |
214-346 | 9.72e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ParBc (ParB-like nuclease) domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ParBc (ParB-like nuclease) domain downstream. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341383 [Multi-domain] Cd Length: 108 Bit Score: 35.37 E-value: 9.72e-03
|
||||||||
Blast search parameters | ||||
|