VapC-like PIN domain of bacterial Smg6-like proteins with C-terminal PhoH-like ATPase domains; ...
5-150
3.55e-52
VapC-like PIN domain of bacterial Smg6-like proteins with C-terminal PhoH-like ATPase domains; PIN (PilT N terminus) domain of Smg6-like bacterial proteins with C-terminal PhoH-like ATPase domains and other similar homologs are included in this family. Eukaryotic Smg5 and Smg6 nucleases are essential factors in nonsense-mediated mRNA decay (NMD), a post-transcriptional regulatory pathway that recognizes and rapidly degrades mRNAs containing premature translation termination codons. In vivo, the Smg6 PIN domain elicits degradation of bound mRNAs, as well as, metal ion dependent, degradation of single-stranded RNA, in vitro. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. PIN domains within this subgroup contain four highly conserved acidic residues (putative metal-binding, active site residues). Many of the bacterial homologs in this group have an N-terminal PIN domain and a C-terminal PhoH-like ATPase domain and are predicted to be ATPases which are induced by phosphate starvation.
Pssm-ID: 350231 Cd Length: 146 Bit Score: 171.96 E-value: 3.55e-52
Large family of predicted nucleotide-binding domains; From similarities to 5'-exonucleases, ...
6-132
1.05e-08
Large family of predicted nucleotide-binding domains; From similarities to 5'-exonucleases, these domains are predicted to be RNases. PINc domains in nematode SMG-5 and yeast NMD4p are predicted to be involved in RNAi.
Pssm-ID: 214771 [Multi-domain] Cd Length: 111 Bit Score: 52.81 E-value: 1.05e-08
VapC-like PIN domain of bacterial Smg6-like proteins with C-terminal PhoH-like ATPase domains; ...
5-150
3.55e-52
VapC-like PIN domain of bacterial Smg6-like proteins with C-terminal PhoH-like ATPase domains; PIN (PilT N terminus) domain of Smg6-like bacterial proteins with C-terminal PhoH-like ATPase domains and other similar homologs are included in this family. Eukaryotic Smg5 and Smg6 nucleases are essential factors in nonsense-mediated mRNA decay (NMD), a post-transcriptional regulatory pathway that recognizes and rapidly degrades mRNAs containing premature translation termination codons. In vivo, the Smg6 PIN domain elicits degradation of bound mRNAs, as well as, metal ion dependent, degradation of single-stranded RNA, in vitro. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. PIN domains within this subgroup contain four highly conserved acidic residues (putative metal-binding, active site residues). Many of the bacterial homologs in this group have an N-terminal PIN domain and a C-terminal PhoH-like ATPase domain and are predicted to be ATPases which are induced by phosphate starvation.
Pssm-ID: 350231 Cd Length: 146 Bit Score: 171.96 E-value: 3.55e-52
VapC-like PIN domain of nonsense-mediated decay (NMD) factors, Smg5 and Smg6, and related ...
8-146
4.04e-16
VapC-like PIN domain of nonsense-mediated decay (NMD) factors, Smg5 and Smg6, and related proteins; PIN (PilT N terminus) domain of nonsense-mediated decay (NMD) factors, Smg5 and Smg6, and homologs are included in this family. Smg5 and Smg6 are essential factors in NMD, a post-transcriptional regulatory pathway that recognizes and rapidly degrades mRNAs containing premature translation termination codons. In vivo, the Smg6 PIN domain elicits degradation of bound mRNAs, as well as, metal-ion dependent, degradation of single-stranded RNA, in vitro. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Point mutation studies of the conserved aspartate residues in the catalytic center of the Smg6 PIN domain revealed that Smg6 is the endonuclease involved in human NMD. However, Smg5 lacks several of these key catalytic residues and does not degrade single-stranded RNA, in vivo. Many of the bacterial homologs in this group have an N-terminal PIN domain and a C-terminal PhoH-like ATPase domain.
Pssm-ID: 350228 Cd Length: 152 Bit Score: 75.02 E-value: 4.04e-16
VapC-like PIN domain of Saccharomyces cerevisiae Swt1p, human SWT1 and related proteins; ...
8-134
8.34e-13
VapC-like PIN domain of Saccharomyces cerevisiae Swt1p, human SWT1 and related proteins; Saccharomyces cerevisiae mRNA-processing endoribonuclease Swt1p plays an important role in quality control of nuclear mRNPs in eukaryotes. Human transcriptional protein SWT1 (RNA endoribonuclease homolog, also known as HsSwt1, C1orf26, and chromosome 1 open reading frame 26) is an RNA endonuclease that participates in quality control of nuclear mRNPs and can associate with the nuclear pore complex (NPC). This subfamily belongs to the Smg5 and Smg6-like PIN domain family. Smg5 and Smg6 are essential factors in NMD, a post-transcriptional regulatory pathway that recognizes and rapidly degrades mRNAs containing premature translation termination codons. In vivo, the Smg6 PIN domain elicits degradation of bound mRNAs, as well as, metal-ion dependent, degradation of single-stranded RNA, in vitro. The PIN (PilT N terminus) domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. Point mutation studies of the conserved aspartate residues in the catalytic center of the Smg6 PIN domain revealed that Smg6 is the endonuclease involved in human NMD. However, Smg5 lacks several of these key catalytic residues and does not degrade single-stranded RNA, in vivo.
Pssm-ID: 350294 Cd Length: 141 Bit Score: 65.27 E-value: 8.34e-13
Large family of predicted nucleotide-binding domains; From similarities to 5'-exonucleases, ...
6-132
1.05e-08
Large family of predicted nucleotide-binding domains; From similarities to 5'-exonucleases, these domains are predicted to be RNases. PINc domains in nematode SMG-5 and yeast NMD4p are predicted to be involved in RNAi.
Pssm-ID: 214771 [Multi-domain] Cd Length: 111 Bit Score: 52.81 E-value: 1.05e-08
VapC-like PIN domain of human telomerase-binding protein EST1, Smg6, and other similar ...
8-134
2.56e-05
VapC-like PIN domain of human telomerase-binding protein EST1, Smg6, and other similar eukaryotic homologs; Nonsense-mediated decay (NMD) factors, Smg5 and Smg6 are essential to the post-transcriptional regulatory pathway, NMD, which recognizes and rapidly degrades mRNAs containing premature translation termination codons. In vivo, the Smg6 PIN (PilT N terminus) domain elicits degradation of bound mRNAs, as well as, metal ion dependent, degradation of single-stranded RNA, in vitro. The PIN domain belongs to a large nuclease superfamily. The structural properties of the PIN domain indicate its putative active center, consisting of invariant acidic amino acid residues (putative metal-binding residues), is geometrically similar in the active center of structure-specific 5' nucleases (also known as Flap endonuclease-1-like), PIN-domain ribonucleases of eukaryotic rRNA editing proteins, and bacterial toxins of toxin-antitoxin (TA) operons. PIN domains within this subgroup contain four highly conserved acidic residues (putative metal-binding, active site residues) which cluster at the C-terminal end of the beta-sheet and form a negatively charged pocket near the center of the molecule. Point mutation studies of the conserved aspartate residues in the catalytic center of the Smg6 PIN domain revealed that Smg6 is the endonuclease involved in human NMD. However, Smg5 lacks several of these key catalytic residues and does not degrade single-stranded RNA, in vivo. Eukaryotic Smg6 PIN domains are present at the C-terminal end of the telomerase activating proteins, EST1.
Pssm-ID: 350233 Cd Length: 178 Bit Score: 44.56 E-value: 2.56e-05
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options