LysR family transcriptional regulator containing an N-terminal HTH (helix-turn-helix) DNA-binding domain and a C-terminal substrate binding domain, which is structurally homologous to the type 2 periplasmic-binding (PBP2) fold proteins
LysR substrate binding domain; The structure of this domain is known and is similar to the ...
91-305
6.38e-23
LysR substrate binding domain; The structure of this domain is known and is similar to the periplasmic binding proteins. This domain binds a variety of ligands that caries in size and structure, such as amino acids, sugar phosphates, organic acids, metal cations, flavonoids, C6-ring carboxylic acids, H2O2, HOCl, homocysteine, NADPH, ATP, sulphate, muropeptides, acetate, salicylate, citrate, phenol- and quinolone derivatives, acetylserines, fatty acid CoA, shikimate, chorismate, homocysteine, indole-3-acetic acid, Na(I), c-di-GMP, ppGpp and hydrogen peroxide (Matilla et. al., FEMS Microbiology Reviews, fuab043, 45, 2021, 1. https://doi.org/10.1093/femsre/fuab043).
Pssm-ID: 460931 [Multi-domain] Cd Length: 205 Bit Score: 93.89 E-value: 6.38e-23
The substrate binding domain of LysR-type transcriptional regulators (LTTRs), a member of the ...
93-300
3.19e-11
The substrate binding domain of LysR-type transcriptional regulators (LTTRs), a member of the type 2 periplasmic binding fold protein superfamily; This model and hierarchy represent the the substrate-binding domain of the LysR-type transcriptional regulators that form the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, oxidative stress responses, nodule formation of nitrogen-fixing bacteria, synthesis of virulence factors, toxin production, attachment and secretion, to name a few. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the substrate-binding domains from ionotropic glutamate receptors, LysR-like transcriptional regulators, and unorthodox sensor proteins involved in signal transduction.
Pssm-ID: 176102 [Multi-domain] Cd Length: 197 Bit Score: 61.46 E-value: 3.19e-11
LysR substrate binding domain; The structure of this domain is known and is similar to the ...
91-305
6.38e-23
LysR substrate binding domain; The structure of this domain is known and is similar to the periplasmic binding proteins. This domain binds a variety of ligands that caries in size and structure, such as amino acids, sugar phosphates, organic acids, metal cations, flavonoids, C6-ring carboxylic acids, H2O2, HOCl, homocysteine, NADPH, ATP, sulphate, muropeptides, acetate, salicylate, citrate, phenol- and quinolone derivatives, acetylserines, fatty acid CoA, shikimate, chorismate, homocysteine, indole-3-acetic acid, Na(I), c-di-GMP, ppGpp and hydrogen peroxide (Matilla et. al., FEMS Microbiology Reviews, fuab043, 45, 2021, 1. https://doi.org/10.1093/femsre/fuab043).
Pssm-ID: 460931 [Multi-domain] Cd Length: 205 Bit Score: 93.89 E-value: 6.38e-23
The substrate binding domain of LysR-type transcriptional regulators (LTTRs), a member of the ...
93-300
3.19e-11
The substrate binding domain of LysR-type transcriptional regulators (LTTRs), a member of the type 2 periplasmic binding fold protein superfamily; This model and hierarchy represent the the substrate-binding domain of the LysR-type transcriptional regulators that form the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, oxidative stress responses, nodule formation of nitrogen-fixing bacteria, synthesis of virulence factors, toxin production, attachment and secretion, to name a few. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the substrate-binding domains from ionotropic glutamate receptors, LysR-like transcriptional regulators, and unorthodox sensor proteins involved in signal transduction.
Pssm-ID: 176102 [Multi-domain] Cd Length: 197 Bit Score: 61.46 E-value: 3.19e-11
The C-terminal substrate domain of LysR-type GcdR, TrPI, HvR and beta-lactamase regulators, ...
109-286
1.26e-06
The C-terminal substrate domain of LysR-type GcdR, TrPI, HvR and beta-lactamase regulators, and that of other closely related homologs; contains the type 2 periplasmic binding fold; This CD includes the C-terminal substrate domain of LysR-type transcriptional regulators involved in controlling the expression of glutaryl-CoA dehydrogenase (GcdH), S-adenosyl-L-homocysteine hydrolase, cell division protein FtsW, tryptophan synthase, and beta-lactamase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis.
Pssm-ID: 176123 [Multi-domain] Cd Length: 194 Bit Score: 47.96 E-value: 1.26e-06
The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional ...
143-268
6.31e-03
The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator CrgA-like, contains the type 2 periplasmic binding fold; This CD represents the substrate binding domain of an uncharacterized LysR-type transcriptional regulator (LTTR) CrgA-like 7. The LTTRs are acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes such as amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to name a few. In contrast to the tetrameric form of other LTTRs, CrgA from Neisseria meningitides assembles into an octameric ring, which can bind up to four 63-bp DNA oligonucleotides. Phylogenetic cluster analysis showed that the CrgA-like regulators form a subclass of the LTTRs that function as octamers. The CrgA is an auto-repressor of its own gene and activates the expression of the mdaB gene which coding for an NADPH-quinone reductase and that its action is increased by MBL (alpha-methylene-gamma-butyrolactone), an inducer of NADPH-quinone oxidoreductase. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis.
Pssm-ID: 176165 Cd Length: 197 Bit Score: 37.22 E-value: 6.31e-03
The C-terminal substrate-binding domain of the LysR-type transcriptional regulator OxyR, a ...
106-279
9.06e-03
The C-terminal substrate-binding domain of the LysR-type transcriptional regulator OxyR, a member of the type 2 periplasmic binding fold protein superfamily; OxyR senses hydrogen peroxide and is activated through the formation of an intramolecular disulfide bond. The OxyR activation induces the transcription of genes necessary for the bacterial defense against oxidative stress. The OxyR of LysR-type transcriptional regulator family is composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The C-terminal domain also contains the redox-active cysteines that mediate the redox-dependent conformational switch. Thus, the interaction between the OxyR-tetramer and DNA is notably different between the oxidized and reduced forms. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis.
Pssm-ID: 176103 [Multi-domain] Cd Length: 200 Bit Score: 36.73 E-value: 9.06e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options