putative LysR family DNA-binding transcriptional regulator YbdO [Escherichia coli str. K-12 substr. MG1655]
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
PRK11482 super family | cl32694 | DNA-binding transcriptional regulator; |
7-300 | 3.26e-40 | |||||
DNA-binding transcriptional regulator; The actual alignment was detected with superfamily member PRK11482: Pssm-ID: 183159 [Multi-domain] Cd Length: 317 Bit Score: 142.55 E-value: 3.26e-40
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
PRK11482 | PRK11482 | DNA-binding transcriptional regulator; |
7-300 | 3.26e-40 | |||||
DNA-binding transcriptional regulator; Pssm-ID: 183159 [Multi-domain] Cd Length: 317 Bit Score: 142.55 E-value: 3.26e-40
|
|||||||||
LysR | COG0583 | DNA-binding transcriptional regulator, LysR family [Transcription]; |
10-300 | 5.81e-33 | |||||
DNA-binding transcriptional regulator, LysR family [Transcription]; Pssm-ID: 440348 [Multi-domain] Cd Length: 256 Bit Score: 121.90 E-value: 5.81e-33
|
|||||||||
HTH_1 | pfam00126 | Bacterial regulatory helix-turn-helix protein, lysR family; |
12-70 | 1.77e-20 | |||||
Bacterial regulatory helix-turn-helix protein, lysR family; Pssm-ID: 459683 [Multi-domain] Cd Length: 60 Bit Score: 82.82 E-value: 1.77e-20
|
|||||||||
PBP2_LeuO | cd08466 | The C-terminal substrate binding domain of LysR-type transcriptional regulator LeuO, an ... |
138-286 | 3.58e-17 | |||||
The C-terminal substrate binding domain of LysR-type transcriptional regulator LeuO, an activator of leucine synthesis operon, contains the type 2 periplasmic binding fold; LeuO, a LysR-type transcriptional regulator, was originally identified as an activator of the leucine synthesis operon (leuABCD). Subsequently, LeuO was found to be not a specific regulator of the leu gene but a global regulator of unrelated various genes. LeuO activates bglGFB (utilization of beta-D-glucoside) and represses cadCBA (lysine decarboxylation) and dsrA (encoding a regulatory small RNA for translational control of rpoS and hns). LeuO also regulates the yjjQ-bglJ operon which coding for a LuxR-type transcription factor. In Salmonella enterica serovar Typhi, LeuO is a positive regulator of ompS1 (encoding an outer membrane), ompS2 (encoding a pathogenicity determinant), and assT, while LeuO represses the expression of OmpX and Tpx. Both osmS1 and osmS2 influence virulence in the mouse model of Salmonella. In Vibrio cholerae, LeuO is involved in control of biofilm formation and in the stringent response. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176155 [Multi-domain] Cd Length: 200 Bit Score: 78.06 E-value: 3.58e-17
|
|||||||||
argP | TIGR03298 | transcriptional regulator, ArgP family; ArgP used to be known as IciA. ArgP is a positive ... |
10-86 | 1.72e-07 | |||||
transcriptional regulator, ArgP family; ArgP used to be known as IciA. ArgP is a positive regulator of argK. It is a negative autoregulator in presence of arginine. It competes with DnaA for oriC iteron (13-mer) binding. It activates dnaA and nrd transcription. It has been demonstrated to be part of the pho regulon (). ArgP mutants convey canavanine (an L-arginine structural homolog) sensitivity. [Cellular processes, Toxin production and resistance, DNA metabolism, DNA replication, recombination, and repair, Regulatory functions, DNA interactions] Pssm-ID: 274509 [Multi-domain] Cd Length: 292 Bit Score: 51.46 E-value: 1.72e-07
|
|||||||||
decaheme_TF | NF041036 | multiheme cytochrome-associated LysR family transcriptional regulator; Members of this family, ... |
26-71 | 1.97e-07 | |||||
multiheme cytochrome-associated LysR family transcriptional regulator; Members of this family, including founding member GSU2202 from Geobacter sulfurreducens PCA, are LysR family transcriptional regulators found regularly in the vicinity of multiheme cytochromes such as GSU2203, a decaheme c-type cytochrome. Pssm-ID: 468965 [Multi-domain] Cd Length: 301 Bit Score: 51.28 E-value: 1.97e-07
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
PRK11482 | PRK11482 | DNA-binding transcriptional regulator; |
7-300 | 3.26e-40 | |||||
DNA-binding transcriptional regulator; Pssm-ID: 183159 [Multi-domain] Cd Length: 317 Bit Score: 142.55 E-value: 3.26e-40
|
|||||||||
LysR | COG0583 | DNA-binding transcriptional regulator, LysR family [Transcription]; |
10-300 | 5.81e-33 | |||||
DNA-binding transcriptional regulator, LysR family [Transcription]; Pssm-ID: 440348 [Multi-domain] Cd Length: 256 Bit Score: 121.90 E-value: 5.81e-33
|
|||||||||
HTH_1 | pfam00126 | Bacterial regulatory helix-turn-helix protein, lysR family; |
12-70 | 1.77e-20 | |||||
Bacterial regulatory helix-turn-helix protein, lysR family; Pssm-ID: 459683 [Multi-domain] Cd Length: 60 Bit Score: 82.82 E-value: 1.77e-20
|
|||||||||
leuO | PRK09508 | leucine transcriptional activator; Reviewed |
7-283 | 7.38e-20 | |||||
leucine transcriptional activator; Reviewed Pssm-ID: 181918 [Multi-domain] Cd Length: 314 Bit Score: 87.77 E-value: 7.38e-20
|
|||||||||
PBP2_LeuO | cd08466 | The C-terminal substrate binding domain of LysR-type transcriptional regulator LeuO, an ... |
138-286 | 3.58e-17 | |||||
The C-terminal substrate binding domain of LysR-type transcriptional regulator LeuO, an activator of leucine synthesis operon, contains the type 2 periplasmic binding fold; LeuO, a LysR-type transcriptional regulator, was originally identified as an activator of the leucine synthesis operon (leuABCD). Subsequently, LeuO was found to be not a specific regulator of the leu gene but a global regulator of unrelated various genes. LeuO activates bglGFB (utilization of beta-D-glucoside) and represses cadCBA (lysine decarboxylation) and dsrA (encoding a regulatory small RNA for translational control of rpoS and hns). LeuO also regulates the yjjQ-bglJ operon which coding for a LuxR-type transcription factor. In Salmonella enterica serovar Typhi, LeuO is a positive regulator of ompS1 (encoding an outer membrane), ompS2 (encoding a pathogenicity determinant), and assT, while LeuO represses the expression of OmpX and Tpx. Both osmS1 and osmS2 influence virulence in the mouse model of Salmonella. In Vibrio cholerae, LeuO is involved in control of biofilm formation and in the stringent response. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176155 [Multi-domain] Cd Length: 200 Bit Score: 78.06 E-value: 3.58e-17
|
|||||||||
PRK10216 | PRK10216 | HTH-type transcriptional regulator YidZ; |
7-77 | 7.43e-16 | |||||
HTH-type transcriptional regulator YidZ; Pssm-ID: 182312 [Multi-domain] Cd Length: 319 Bit Score: 76.40 E-value: 7.43e-16
|
|||||||||
PBP2_Nitroaromatics_like | cd08417 | The C-terminal substrate binding domain of LysR-type transcriptional regulators that involved ... |
116-286 | 4.04e-12 | |||||
The C-terminal substrate binding domain of LysR-type transcriptional regulators that involved in the catabolism of nitroaromatic/naphthalene compounds and that of related regulators; contains the type 2 periplasmic binding fold; This CD includes the C-terminal substrate binding domain of LysR-type transcriptional regulators involved in the catabolism of dinitrotoluene and similar compounds, such as DntR, NahR, and LinR. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. Also included are related LysR-type regulators clustered together in phylogenetic trees, including NodD, ToxR, LeuO, SyrM, TdcA, and PnbR. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176109 [Multi-domain] Cd Length: 200 Bit Score: 63.77 E-value: 4.04e-12
|
|||||||||
PBP2_DntR_NahR_LinR_like | cd08459 | The C-terminal substrate binding domain of LysR-type transcriptional regulators that are ... |
116-276 | 6.72e-11 | |||||
The C-terminal substrate binding domain of LysR-type transcriptional regulators that are involved in the catabolism of dinitrotoluene, naphthalene and gamma-hexachlorohexane; contains the type 2 periplasmic binding fold; This CD includes LysR-like bacterial transcriptional regulators, DntR, NahR, and LinR, which are involved in the degradation of aromatic compounds. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. DntR from Burkholderia species controls genes encoding enzymes for oxidative degradation of the nitro-aromatic compound 2,4-dinitrotoluene. The active form of DntR is homotetrameric, consisting of a dimer of dimers. NahR is a salicylate-dependent transcription activator of the nah and sal operons for naphthalene degradation. Salicylic acid is an intermediate of the oxidative degradation of the aromatic ring in soil bacteria. LinR positively regulates expression of the genes (linD and linE) encoding enzymes for gamma-hexachlorocyclohexane (a haloorganic insecticide) degradation. Expression of linD and linE are induced by their substrates, 2,5-dichlorohydroquinone (2,5-DCHQ) and chlorohydroquinone (CHQ). The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176148 [Multi-domain] Cd Length: 201 Bit Score: 60.67 E-value: 6.72e-11
|
|||||||||
PRK10086 | PRK10086 | DNA-binding transcriptional regulator DsdC; |
7-103 | 3.06e-10 | |||||
DNA-binding transcriptional regulator DsdC; Pssm-ID: 182231 [Multi-domain] Cd Length: 311 Bit Score: 60.02 E-value: 3.06e-10
|
|||||||||
PRK11139 | PRK11139 | DNA-binding transcriptional activator GcvA; Provisional |
12-70 | 9.76e-08 | |||||
DNA-binding transcriptional activator GcvA; Provisional Pssm-ID: 182990 [Multi-domain] Cd Length: 297 Bit Score: 52.15 E-value: 9.76e-08
|
|||||||||
argP | TIGR03298 | transcriptional regulator, ArgP family; ArgP used to be known as IciA. ArgP is a positive ... |
10-86 | 1.72e-07 | |||||
transcriptional regulator, ArgP family; ArgP used to be known as IciA. ArgP is a positive regulator of argK. It is a negative autoregulator in presence of arginine. It competes with DnaA for oriC iteron (13-mer) binding. It activates dnaA and nrd transcription. It has been demonstrated to be part of the pho regulon (). ArgP mutants convey canavanine (an L-arginine structural homolog) sensitivity. [Cellular processes, Toxin production and resistance, DNA metabolism, DNA replication, recombination, and repair, Regulatory functions, DNA interactions] Pssm-ID: 274509 [Multi-domain] Cd Length: 292 Bit Score: 51.46 E-value: 1.72e-07
|
|||||||||
decaheme_TF | NF041036 | multiheme cytochrome-associated LysR family transcriptional regulator; Members of this family, ... |
26-71 | 1.97e-07 | |||||
multiheme cytochrome-associated LysR family transcriptional regulator; Members of this family, including founding member GSU2202 from Geobacter sulfurreducens PCA, are LysR family transcriptional regulators found regularly in the vicinity of multiheme cytochromes such as GSU2203, a decaheme c-type cytochrome. Pssm-ID: 468965 [Multi-domain] Cd Length: 301 Bit Score: 51.28 E-value: 1.97e-07
|
|||||||||
rbcR | CHL00180 | LysR transcriptional regulator; Provisional |
10-87 | 6.74e-07 | |||||
LysR transcriptional regulator; Provisional Pssm-ID: 177082 [Multi-domain] Cd Length: 305 Bit Score: 50.02 E-value: 6.74e-07
|
|||||||||
LysR_substrate | pfam03466 | LysR substrate binding domain; The structure of this domain is known and is similar to the ... |
126-300 | 8.00e-07 | |||||
LysR substrate binding domain; The structure of this domain is known and is similar to the periplasmic binding proteins. This domain binds a variety of ligands that caries in size and structure, such as amino acids, sugar phosphates, organic acids, metal cations, flavonoids, C6-ring carboxylic acids, H2O2, HOCl, homocysteine, NADPH, ATP, sulphate, muropeptides, acetate, salicylate, citrate, phenol- and quinolone derivatives, acetylserines, fatty acid CoA, shikimate, chorismate, homocysteine, indole-3-acetic acid, Na(I), c-di-GMP, ppGpp and hydrogen peroxide (Matilla et. al., FEMS Microbiology Reviews, fuab043, 45, 2021, 1. https://doi.org/10.1093/femsre/fuab043). Pssm-ID: 460931 [Multi-domain] Cd Length: 205 Bit Score: 48.82 E-value: 8.00e-07
|
|||||||||
PBP2_LTTR_substrate | cd05466 | The substrate binding domain of LysR-type transcriptional regulators (LTTRs), a member of the ... |
126-296 | 1.74e-06 | |||||
The substrate binding domain of LysR-type transcriptional regulators (LTTRs), a member of the type 2 periplasmic binding fold protein superfamily; This model and hierarchy represent the the substrate-binding domain of the LysR-type transcriptional regulators that form the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, oxidative stress responses, nodule formation of nitrogen-fixing bacteria, synthesis of virulence factors, toxin production, attachment and secretion, to name a few. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the substrate-binding domains from ionotropic glutamate receptors, LysR-like transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. Pssm-ID: 176102 [Multi-domain] Cd Length: 197 Bit Score: 47.59 E-value: 1.74e-06
|
|||||||||
PRK11233 | PRK11233 | nitrogen assimilation transcriptional regulator; Provisional |
26-86 | 2.09e-06 | |||||
nitrogen assimilation transcriptional regulator; Provisional Pssm-ID: 183045 [Multi-domain] Cd Length: 305 Bit Score: 48.53 E-value: 2.09e-06
|
|||||||||
PRK03635 | PRK03635 | ArgP/LysG family DNA-binding transcriptional regulator; |
29-83 | 6.64e-06 | |||||
ArgP/LysG family DNA-binding transcriptional regulator; Pssm-ID: 235144 [Multi-domain] Cd Length: 294 Bit Score: 46.69 E-value: 6.64e-06
|
|||||||||
PRK13348 | PRK13348 | HTH-type transcriptional regulator ArgP; |
10-85 | 7.13e-06 | |||||
HTH-type transcriptional regulator ArgP; Pssm-ID: 237357 [Multi-domain] Cd Length: 294 Bit Score: 46.50 E-value: 7.13e-06
|
|||||||||
PRK10341 | PRK10341 | transcriptional regulator TdcA; |
15-93 | 1.52e-05 | |||||
transcriptional regulator TdcA; Pssm-ID: 182391 [Multi-domain] Cd Length: 312 Bit Score: 45.62 E-value: 1.52e-05
|
|||||||||
nhaR | PRK11062 | transcriptional activator NhaR; Provisional |
13-160 | 1.03e-04 | |||||
transcriptional activator NhaR; Provisional Pssm-ID: 182938 [Multi-domain] Cd Length: 296 Bit Score: 43.07 E-value: 1.03e-04
|
|||||||||
PRK15092 | PRK15092 | DNA-binding transcriptional repressor LrhA; Provisional |
11-82 | 1.39e-04 | |||||
DNA-binding transcriptional repressor LrhA; Provisional Pssm-ID: 237907 [Multi-domain] Cd Length: 310 Bit Score: 42.71 E-value: 1.39e-04
|
|||||||||
PRK10094 | PRK10094 | HTH-type transcriptional activator AllS; |
10-109 | 2.90e-04 | |||||
HTH-type transcriptional activator AllS; Pssm-ID: 182237 [Multi-domain] Cd Length: 308 Bit Score: 41.72 E-value: 2.90e-04
|
|||||||||
PBP2_TdcA | cd08418 | The C-terminal substrate binding domain of LysR-type transcriptional regulator TdcA, which is ... |
221-293 | 3.62e-04 | |||||
The C-terminal substrate binding domain of LysR-type transcriptional regulator TdcA, which is involved in the degradation of L-serine and L-threonine, contains the type 2 periplasmic binding fold; TdcA, a member of the LysR family, activates the expression of the anaerobically-regulated tdcABCDEFG operon which is involved in the degradation of L-serine and L-threonine to acetate and propionate, respectively. The tdc operon is comprised of one regulatory gene tdcA and six structural genes, tdcB to tdcG. The expression of the tdc operon is affected by several transcription factors including the cAMP receptor protein (CRP), integration host factor (IHF), histone-like protein (HU), and the operon specific regulators TdcA and TcdR. TcdR is divergently transcribed from the operon and encodes a small protein that is required for efficient expression of the Escherichia coli tdc operon. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176110 [Multi-domain] Cd Length: 201 Bit Score: 40.80 E-value: 3.62e-04
|
|||||||||
PRK11242 | PRK11242 | DNA-binding transcriptional regulator CynR; Provisional |
23-85 | 6.56e-04 | |||||
DNA-binding transcriptional regulator CynR; Provisional Pssm-ID: 183051 [Multi-domain] Cd Length: 296 Bit Score: 40.71 E-value: 6.56e-04
|
|||||||||
PRK09801 | PRK09801 | LysR family transcriptional regulator; |
1-111 | 9.59e-04 | |||||
LysR family transcriptional regulator; Pssm-ID: 182085 [Multi-domain] Cd Length: 310 Bit Score: 40.40 E-value: 9.59e-04
|
|||||||||
PRK09986 | PRK09986 | LysR family transcriptional regulator; |
7-91 | 1.84e-03 | |||||
LysR family transcriptional regulator; Pssm-ID: 182183 [Multi-domain] Cd Length: 294 Bit Score: 39.32 E-value: 1.84e-03
|
|||||||||
PRK09791 | PRK09791 | LysR family transcriptional regulator; |
12-76 | 3.99e-03 | |||||
LysR family transcriptional regulator; Pssm-ID: 182077 [Multi-domain] Cd Length: 302 Bit Score: 38.20 E-value: 3.99e-03
|
|||||||||
Blast search parameters | ||||
|