aspartate-semialdehyde dehydrogenase catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate
C-terminal catalytic domain of bacterial aspartate beta-semialdehyde dehydrogenase (ASADH) and ...
135-351
8.66e-165
C-terminal catalytic domain of bacterial aspartate beta-semialdehyde dehydrogenase (ASADH) and similar proteins; The family corresponds to a branch of bacterial aspartate beta-semialdehyde dehydrogenase (ASADH) enzymes mainly found in proteobacteria, such as Escherichia coli, Haemophilus influenzae, Pseudomonas aeruginosa and Vibrio cholerae. These proteins have similar overall folds and domain organizations but share less sequence homology with fungal and archaeal ASADHs. ASADH (EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate, which is the second step of the aspartate biosynthetic pathway. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. ASADH contains an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like catalytic domain and are members of the GAPDH superfamily of proteins.
Pssm-ID: 467687 Cd Length: 217 Bit Score: 459.08 E-value: 8.66e-165
Aspartate-semialdehyde dehydrogenase [Amino acid transport and metabolism]; ...
2-367
4.98e-161
Aspartate-semialdehyde dehydrogenase [Amino acid transport and metabolism]; Aspartate-semialdehyde dehydrogenase is part of the Pathway/BioSystem: Lysine biosynthesis
Pssm-ID: 439906 [Multi-domain] Cd Length: 333 Bit Score: 454.10 E-value: 4.98e-161
Semialdehyde dehydrogenase, NAD binding domain; The semialdehyde dehydrogenase family is found ...
3-119
2.81e-29
Semialdehyde dehydrogenase, NAD binding domain; The semialdehyde dehydrogenase family is found in N-acetyl-glutamine semialdehyde dehydrogenase (AgrC), which is involved in arginine biosynthesis, and aspartate-semialdehyde dehydrogenase, an enzyme involved in the biosynthesis of various amino acids from aspartate. This family is also found in yeast and fungal Arg5,6 protein, which is cleaved into the enzymes N-acety-gamma-glutamyl-phosphate reductase and acetylglutamate kinase. These are also involved in arginine biosynthesis. All proteins in this entry contain a NAD binding region of semialdehyde dehydrogenase.
Pssm-ID: 214863 [Multi-domain] Cd Length: 123 Bit Score: 109.56 E-value: 2.81e-29
C-terminal catalytic domain of bacterial aspartate beta-semialdehyde dehydrogenase (ASADH) and ...
135-351
8.66e-165
C-terminal catalytic domain of bacterial aspartate beta-semialdehyde dehydrogenase (ASADH) and similar proteins; The family corresponds to a branch of bacterial aspartate beta-semialdehyde dehydrogenase (ASADH) enzymes mainly found in proteobacteria, such as Escherichia coli, Haemophilus influenzae, Pseudomonas aeruginosa and Vibrio cholerae. These proteins have similar overall folds and domain organizations but share less sequence homology with fungal and archaeal ASADHs. ASADH (EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate, which is the second step of the aspartate biosynthetic pathway. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. ASADH contains an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like catalytic domain and are members of the GAPDH superfamily of proteins.
Pssm-ID: 467687 Cd Length: 217 Bit Score: 459.08 E-value: 8.66e-165
Aspartate-semialdehyde dehydrogenase [Amino acid transport and metabolism]; ...
2-367
4.98e-161
Aspartate-semialdehyde dehydrogenase [Amino acid transport and metabolism]; Aspartate-semialdehyde dehydrogenase is part of the Pathway/BioSystem: Lysine biosynthesis
Pssm-ID: 439906 [Multi-domain] Cd Length: 333 Bit Score: 454.10 E-value: 4.98e-161
C-terminal catalytic domain of aspartate beta-semialdehyde dehydrogenase (ASADH), USG-1 ...
135-351
3.14e-101
C-terminal catalytic domain of aspartate beta-semialdehyde dehydrogenase (ASADH), USG-1 protein and similar proteins; The family includes aspartate beta-semialdehyde dehydrogenase (ASADH), NADP-dependent malonyl-CoA reductase (MCR), and USG-1 protein. These proteins contain an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like domain and are members of the GAPDH superfamily of proteins. ASADH (EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate, which is the second step of the aspartate biosynthetic pathway. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. NADP-dependent MCR (EC 1.2.1.75) is mainly found in Archaea. It catalyzes the reduction of malonyl-CoA to malonate semialdehyde, a key step in the 3-hydroxypropanoate and the 3-hydroxypropanoate/4-hydroxybutyrate cycles. It can also use succinyl-CoA and succinate semialdehyde as substrates but at a lower rate than malonyl-CoA. Sequence comparison suggests that the archaeal MCR gene (mcr) has evolved from the duplication of a common ancestral ASADH gene (asd). The biological function of USG-1 protein and homologs remains unclear. They are homologs to ASADH but lack the conserved active site residues of the ASADH protein C-terminal catalytic domain.
Pssm-ID: 467674 [Multi-domain] Cd Length: 193 Bit Score: 297.19 E-value: 3.14e-101
N-terminal NAD(P)-binding domain of Vibrio cholerae aspartate beta-semialdehyde dehydrogenase ...
2-134
1.92e-95
N-terminal NAD(P)-binding domain of Vibrio cholerae aspartate beta-semialdehyde dehydrogenase 1 (ASADH1) and similar proteins; The family corresponds to a branch of bacterial ASADH enzymes mainly found from proteobacteria, such as Escherichia coli, Haemophilus influenzae, Pseudomonas aeruginosa and Vibrio cholerae. The first isoform of ASADH in Vibrio cholerae is one of the prototypes of this family. They have similar overall folds and domain organizations but sharing less sequence homology with fungal and archaeal ASADHs. ASADH (EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate, which is the second step of the aspartate biosynthetic pathway. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. ASADH contains an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like catalytic domain.
Pssm-ID: 467517 Cd Length: 150 Bit Score: 280.68 E-value: 1.92e-95
C-terminal catalytic domain of aspartate beta-semialdehyde dehydrogenase (ASADH) and similar ...
135-351
1.71e-82
C-terminal catalytic domain of aspartate beta-semialdehyde dehydrogenase (ASADH) and similar proteins; Aspartate beta-semialdehyde dehydrogenase (ASADH; EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate, which is the second step of the aspartate biosynthetic pathway. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. ASADH contains an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like catalytic domain and are members of the GAPDH superfamily of proteins.
Pssm-ID: 467678 [Multi-domain] Cd Length: 165 Bit Score: 248.57 E-value: 1.71e-82
N-terminal NAD(P)-binding domain of aspartate-beta-semialdehyde dehydrogenase (ASADH) and ...
2-134
7.75e-41
N-terminal NAD(P)-binding domain of aspartate-beta-semialdehyde dehydrogenase (ASADH) and N-acetyl-gamma-glutamyl-phosphate reductase (AGPR); Aspartate-beta-semialdehyde dehydrogenase (ASADH, EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the second step of the aspartate biosynthetic pathway, an essential enzyme found in bacteria, fungi, and higher plants. ASADH catalyses the formation of L-aspartate-beta-semialdehyde (ASA) by the reductive dephosphorylation of L-beta-aspartyl phosphate (BAP), utilizing the reducing power of NADPH. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. N-acetyl-gamma-glutamyl-phosphate reductase (AGPR, EC 1.2.1.38), also called N-acetyl-glutamate semialdehyde dehydrogenase, or NAGSA dehydrogenase, reversibly catalyses the NADPH-dependent reduction of N-acetyl-gamma-glutamyl phosphate; the third step of arginine biosynthesis. ASADH and AGPR proteins contain an N-terminal Rossmann fold NAD(P)H binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like domain.
Pssm-ID: 467516 [Multi-domain] Cd Length: 145 Bit Score: 140.58 E-value: 7.75e-41
N-terminal NAD(P)-binding domain of aspartate beta-semialdehyde dehydrogenase (ASADH), USG-1 ...
2-134
1.95e-35
N-terminal NAD(P)-binding domain of aspartate beta-semialdehyde dehydrogenase (ASADH), USG-1 protein and similar proteins; The family includes aspartate beta-semialdehyde dehydrogenase (ASADH), NADP-dependent malonyl-CoA reductase (MCR), and USG-1 protein. They contain an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like domain and are members of the GAPDH superfamily of proteins. ASADH (EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate, which is the second step of the aspartate biosynthetic pathway. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. NADP-dependent MCR (EC 1.2.1.75) is mainly found in Archaea. It catalyzes the reduction of malonyl-CoA to malonate semialdehyde, a key step in the 3-hydroxypropanoate and the 3-hydroxypropanoate/4-hydroxybutyrate cycles. It can also use succinyl-CoA and succinate semialdehyde as substrates but at a lower rate than malonyl-CoA. Sequence comparison suggests that the archaeal MCR gene (mcr) has evolved from the duplication of a common ancestral ASADH gene (asd). The biological function of USG-1 protein and homologs remains unclear. They are homologs to ASADH but lack the conserved active site residues of the ASADH protein C-terminal catalytic domain.
Pssm-ID: 467523 [Multi-domain] Cd Length: 142 Bit Score: 126.30 E-value: 1.95e-35
Semialdehyde dehydrogenase, NAD binding domain; This Pfam entry contains the following members: ...
3-119
6.74e-34
Semialdehyde dehydrogenase, NAD binding domain; This Pfam entry contains the following members: N-acetyl-glutamine semialdehyde dehydrogenase (AgrC) Aspartate-semialdehyde dehydrogenase
Pssm-ID: 426059 [Multi-domain] Cd Length: 121 Bit Score: 121.48 E-value: 6.74e-34
C-terminal catalytic domain of bacterial/eukaryotic aspartate beta-semialdehyde dehydrogenase ...
135-351
8.30e-34
C-terminal catalytic domain of bacterial/eukaryotic aspartate beta-semialdehyde dehydrogenase (ASADH) and similar proteins; The family corresponds to a new branch of bacterial aspartate beta-semialdehyde dehydrogenase (ASADH) enzymes that has a similar overall fold and domain organization but share less sequence homology with the other bacterial ASADHs. The second isoform of ASADH in Vibrio cholerae is one of the prototypes of this family. It also includes ASADHs from Streptococcus pneumoniae, Mycobacterium tuberculosis, Thermus thermophilus, as well as from eukaryotes. ASADH (EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate, which is the second step of the aspartate biosynthetic pathway. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. ASADH contains an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like catalytic domain and are members of the GAPDH superfamily of proteins.
Pssm-ID: 467681 Cd Length: 188 Bit Score: 123.78 E-value: 8.30e-34
C-terminal catalytic domain found in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) ...
135-351
8.59e-34
C-terminal catalytic domain found in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) superfamily of proteins; GAPDH-like C-terminal catalytic domains are typically associated with a classic N-terminal Rossmann fold NAD(P)-binding domain. This superfamily includes the C-terminal domains of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), N-acetyl-gamma-glutamyl-phosphate reductase (AGPR), aspartate beta-semialdehyde dehydrogenase (ASADH), acetaldehyde dehydrogenase (ALDH) and USG-1 homolog proteins.
Pssm-ID: 467672 [Multi-domain] Cd Length: 166 Bit Score: 123.01 E-value: 8.59e-34
Semialdehyde dehydrogenase, NAD binding domain; The semialdehyde dehydrogenase family is found ...
3-119
2.81e-29
Semialdehyde dehydrogenase, NAD binding domain; The semialdehyde dehydrogenase family is found in N-acetyl-glutamine semialdehyde dehydrogenase (AgrC), which is involved in arginine biosynthesis, and aspartate-semialdehyde dehydrogenase, an enzyme involved in the biosynthesis of various amino acids from aspartate. This family is also found in yeast and fungal Arg5,6 protein, which is cleaved into the enzymes N-acety-gamma-glutamyl-phosphate reductase and acetylglutamate kinase. These are also involved in arginine biosynthesis. All proteins in this entry contain a NAD binding region of semialdehyde dehydrogenase.
Pssm-ID: 214863 [Multi-domain] Cd Length: 123 Bit Score: 109.56 E-value: 2.81e-29
C-terminal catalytic domain of fungal/archaeal aspartate beta-semialdehyde dehydrogenase ...
135-338
1.11e-09
C-terminal catalytic domain of fungal/archaeal aspartate beta-semialdehyde dehydrogenase (ASADH) and similar proteins; The family corresponds to a new branch of aspartate beta-semialdehyde dehydrogenase (ASADH) enzymes that has a similar overall fold and domain organization but share very little sequence homology with the typical bacterial ASADHs. They are mainly from archaea and fungi. ASADH (EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate, which is the second step of the aspartate biosynthetic pathway. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. ASADH contains an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like catalytic domain and are members of the GAPDH superfamily of proteins. This family also includes NADP-dependent malonyl-CoA reductase (MCR, EC 1.2.1.75), which catalyzes the reduction of malonyl-CoA to malonate semialdehyde, a key step in the 3-hydroxypropanoate and the 3-hydroxypropanoate/4-hydroxybutyrate cycles. It can also use succinyl-CoA and succinate semialdehyde as substrates but at a lower rate than malonyl-CoA.
Pssm-ID: 467680 [Multi-domain] Cd Length: 180 Bit Score: 57.24 E-value: 1.11e-09
C-terminal domain of USG-1 protein and similar proteins; The family includes Escherichia coli ...
137-351
2.44e-09
C-terminal domain of USG-1 protein and similar proteins; The family includes Escherichia coli USG-1 protein, Pseudomonas aeruginosa USG-1 homolog proteins and similar proteins. Although its biological function remains unknown, it is found to be homologous to aspartate beta-semialdehyde dehydrogenase (ASADH) which contains an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like domain. However, USG-1 proteins lack the conserved active site residues of the ASADH protein C-terminal domain.
Pssm-ID: 467679 Cd Length: 186 Bit Score: 56.05 E-value: 2.44e-09
N-terminal NAD(P)-binding domain of Vibrio cholerae aspartate beta-semialdehyde dehydrogenase ...
345-366
7.35e-07
N-terminal NAD(P)-binding domain of Vibrio cholerae aspartate beta-semialdehyde dehydrogenase 1 (ASADH1) and similar proteins; The family corresponds to a branch of bacterial ASADH enzymes mainly found from proteobacteria, such as Escherichia coli, Haemophilus influenzae, Pseudomonas aeruginosa and Vibrio cholerae. The first isoform of ASADH in Vibrio cholerae is one of the prototypes of this family. They have similar overall folds and domain organizations but sharing less sequence homology with fungal and archaeal ASADHs. ASADH (EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate, which is the second step of the aspartate biosynthetic pathway. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. ASADH contains an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like catalytic domain.
Pssm-ID: 467517 Cd Length: 150 Bit Score: 48.40 E-value: 7.35e-07
N-terminal NAD(P)-binding domain of USG-1 protein and similar proteins; The family includes ...
3-127
4.71e-04
N-terminal NAD(P)-binding domain of USG-1 protein and similar proteins; The family includes Escherichia coli USG-1 protein, Pseudomonas aeruginosa USG-1 homolog proteins and similar proteins. Although their biological function remains unknown, they are homologs to aspartate beta-semialdehyde dehydrogenase (ASADH) which contains an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like domain. However, USG-1 proteins lack the conserved active site residues of the ASADH protein C-terminal domain.
Pssm-ID: 467520 [Multi-domain] Cd Length: 144 Bit Score: 39.91 E-value: 4.71e-04
N-terminal NAD(P)-binding domain of Vibrio cholerae aspartate beta-semialdehyde dehydrogenase ...
3-127
1.26e-03
N-terminal NAD(P)-binding domain of Vibrio cholerae aspartate beta-semialdehyde dehydrogenase 2 (ASADH2) and similar proteins; The family corresponds to a new branch of bacterial ASADH enzymes that has a similar overall fold and domain organization but sharing less sequence homology with the other bacterial ASADHs. The second isoform of ASADH in Vibrio cholerae is one of the prototypes of this family. It also includes ASADHs from Streptococcus pneumoniae, Mycobacterium tuberculosis, Thermus thermophilus, as well as from eukaryotes. ASADH (EC 1.2.1.11), also called ASA dehydrogenase (ASD), or aspartate-beta-semialdehyde dehydrogenase, catalyzes the NADPH-dependent formation of L-aspartate-semialdehyde (ASA) by the reductive dephosphorylation of L-aspartyl-4-phosphate, which is the second step of the aspartate biosynthetic pathway. ASA can either be further reduced to homoserine, which leads to methionine, threonine, or isoleucine, or it can be condensed with pyruvate and cyclized into dihydrodipicolinate, and then converted into diaminopimelate, a component of bacterial cell walls, and finally decarboxylated to produce lysine. ASADH contains an N-terminal Rossmann fold NAD(P) binding domain and a C-terminal glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-like catalytic domain.
Pssm-ID: 467519 [Multi-domain] Cd Length: 142 Bit Score: 38.57 E-value: 1.26e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options