aubergine, isoform A [Drosophila melanogaster]
argonaute/piwi family protein( domain architecture ID 10120291)
argonaute/piwi family protein containing PAZ (Piwi Argonaut and Zwille) and Piwi domains; similar to Drosophila melanogaster protein argonaute and Homo sapiens Piwi-like protein 3/4
List of domain hits
Name | Accession | Description | Interval | E-value | |||||||
Piwi_piwi-like_Euk | cd04658 | Piwi_piwi-like_Euk: PIWI domain, Piwi-like subfamily found in eukaryotes. This domain is found ... |
400-849 | 0e+00 | |||||||
Piwi_piwi-like_Euk: PIWI domain, Piwi-like subfamily found in eukaryotes. This domain is found in Piwi and closely related proteins, where it is believed to perform a crucial role in germline cells, via RNA silencing. RNA silencing refers to a group of related gene-silencing mechanisms mediated by short RNA molecules, including siRNAs, miRNAs, and heterochromatin-related guide RNAs. The mechanism in Piwi is believed to be similar to that in Argonaute, the central component of the RNA-induced silencing complex (RISC). The PIWI domain is the C-terminal portion of Argonaute and consists of two subdomains, one of which provides the 5' anchoring of the guide RNA and the other, the catalytic site for slicing. : Pssm-ID: 240016 [Multi-domain] Cd Length: 448 Bit Score: 563.81 E-value: 0e+00
|
|||||||||||
PAZ_piwi_like | cd02845 | PAZ domain, Piwi_like subfamily. In multi-cellular organisms, the Piwi protein appears to be ... |
272-392 | 3.06e-49 | |||||||
PAZ domain, Piwi_like subfamily. In multi-cellular organisms, the Piwi protein appears to be essential for the maintenance of germline stem cells. In the Drosophila male germline, Piwi was shown to be involved in the silencing of retrotransposons in the male gametes. The Piwi proteins share their domain architecture with other members of the argonaute family. The PAZ domain has been named after the proteins Piwi, Argonaut, and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the Piwi and Dicer families. PAZ functions as a nucleic acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. : Pssm-ID: 239211 Cd Length: 117 Bit Score: 169.36 E-value: 3.06e-49
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
Piwi_piwi-like_Euk | cd04658 | Piwi_piwi-like_Euk: PIWI domain, Piwi-like subfamily found in eukaryotes. This domain is found ... |
400-849 | 0e+00 | |||||||
Piwi_piwi-like_Euk: PIWI domain, Piwi-like subfamily found in eukaryotes. This domain is found in Piwi and closely related proteins, where it is believed to perform a crucial role in germline cells, via RNA silencing. RNA silencing refers to a group of related gene-silencing mechanisms mediated by short RNA molecules, including siRNAs, miRNAs, and heterochromatin-related guide RNAs. The mechanism in Piwi is believed to be similar to that in Argonaute, the central component of the RNA-induced silencing complex (RISC). The PIWI domain is the C-terminal portion of Argonaute and consists of two subdomains, one of which provides the 5' anchoring of the guide RNA and the other, the catalytic site for slicing. Pssm-ID: 240016 [Multi-domain] Cd Length: 448 Bit Score: 563.81 E-value: 0e+00
|
|||||||||||
Piwi | pfam02171 | Piwi domain; This domain is found in the protein Piwi and its relatives. The function of this ... |
555-852 | 2.06e-122 | |||||||
Piwi domain; This domain is found in the protein Piwi and its relatives. The function of this domain is the dsRNA guided hydrolysis of ssRNA. Determination of the crystal structure of Argonaute reveals that PIWI is an RNase H domain, and identifies Argonaute as Slicer, the enzyme that cleaves mRNA in the RNAi RISC complex. In addition, Mg+2 dependence and production of 3'-OH and 5' phosphate products are shared characteriztics of RNaseH and RISC. The PIWI domain core has a tertiary structure belonging to the RNase H family of enzymes. RNase H fold proteins all have a five-stranded mixed beta-sheet surrounded by helices. By analogy to RNase H enzymes which cleave single-stranded RNA guided by the DNA strand in an RNA/DNA hybrid, the PIWI domain can be inferred to cleave single-stranded RNA, for example mRNA, guided by double stranded siRNA. Pssm-ID: 396649 Cd Length: 296 Bit Score: 371.67 E-value: 2.06e-122
|
|||||||||||
Piwi | smart00950 | This domain is found in the protein Piwi and its relatives; The function of this domain is the ... |
555-852 | 4.99e-105 | |||||||
This domain is found in the protein Piwi and its relatives; The function of this domain is the dsRNA guided hydrolysis of ssRNA. Determination of the crystal structure of Argonaute reveals that PIWI is an RNase H domain, and identifies Argonaute as Slicer, the enzyme that cleaves mRNA in the RNAi RISC complex.. In addition, Mg+2 dependence and production of 3'-OH and 5' phosphate products are shared characteristics of RNaseH and RISC. The PIWI domain core has a tertiary structure belonging to the RNase H family of enzymes. RNase H fold proteins all have a five-stranded mixed beta-sheet surrounded by helices. By analogy to RNase H enzymes which cleave single-stranded RNA guided by the DNA strand in an RNA/DNA hybrid, the PIWI domain can be inferred to cleave single-stranded RNA, for example mRNA, guided by double stranded siRNA. Pssm-ID: 214930 Cd Length: 301 Bit Score: 326.60 E-value: 4.99e-105
|
|||||||||||
PAZ_piwi_like | cd02845 | PAZ domain, Piwi_like subfamily. In multi-cellular organisms, the Piwi protein appears to be ... |
272-392 | 3.06e-49 | |||||||
PAZ domain, Piwi_like subfamily. In multi-cellular organisms, the Piwi protein appears to be essential for the maintenance of germline stem cells. In the Drosophila male germline, Piwi was shown to be involved in the silencing of retrotransposons in the male gametes. The Piwi proteins share their domain architecture with other members of the argonaute family. The PAZ domain has been named after the proteins Piwi, Argonaut, and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the Piwi and Dicer families. PAZ functions as a nucleic acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. Pssm-ID: 239211 Cd Length: 117 Bit Score: 169.36 E-value: 3.06e-49
|
|||||||||||
PAZ | smart00949 | This domain is named PAZ after the proteins Piwi Argonaut and Zwille; This domain is found in ... |
280-414 | 3.23e-48 | |||||||
This domain is named PAZ after the proteins Piwi Argonaut and Zwille; This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerisation. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. Pssm-ID: 198017 Cd Length: 138 Bit Score: 167.46 E-value: 3.23e-48
|
|||||||||||
PAZ | pfam02170 | PAZ domain; This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain ... |
291-412 | 9.26e-32 | |||||||
PAZ domain; This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerization. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteriztic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. Pssm-ID: 460472 Cd Length: 123 Bit Score: 119.99 E-value: 9.26e-32
|
|||||||||||
PLN03202 | PLN03202 | protein argonaute; Provisional |
407-841 | 7.28e-31 | |||||||
protein argonaute; Provisional Pssm-ID: 215631 [Multi-domain] Cd Length: 900 Bit Score: 130.61 E-value: 7.28e-31
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
Piwi_piwi-like_Euk | cd04658 | Piwi_piwi-like_Euk: PIWI domain, Piwi-like subfamily found in eukaryotes. This domain is found ... |
400-849 | 0e+00 | |||||||
Piwi_piwi-like_Euk: PIWI domain, Piwi-like subfamily found in eukaryotes. This domain is found in Piwi and closely related proteins, where it is believed to perform a crucial role in germline cells, via RNA silencing. RNA silencing refers to a group of related gene-silencing mechanisms mediated by short RNA molecules, including siRNAs, miRNAs, and heterochromatin-related guide RNAs. The mechanism in Piwi is believed to be similar to that in Argonaute, the central component of the RNA-induced silencing complex (RISC). The PIWI domain is the C-terminal portion of Argonaute and consists of two subdomains, one of which provides the 5' anchoring of the guide RNA and the other, the catalytic site for slicing. Pssm-ID: 240016 [Multi-domain] Cd Length: 448 Bit Score: 563.81 E-value: 0e+00
|
|||||||||||
Piwi | pfam02171 | Piwi domain; This domain is found in the protein Piwi and its relatives. The function of this ... |
555-852 | 2.06e-122 | |||||||
Piwi domain; This domain is found in the protein Piwi and its relatives. The function of this domain is the dsRNA guided hydrolysis of ssRNA. Determination of the crystal structure of Argonaute reveals that PIWI is an RNase H domain, and identifies Argonaute as Slicer, the enzyme that cleaves mRNA in the RNAi RISC complex. In addition, Mg+2 dependence and production of 3'-OH and 5' phosphate products are shared characteriztics of RNaseH and RISC. The PIWI domain core has a tertiary structure belonging to the RNase H family of enzymes. RNase H fold proteins all have a five-stranded mixed beta-sheet surrounded by helices. By analogy to RNase H enzymes which cleave single-stranded RNA guided by the DNA strand in an RNA/DNA hybrid, the PIWI domain can be inferred to cleave single-stranded RNA, for example mRNA, guided by double stranded siRNA. Pssm-ID: 396649 Cd Length: 296 Bit Score: 371.67 E-value: 2.06e-122
|
|||||||||||
Piwi | smart00950 | This domain is found in the protein Piwi and its relatives; The function of this domain is the ... |
555-852 | 4.99e-105 | |||||||
This domain is found in the protein Piwi and its relatives; The function of this domain is the dsRNA guided hydrolysis of ssRNA. Determination of the crystal structure of Argonaute reveals that PIWI is an RNase H domain, and identifies Argonaute as Slicer, the enzyme that cleaves mRNA in the RNAi RISC complex.. In addition, Mg+2 dependence and production of 3'-OH and 5' phosphate products are shared characteristics of RNaseH and RISC. The PIWI domain core has a tertiary structure belonging to the RNase H family of enzymes. RNase H fold proteins all have a five-stranded mixed beta-sheet surrounded by helices. By analogy to RNase H enzymes which cleave single-stranded RNA guided by the DNA strand in an RNA/DNA hybrid, the PIWI domain can be inferred to cleave single-stranded RNA, for example mRNA, guided by double stranded siRNA. Pssm-ID: 214930 Cd Length: 301 Bit Score: 326.60 E-value: 4.99e-105
|
|||||||||||
Piwi_ago-like | cd04657 | Piwi_ago-like: PIWI domain, Argonaute-like subfamily. Argonaute is the central component of ... |
435-845 | 4.54e-65 | |||||||
Piwi_ago-like: PIWI domain, Argonaute-like subfamily. Argonaute is the central component of the RNA-induced silencing complex (RISC) and related complexes. The PIWI domain is the C-terminal portion of Argonaute and consists of two subdomains, one of which provides the 5' anchoring of the guide RNA and the other, the catalytic site for slicing. Pssm-ID: 240015 [Multi-domain] Cd Length: 426 Bit Score: 224.41 E-value: 4.54e-65
|
|||||||||||
Piwi-like | cd02826 | Piwi-like: PIWI domain. Domain found in proteins involved in RNA silencing. RNA silencing ... |
454-846 | 3.48e-53 | |||||||
Piwi-like: PIWI domain. Domain found in proteins involved in RNA silencing. RNA silencing refers to a group of related gene-silencing mechanisms mediated by short RNA molecules, including siRNAs, miRNAs, and heterochromatin-related guide RNAs. The central component of the RNA-induced silencing complex (RISC) and related complexes is Argonaute. The PIWI domain is the C-terminal portion of Argonaute and consists of two subdomains, one of which provides the 5' anchoring of the guide RNA and the other, the catalytic site for slicing. This domain is also found in closely related proteins, including the Piwi subfamily, where it is believed to perform a crucial role in germline cells, via a similar mechanism. Pssm-ID: 239208 [Multi-domain] Cd Length: 393 Bit Score: 190.29 E-value: 3.48e-53
|
|||||||||||
PAZ_piwi_like | cd02845 | PAZ domain, Piwi_like subfamily. In multi-cellular organisms, the Piwi protein appears to be ... |
272-392 | 3.06e-49 | |||||||
PAZ domain, Piwi_like subfamily. In multi-cellular organisms, the Piwi protein appears to be essential for the maintenance of germline stem cells. In the Drosophila male germline, Piwi was shown to be involved in the silencing of retrotransposons in the male gametes. The Piwi proteins share their domain architecture with other members of the argonaute family. The PAZ domain has been named after the proteins Piwi, Argonaut, and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the Piwi and Dicer families. PAZ functions as a nucleic acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. Pssm-ID: 239211 Cd Length: 117 Bit Score: 169.36 E-value: 3.06e-49
|
|||||||||||
PAZ | smart00949 | This domain is named PAZ after the proteins Piwi Argonaut and Zwille; This domain is found in ... |
280-414 | 3.23e-48 | |||||||
This domain is named PAZ after the proteins Piwi Argonaut and Zwille; This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerisation. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteristic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. Pssm-ID: 198017 Cd Length: 138 Bit Score: 167.46 E-value: 3.23e-48
|
|||||||||||
PAZ | pfam02170 | PAZ domain; This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain ... |
291-412 | 9.26e-32 | |||||||
PAZ domain; This domain is named PAZ after the proteins Piwi Argonaut and Zwille. This domain is found in two families of proteins that are involved in post-transcriptional gene silencing. These are the Piwi family and the Dicer family, that includes the Carpel factory protein. The function of the domains is unknown but has been suggested to mediate complex formation between proteins of the Piwi and Dicer families by hetero-dimerization. The three-dimensional structure of this domain has been solved. The PAZ domain is composed of two subdomains. One subdomain is similar to the OB fold, albeit with a different topology. The OB-fold is well known as a single-stranded nucleic acid binding fold. The second subdomain is composed of a beta-hairpin followed by an alpha-helix. The PAZ domains shows low-affinity nucleic acid binding and appears to interact with the 3' ends of single-stranded regions of RNA in the cleft between the two subdomains. PAZ can bind the characteriztic two-base 3' overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway. Pssm-ID: 460472 Cd Length: 123 Bit Score: 119.99 E-value: 9.26e-32
|
|||||||||||
PLN03202 | PLN03202 | protein argonaute; Provisional |
407-841 | 7.28e-31 | |||||||
protein argonaute; Provisional Pssm-ID: 215631 [Multi-domain] Cd Length: 900 Bit Score: 130.61 E-value: 7.28e-31
|
|||||||||||
Piwi_piwi-like_ProArk | cd04659 | Piwi_piwi-like_ProArk: PIWI domain, Piwi-like subfamily found in Archaea and Bacteria. RNA ... |
541-849 | 3.46e-14 | |||||||
Piwi_piwi-like_ProArk: PIWI domain, Piwi-like subfamily found in Archaea and Bacteria. RNA silencing refers to a group of related gene-silencing mechanisms mediated by short RNA molecules, including siRNAs, miRNAs, and heterochromatin-related guide RNAs. The central component of the RNA-induced silencing complex (RISC) and related complexes is Argonaute. The PIWI domain is the C-terminal portion of Argonaute and consists of two subdomains, one of which provides the 5' anchoring of the guide RNA and the other, the catalytic site for slicing. This domain is also found in closely related proteins, including the Piwi subfamily, where it is believed to perform a crucial role in germline cells, via a similar mechanism. Pssm-ID: 240017 [Multi-domain] Cd Length: 404 Bit Score: 75.50 E-value: 3.46e-14
|
|||||||||||
PAZ | cd02825 | PAZ domain, named PAZ after the proteins Piwi Argonaut and Zwille. PAZ is found in two ... |
271-389 | 2.88e-09 | |||||||
PAZ domain, named PAZ after the proteins Piwi Argonaut and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. This parent model also contains structures of an archaeal PAZ domain. Pssm-ID: 239207 Cd Length: 115 Bit Score: 55.54 E-value: 2.88e-09
|
|||||||||||
PAZ_argonaute_like | cd02846 | PAZ domain, argonaute_like subfamily. Argonaute is part of the RNA-induced silencing complex ... |
293-371 | 5.79e-06 | |||||||
PAZ domain, argonaute_like subfamily. Argonaute is part of the RNA-induced silencing complex (RISC), and is an endonuclease that plays a key role in the RNA interference pathway. The PAZ domain has been named after the proteins Piwi,Argonaut, and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the Piwi and Dicer families. PAZ functions as a nucleic acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. Pssm-ID: 239212 [Multi-domain] Cd Length: 114 Bit Score: 46.16 E-value: 5.79e-06
|
|||||||||||
PAZ_CAF_like | cd02844 | PAZ domain, CAF_like subfamily. CAF (for carpel factory) is a plant homolog of Dicer. CAF has ... |
301-366 | 8.79e-05 | |||||||
PAZ domain, CAF_like subfamily. CAF (for carpel factory) is a plant homolog of Dicer. CAF has been implicated in flower morphogenesis and in early Arabidopsis development and might function through posttranscriptional regulation of specific mRNA molecules. PAZ domains are named after the proteins Piwi, Argonaut, and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the Piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. Pssm-ID: 239210 Cd Length: 135 Bit Score: 43.18 E-value: 8.79e-05
|
|||||||||||
PAZ_dicer_like | cd02843 | PAZ domain, dicer_like subfamily. Dicer is an RNAse involved in cleaving dsRNA in the RNA ... |
328-362 | 4.93e-03 | |||||||
PAZ domain, dicer_like subfamily. Dicer is an RNAse involved in cleaving dsRNA in the RNA interference pathway. It generates dsRNAs which are approximately 20 bp long (siRNAs), which in turn target hydrolysis of homologous RNAs. PAZ domains are named after the proteins Piwi Argonaut and Zwille. PAZ is found in two families of proteins that are essential components of RNA-mediated gene-silencing pathways, including RNA interference, the piwi and Dicer families. PAZ functions as a nucleic-acid binding domain, with a strong preference for single-stranded nucleic acids (RNA or DNA) or RNA duplexes with single-stranded 3' overhangs. It has been suggested that the PAZ domain provides a unique mode for the recognition of the two 3'-terminal nucleotides in single-stranded nucleic acids and buries the 3' OH group, and that it might recognize characteristic 3' overhangs in siRNAs within RISC (RNA-induced silencing) and other complexes. Pssm-ID: 239209 Cd Length: 122 Bit Score: 37.81 E-value: 4.93e-03
|
|||||||||||
Blast search parameters | ||||
|