mitochondrial ATP synthase delta subunit; The F-ATPase is found in bacterial plasma membranes, ...
31-154
3.02e-30
mitochondrial ATP synthase delta subunit; The F-ATPase is found in bacterial plasma membranes, mitochondrial inner membranes and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinisic membrane domain, F1, is composed of alpha, beta, gamma, delta, and epsilon subunits with a stoichiometry of 3:3:1:1:1. Alpha and beta subunit form the globular catalytic moiety, a hexameric ring of alternating subunits. Gamma, delta and epsilon subunits form a stalk, connecting F1 to F0, the integral membrane proton translocating domain. In bacteria, which is lacking a eukaryotic epsilon subunit homolog, this subunit is called the epsilon subunit.
:
Pssm-ID: 213395 [Multi-domain] Cd Length: 123 Bit Score: 106.44 E-value: 3.02e-30
mitochondrial ATP synthase delta subunit; The F-ATPase is found in bacterial plasma membranes, ...
31-154
3.02e-30
mitochondrial ATP synthase delta subunit; The F-ATPase is found in bacterial plasma membranes, mitochondrial inner membranes and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinisic membrane domain, F1, is composed of alpha, beta, gamma, delta, and epsilon subunits with a stoichiometry of 3:3:1:1:1. Alpha and beta subunit form the globular catalytic moiety, a hexameric ring of alternating subunits. Gamma, delta and epsilon subunits form a stalk, connecting F1 to F0, the integral membrane proton translocating domain. In bacteria, which is lacking a eukaryotic epsilon subunit homolog, this subunit is called the epsilon subunit.
Pssm-ID: 213395 [Multi-domain] Cd Length: 123 Bit Score: 106.44 E-value: 3.02e-30
FoF1-type ATP synthase, epsilon subunit [Energy production and conversion]; FoF1-type ATP ...
31-159
1.13e-24
FoF1-type ATP synthase, epsilon subunit [Energy production and conversion]; FoF1-type ATP synthase, epsilon subunit is part of the Pathway/BioSystem: FoF1-type ATP synthase
Pssm-ID: 440124 [Multi-domain] Cd Length: 131 Bit Score: 92.17 E-value: 1.13e-24
ATP synthase, Delta/Epsilon chain, beta-sandwich domain; Part of the ATP synthase CF(1). These ...
31-111
3.16e-14
ATP synthase, Delta/Epsilon chain, beta-sandwich domain; Part of the ATP synthase CF(1). These subunits are part of the head unit of the ATP synthase. The subunit is called epsilon in bacteria and delta in mitochondria. In bacteria the delta (D) subunit is equivalent to the mitochondrial Oligomycin sensitive subunit, OSCP (pfam00213).
Pssm-ID: 460714 [Multi-domain] Cd Length: 80 Bit Score: 64.00 E-value: 3.16e-14
ATP synthase, F1 epsilon subunit (delta in mitochondria); This model describes one of the five ...
31-159
3.30e-14
ATP synthase, F1 epsilon subunit (delta in mitochondria); This model describes one of the five types of subunits in the F1 part of F1/F0 ATP synthases. Members of this family are designated epsilon in bacterial and chloroplast systems but designated delta in mitochondria, where the counterpart of the bacterial delta subunit is designated OSCP. In a few cases (Propionigenium modestum, Acetobacterium woodii) scoring above the trusted cutoff and designated here as exceptions, Na+ replaces H+ for translocation. [Energy metabolism, ATP-proton motive force interconversion]
Pssm-ID: 273506 [Multi-domain] Cd Length: 130 Bit Score: 65.35 E-value: 3.30e-14
mitochondrial ATP synthase delta subunit; The F-ATPase is found in bacterial plasma membranes, ...
31-154
3.02e-30
mitochondrial ATP synthase delta subunit; The F-ATPase is found in bacterial plasma membranes, mitochondrial inner membranes and in chloroplast thylakoid membranes. It has also been found in the archaea Methanosarcina barkeri. It uses a proton gradient to drive ATP synthesis and hydrolyzes ATP to build the proton gradient. The extrinisic membrane domain, F1, is composed of alpha, beta, gamma, delta, and epsilon subunits with a stoichiometry of 3:3:1:1:1. Alpha and beta subunit form the globular catalytic moiety, a hexameric ring of alternating subunits. Gamma, delta and epsilon subunits form a stalk, connecting F1 to F0, the integral membrane proton translocating domain. In bacteria, which is lacking a eukaryotic epsilon subunit homolog, this subunit is called the epsilon subunit.
Pssm-ID: 213395 [Multi-domain] Cd Length: 123 Bit Score: 106.44 E-value: 3.02e-30
FoF1-type ATP synthase, epsilon subunit [Energy production and conversion]; FoF1-type ATP ...
31-159
1.13e-24
FoF1-type ATP synthase, epsilon subunit [Energy production and conversion]; FoF1-type ATP synthase, epsilon subunit is part of the Pathway/BioSystem: FoF1-type ATP synthase
Pssm-ID: 440124 [Multi-domain] Cd Length: 131 Bit Score: 92.17 E-value: 1.13e-24
ATP synthase, Delta/Epsilon chain, beta-sandwich domain; Part of the ATP synthase CF(1). These ...
31-111
3.16e-14
ATP synthase, Delta/Epsilon chain, beta-sandwich domain; Part of the ATP synthase CF(1). These subunits are part of the head unit of the ATP synthase. The subunit is called epsilon in bacteria and delta in mitochondria. In bacteria the delta (D) subunit is equivalent to the mitochondrial Oligomycin sensitive subunit, OSCP (pfam00213).
Pssm-ID: 460714 [Multi-domain] Cd Length: 80 Bit Score: 64.00 E-value: 3.16e-14
ATP synthase, F1 epsilon subunit (delta in mitochondria); This model describes one of the five ...
31-159
3.30e-14
ATP synthase, F1 epsilon subunit (delta in mitochondria); This model describes one of the five types of subunits in the F1 part of F1/F0 ATP synthases. Members of this family are designated epsilon in bacterial and chloroplast systems but designated delta in mitochondria, where the counterpart of the bacterial delta subunit is designated OSCP. In a few cases (Propionigenium modestum, Acetobacterium woodii) scoring above the trusted cutoff and designated here as exceptions, Na+ replaces H+ for translocation. [Energy metabolism, ATP-proton motive force interconversion]
Pssm-ID: 273506 [Multi-domain] Cd Length: 130 Bit Score: 65.35 E-value: 3.30e-14
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options