NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|17737284|ref|NP_511045|]
View 

sans fille [Drosophila melanogaster]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM2_SNF cd12479
RNA recognition motif 2 (RRM2) found in Drosophila melanogaster sex determination protein SNF ...
137-216 5.50e-52

RNA recognition motif 2 (RRM2) found in Drosophila melanogaster sex determination protein SNF and similar proteins; This subgroup corresponds to the RRM2 of SNF (Sans fille), also termed U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A), an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila. It is essential in Drosophila sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). SNF contains two RNA recognition motifs (RRMs); it can self-associate through RRM1, and each RRM can recognize poly(U) RNA binding independently.


:

Pssm-ID: 240923 [Multi-domain]  Cd Length: 80  Bit Score: 162.18  E-value: 5.50e-52
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284 137 EQPPNQILFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHDIAFVEFTTELQSNAAKEALQGFKITPTHAMKITFAKK 216
Cdd:cd12479   1 EQPPNQILFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPGRHDIAFVEFENEVQSAAAKEALQGFKITPTHAMKITFAKK 80
RRM1_SNF cd12476
RNA recognition motif 1 (RRM1) found in Drosophila melanogaster sex determination protein SNF ...
1-85 2.58e-45

RNA recognition motif 1 (RRM1) found in Drosophila melanogaster sex determination protein SNF and similar proteins; This subgroup corresponds to the RRM1 of SNF (Sans fille), also termed U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A), an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila. It is essential in Drosophila sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). SNF contains two RNA recognition motifs (RRMs); it can self-associate through RRM1, and each RRM can recognize poly(U) RNA binding independently.


:

Pssm-ID: 409905 [Multi-domain]  Cd Length: 85  Bit Score: 145.45  E-value: 2.58e-45
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284   1 MEMLPNQTIYINNLNEKIKKEELKKSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQ 80
Cdd:cd12476   1 MDIRPNQTIYINNLNEKVKKEELKKSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKDISSATNALRSMQGFPFYDKPMR 80

                ....*
gi 17737284  81 IAYSK 85
Cdd:cd12476  81 IAYSK 85
 
Name Accession Description Interval E-value
RRM2_SNF cd12479
RNA recognition motif 2 (RRM2) found in Drosophila melanogaster sex determination protein SNF ...
137-216 5.50e-52

RNA recognition motif 2 (RRM2) found in Drosophila melanogaster sex determination protein SNF and similar proteins; This subgroup corresponds to the RRM2 of SNF (Sans fille), also termed U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A), an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila. It is essential in Drosophila sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). SNF contains two RNA recognition motifs (RRMs); it can self-associate through RRM1, and each RRM can recognize poly(U) RNA binding independently.


Pssm-ID: 240923 [Multi-domain]  Cd Length: 80  Bit Score: 162.18  E-value: 5.50e-52
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284 137 EQPPNQILFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHDIAFVEFTTELQSNAAKEALQGFKITPTHAMKITFAKK 216
Cdd:cd12479   1 EQPPNQILFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPGRHDIAFVEFENEVQSAAAKEALQGFKITPTHAMKITFAKK 80
RRM1_SNF cd12476
RNA recognition motif 1 (RRM1) found in Drosophila melanogaster sex determination protein SNF ...
1-85 2.58e-45

RNA recognition motif 1 (RRM1) found in Drosophila melanogaster sex determination protein SNF and similar proteins; This subgroup corresponds to the RRM1 of SNF (Sans fille), also termed U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A), an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila. It is essential in Drosophila sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). SNF contains two RNA recognition motifs (RRMs); it can self-associate through RRM1, and each RRM can recognize poly(U) RNA binding independently.


Pssm-ID: 409905 [Multi-domain]  Cd Length: 85  Bit Score: 145.45  E-value: 2.58e-45
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284   1 MEMLPNQTIYINNLNEKIKKEELKKSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQ 80
Cdd:cd12476   1 MDIRPNQTIYINNLNEKVKKEELKKSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKDISSATNALRSMQGFPFYDKPMR 80

                ....*
gi 17737284  81 IAYSK 85
Cdd:cd12476  81 IAYSK 85
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
144-203 1.34e-13

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 63.41  E-value: 1.34e-13
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 17737284   144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHD----IAFVEFTTELQSNAAKEALQGFKI 203
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETGrskgFAFVEFEDEEDAEKAIEALNGKEL 64
RRM smart00360
RNA recognition motif;
8-81 1.04e-10

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 55.68  E-value: 1.04e-10
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284      8 TIYINNLNekikKEELKKSLYAIFSQFGQILDIVALK---TLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQI 81
Cdd:smart00360   1 TLFVGNLP----PDTTEEELRELFSKFGKVESVRLVRdkeTGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM smart00360
RNA recognition motif;
144-203 1.11e-10

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 55.68  E-value: 1.11e-10
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284    144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHD-----IAFVEFTTELQSNAAKEALQGFKI 203
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFGKVESVRLVRDKETgkskgFAFVEFESEEDAEKALEALNGKEL 66
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
9-79 2.71e-07

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 46.46  E-value: 2.71e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 17737284     9 IYINNLNEKIKKEelkkSLYAIFSQFGQI--LDIVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPM 79
Cdd:pfam00076   1 LFVGNLPPDTTEE----DLKDLFSKFGPIksIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
26-213 1.01e-05

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 45.57  E-value: 1.01e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284    26 SLYAIFSQFGQILDI--VALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYSKSDSDivakikgtfkerpk 103
Cdd:TIGR01628 104 ALFDTFSKFGNILSCkvATDENGKSRGYGFVHFEKEESAKAAIQKVNGMLLNDKEVYVGRFIKKHE-------------- 169
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284   104 kvkppkpapgtdekkdkkkkpssaensNPNAQTEQPPNqiLFLTNLPEETNEMMLSMLFNQFPGFKE--VRLVPNR--HD 179
Cdd:TIGR01628 170 ---------------------------REAAPLKKFTN--LYVKNLDPSVNEDKLRELFAKFGEITSaaVMKDGSGrsRG 220
                         170       180       190
                  ....*....|....*....|....*....|....
gi 17737284   180 IAFVEFTTELQSNAAKEALQGFKITPTHAMKITF 213
Cdd:TIGR01628 221 FAFVNFEKHEDAAKAVEEMNGKKIGLAKEGKKLY 254
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
5-83 1.74e-03

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 38.75  E-value: 1.74e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284     5 PNQTIYINNLNEKIKKEElkksLYAIFSQFGQILDIVALK---TLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQI 81
Cdd:TIGR01622 213 PFHRLYVGNLHFNITEQD----LRQIFEPFGEIEFVQLQKdpeTGRSKGYGFIQFRDAEQAKEALEKMNGFELAGRPIKV 288

                  ..
gi 17737284    82 AY 83
Cdd:TIGR01622 289 GL 290
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
26-71 2.09e-03

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 37.32  E-value: 2.09e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 17737284   26 SLYAIFSQFGQILD---IVALKTLKMRGQAFVIFKEIGSASNALRTMQG 71
Cdd:PLN03134  50 SLRDAFAHFGDVVDakvIVDRETGRSRGFGFVNFNDEGAATAAISEMDG 98
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
8-81 6.30e-03

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 34.69  E-value: 6.30e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284   8 TIYINNLNekikKEELKKSLYAIFSQFGQILD---IVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQI 81
Cdd:COG0724   3 KIYVGNLP----YSVTEEDLRELFSEYGEVTSvklITDRETGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKV 75
 
Name Accession Description Interval E-value
RRM2_SNF cd12479
RNA recognition motif 2 (RRM2) found in Drosophila melanogaster sex determination protein SNF ...
137-216 5.50e-52

RNA recognition motif 2 (RRM2) found in Drosophila melanogaster sex determination protein SNF and similar proteins; This subgroup corresponds to the RRM2 of SNF (Sans fille), also termed U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A), an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila. It is essential in Drosophila sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). SNF contains two RNA recognition motifs (RRMs); it can self-associate through RRM1, and each RRM can recognize poly(U) RNA binding independently.


Pssm-ID: 240923 [Multi-domain]  Cd Length: 80  Bit Score: 162.18  E-value: 5.50e-52
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284 137 EQPPNQILFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHDIAFVEFTTELQSNAAKEALQGFKITPTHAMKITFAKK 216
Cdd:cd12479   1 EQPPNQILFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPGRHDIAFVEFENEVQSAAAKEALQGFKITPTHAMKITFAKK 80
RRM2_U2B cd12481
RNA recognition motif 2 (RRM2) found in vertebrate U2 small nuclear ribonucleoprotein B" (U2B") ...
137-216 5.89e-46

RNA recognition motif 2 (RRM2) found in vertebrate U2 small nuclear ribonucleoprotein B" (U2B"); This subgroup corresponds to the RRM1 of U2B" (also termed U2 snRNP B"), a unique protein that comprises the U2 snRNP. It was initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent of U2 snRNA binding. U2B" contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also contains a nuclear localization signal (NLS) in the central domain. However, nuclear import of U2B'' does not depend on this NLS. The N-terminal RRM is sufficient to direct U2B" to the nucleus.


Pssm-ID: 240925 [Multi-domain]  Cd Length: 80  Bit Score: 147.08  E-value: 5.89e-46
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284 137 EQPPNQILFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHDIAFVEFTTELQSNAAKEALQGFKITPTHAMKITFAKK 216
Cdd:cd12481   1 DNPPNYILFLNNLPEETNEMMLSMLFNQFPGFKEVRLVPGRHDIAFVEFENEAQAGAARDALQGFKITPSHAMKITYAKK 80
RRM1_SNF cd12476
RNA recognition motif 1 (RRM1) found in Drosophila melanogaster sex determination protein SNF ...
1-85 2.58e-45

RNA recognition motif 1 (RRM1) found in Drosophila melanogaster sex determination protein SNF and similar proteins; This subgroup corresponds to the RRM1 of SNF (Sans fille), also termed U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A), an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila. It is essential in Drosophila sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). SNF contains two RNA recognition motifs (RRMs); it can self-associate through RRM1, and each RRM can recognize poly(U) RNA binding independently.


Pssm-ID: 409905 [Multi-domain]  Cd Length: 85  Bit Score: 145.45  E-value: 2.58e-45
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284   1 MEMLPNQTIYINNLNEKIKKEELKKSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQ 80
Cdd:cd12476   1 MDIRPNQTIYINNLNEKVKKEELKKSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKDISSATNALRSMQGFPFYDKPMR 80

                ....*
gi 17737284  81 IAYSK 85
Cdd:cd12476  81 IAYSK 85
RRM1_U1A cd12477
RNA recognition motif 1 (RRM1) found in vertebrate U1 small nuclear ribonucleoprotein A (U1A); ...
5-92 4.93e-42

RNA recognition motif 1 (RRM1) found in vertebrate U1 small nuclear ribonucleoprotein A (U1A); This subgroup corresponds to the RRM1 of U1A (also termed U1 snRNP A or U1-A), an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein and it also shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins, including polypyrimidine tract binding protein (PTB), polypyrimidine-tract binding protein-associated factor (PSF), and non-POU-domain-containing, octamer-binding (NONO), DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5). It also binds to a flavivirus NS5 protein and plays an important role in virus replication. U1A contains two RNA recognition motifs (RRMs); the N-terminal RRM (RRM1) binds tightly and specifically to the U1 snRNA SLII and its own 3'-UTR, while in contrast, the C-terminal RRM (RRM2) does not appear to associate with any RNA and may be free to bind other proteins. U1A also contains a proline-rich region, and a nuclear localization signal (NLS) in the central domain that is responsible for its nuclear import.


Pssm-ID: 409906 [Multi-domain]  Cd Length: 89  Bit Score: 137.42  E-value: 4.93e-42
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284   5 PNQTIYINNLNEKIKKEELKKSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYS 84
Cdd:cd12477   2 PNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYA 81

                ....*...
gi 17737284  85 KSDSDIVA 92
Cdd:cd12477  82 KTDSDIIA 89
RRM1_U2B cd12478
RNA recognition motif 1 in U2 small nuclear ribonucleoprotein B" (U2B") and similar proteins; ...
6-96 6.42e-42

RNA recognition motif 1 in U2 small nuclear ribonucleoprotein B" (U2B") and similar proteins; This subgroup corresponds to the RRM1 of U2B" (also termed U2 snRNP B") a unique protein that comprises the U2 snRNP. It was initially identified as binding to stem-loop IV (SLIV) at the 3' end of U2 snRNA. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA. In addition, the nuclear transport of U2B" is independent of U2 snRNA binding. U2B" contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also contains a nuclear localization signal (NLS) in the central domain. However, nuclear import of U2B'' does not depend on this NLS. The N-terminal RRM is sufficient to direct U2B" to the nucleus.


Pssm-ID: 409907 [Multi-domain]  Cd Length: 91  Bit Score: 136.99  E-value: 6.42e-42
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284   6 NQTIYINNLNEKIKKEELKKSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYSK 85
Cdd:cd12478   1 NHTIYINNINDKIKKEELKRSLYALFSQFGHVVDIVALKTMKMRGQAFVIFKELSSATNALRQLQGFPFYGKPMRIQYAK 80
                        90
                ....*....|.
gi 17737284  86 SDSDIVAKIKG 96
Cdd:cd12478  81 TDSDIVSKMRG 91
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
8-85 7.85e-42

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 136.12  E-value: 7.85e-42
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 17737284   8 TIYINNLNEKIKKEELKKSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYSK 85
Cdd:cd12246   1 TLYINNLNEKIKKDELKRSLYALFSQFGPVLDIVASKSLKMRGQAFVVFKDVESATNALRALQGFPFYGKPMRIQYAK 78
RRM2_U1A cd12480
RNA recognition motif 2 (RRM2) found in vertebrate U1 small nuclear ribonucleoprotein A (U1 ...
132-216 1.25e-40

RNA recognition motif 2 (RRM2) found in vertebrate U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A); This subgroup corresponds to the RRM2 of U1A (also termed U1 snRNP A or U1-A), an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins, including polypyrimidine tract binding protein (PTB), polypyrimidine-tract binding protein-associated factor (PSF), and non-POU-domain-containing, octamer-binding (NONO), DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5). U1A also binds to a flavivirus NS5 protein and plays an important role in virus replication. It contains two RNA recognition motifs (RRMs); the N-terminal RRM (RRM1) binds tightly and specifically to the U1 snRNA SLII and its own 3'-UTR, while in contrast, the C-terminal RRM (RRM2) does not appear to associate with any RNA and it may be free for binding other proteins. U1A also contains a proline-rich region, and a nuclear localization signal (NLS) in the central domain that is responsible for its nuclear import.


Pssm-ID: 409908 [Multi-domain]  Cd Length: 86  Bit Score: 133.70  E-value: 1.25e-40
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284 132 PNAQTEQPPNQILFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHDIAFVEFTTELQSNAAKEALQGFKITPTHAMKI 211
Cdd:cd12480   2 PQPVSENPPNHILFLTNLPEETNELMLSMLFNQFPGFKEVRLVPGRHDIAFVEFDNEVQAGAAREALQGFKITQSNAMKI 81

                ....*
gi 17737284 212 TFAKK 216
Cdd:cd12480  82 SFAKK 86
RRM2_U1A_like cd12247
RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily ...
140-212 5.00e-38

RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM2 of U1A/U2B"/SNF protein family, containing Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs) connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent on U2 snRNA binding.


Pssm-ID: 409693 [Multi-domain]  Cd Length: 72  Bit Score: 126.52  E-value: 5.00e-38
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 17737284 140 PNQILFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPnRHDIAFVEFTTELQSNAAKEALQGFKITPTHAMKIT 212
Cdd:cd12247   1 PNKILFLQNLPEETTKEMLEMLFNQFPGFKEVRLVP-RRGIAFVEFETEEQATVALQALQGFKITPGHAMKIS 72
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
144-203 1.34e-13

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 63.41  E-value: 1.34e-13
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 17737284   144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHD----IAFVEFTTELQSNAAKEALQGFKI 203
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDETGrskgFAFVEFEDEEDAEKAIEALNGKEL 64
RRM_AtNSRA_like cd21618
RNA recognition motif (RRM) found in Arabidopsis thaliana nuclear speckle RNA-binding protein ...
144-215 2.18e-13

RNA recognition motif (RRM) found in Arabidopsis thaliana nuclear speckle RNA-binding protein A (AtNSRA) and similar protein; AtNSRA is an alternative splicing (AS) regulator that binds to specific mRNAs and modulates auxin effects on the transcriptome. It can be displaced from its targets upon binding to AS competitor long non-coding RNA (ASCO-RNA). Members in this family contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410197 [Multi-domain]  Cd Length: 87  Bit Score: 63.44  E-value: 2.18e-13
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVP------NRHDIAFVEFTTELQSNAAKEALQGFKITP----THAMKITF 213
Cdd:cd21618   6 LYVEGLPLDATEREVAHIFRPFPGFKSVRLVPkegkrgRKLVLCFVDFADAQQAAAALETLQGYRLDEddsdSKGLRISF 85

                ..
gi 17737284 214 AK 215
Cdd:cd21618  86 AR 87
RRM smart00360
RNA recognition motif;
8-81 1.04e-10

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 55.68  E-value: 1.04e-10
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284      8 TIYINNLNekikKEELKKSLYAIFSQFGQILDIVALK---TLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQI 81
Cdd:smart00360   1 TLFVGNLP----PDTTEEELRELFSKFGKVESVRLVRdkeTGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM smart00360
RNA recognition motif;
144-203 1.11e-10

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 55.68  E-value: 1.11e-10
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284    144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHD-----IAFVEFTTELQSNAAKEALQGFKI 203
Cdd:smart00360   2 LFVGNLPPDTTEEELRELFSKFGKVESVRLVRDKETgkskgFAFVEFESEEDAEKALEALNGKEL 66
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
144-203 9.70e-10

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 53.06  E-value: 9.70e-10
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHD----IAFVEFTTELQSNAAKEALQGFKI 203
Cdd:cd00590   1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIVRDRDGkskgFAFVEFESPEDAEKALEALNGTEL 64
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
9-81 1.39e-09

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 52.67  E-value: 1.39e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284   9 IYINNLNEKIKKEelkkSLYAIFSQFGQILDIVALK--TLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQI 81
Cdd:cd00590   1 LFVGNLPPDTTEE----DLRELFSKFGEVVSVRIVRdrDGKSKGFAFVEFESPEDAEKALEALNGTELGGRPLKV 71
RRM2_RBM40_like cd12239
RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
6-84 1.57e-09

RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM2 of RBM40 and the RRM of RBM41. RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein). It serves as a bridging factor between the U11 and U12 snRNPs. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. RBM41 contains only one RRM. Its biological function remains unclear.


Pssm-ID: 409685 [Multi-domain]  Cd Length: 82  Bit Score: 52.62  E-value: 1.57e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284   6 NQTIYINNLNEKIKKEelkkSLYAIFSQFGQI-------LDIVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKP 78
Cdd:cd12239   1 SNRLYVKNLSKRVSEK----DLKYIFGRFVDSsseeknmFDIRLMTEGRMKGQAFITFPSEELAEKALNLTNGYVLHGKP 76

                ....*.
gi 17737284  79 MQIAYS 84
Cdd:cd12239  77 MVVQFA 82
RRM_scw1_like cd12245
RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar ...
144-215 1.00e-07

RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar proteins; This subfamily corresponds to the RRM of the family including yeast cell wall integrity protein scw1, yeast Whi3 protein, yeast Whi4 protein and similar proteins. The strong cell wall protein 1, scw1, is a nonessential cytoplasmic RNA-binding protein that regulates septation and cell-wall structure in fission yeast. It may function as an inhibitor of septum formation, such that its loss of function allows weak SIN signaling to promote septum formation. It's RRM domain shows high homology to two budding yeast proteins, Whi3 and Whi4. Whi3 is a dose-dependent modulator of cell size and has been implicated in cell cycle control in the yeast Saccharomyces cerevisiae. It functions as a negative regulator of ceroid-lipofuscinosis, neuronal 3 (Cln3), a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. It specifically binds the CLN3 mRNA and localizes it into discrete cytoplasmic loci that may locally restrict Cln3 synthesis to modulate cell cycle progression. Moreover, Whi3 plays a key role in cell fate determination in budding yeast. The RRM domain is essential for Whi3 function. Whi4 is a partially redundant homolog of Whi3, also containing one RRM. Some uncharacterized family members of this subfamily contain two RRMs; their RRM1 shows high sequence homology to the RRM of RNA-binding protein with multiple splicing (RBP-MS)-like proteins.


Pssm-ID: 409691 [Multi-domain]  Cd Length: 79  Bit Score: 48.00  E-value: 1.00e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLV-PNRHDIAFVEFTTELQSNAAKEALQGFKITPTH--AMKITFAK 215
Cdd:cd12245   5 LFVANLGPNVSEQELRQLFSRQPGFRRLRMHnKGGGPVCFVEFEDVPFATQALNHLQGAILSSSDrgGIRIEYAK 79
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
9-79 2.71e-07

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 46.46  E-value: 2.71e-07
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 17737284     9 IYINNLNEKIKKEelkkSLYAIFSQFGQI--LDIVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPM 79
Cdd:pfam00076   1 LFVGNLPPDTTEE----DLKDLFSKFGPIksIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
144-203 3.17e-07

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 46.55  E-value: 3.17e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRH----DIAFVEFTTELQSNAAKEALQGFKI 203
Cdd:cd12392   5 LFVKGLPFSCTKEELEELFKQHGTVKDVRLVTYRNgkpkGLAYVEYENEADASQAVLKTDGTEI 68
RRM_SF3B14 cd12241
RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar ...
6-72 2.28e-06

RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar proteins; This subfamily corresponds to the RRM of SF3B14 (also termed p14), a 14 kDa protein subunit of SF3B which is a multiprotein complex that is an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA and has been involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B14 associates directly with another SF3B subunit called SF3B155. It is also present in both U2- and U12-dependent spliceosomes and may contribute to branch site positioning in both the major and minor spliceosome. Moreover, SF3B14 interacts directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. SF3B14 contains one well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409687 [Multi-domain]  Cd Length: 77  Bit Score: 44.15  E-value: 2.28e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284   6 NQTIYINNLNEKIKKEelkkSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKEIGSASNALRTMQGF 72
Cdd:cd12241   2 NRILYVRNLPYKISSE----ELYDLFGKYGAIRQIRIGNTKETRGTAFVVYEDIFDAKNACDHLSGF 64
RRM_RBPMS_like cd12420
RNA recognition motif (RRM) found in RNA-binding protein with multiple splicing (RBP-MS)-like ...
144-205 2.67e-06

RNA recognition motif (RRM) found in RNA-binding protein with multiple splicing (RBP-MS)-like proteins; This subfamily corresponds to the RRM of RNA-binding proteins with multiple splicing (RBP-MS)-like proteins, including protein products of RBPMS genes (RBP-MS and its paralogue RBP-MS2), the Drosophila couch potato (cpo), and Caenorhabditis elegans Mec-8 genes. RBP-MS may be involved in regulation of mRNA translation and localization during Xenopus laevis development. It has also been shown to physically interact with Smad2, Smad3 and Smad4, and stimulates Smad-mediated transactivation. Cpo may play an important role in regulating normal function of the nervous system, whereas mutations in Mec-8 affect mechanosensory and chemosensory neuronal function. All members contain a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Some uncharacterized family members contain two RRMs; this subfamily includes their RRM1. Their RRM2 shows high sequence homology to the RRM of yeast proteins scw1, Whi3, and Whi4.


Pssm-ID: 409854 [Multi-domain]  Cd Length: 76  Bit Score: 43.85  E-value: 2.67e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHDI---AFVEFTTELQSNAAKEALQGFKITP 205
Cdd:cd12420   3 LFVSGLPLDVKERELYNLFRPLPGYEASQLKFTGKNTqpvGFVTFESRAAAEAAKDALQGMRFDP 67
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
8-74 3.75e-06

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 43.42  E-value: 3.75e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284   8 TIYINNLNEKIKKEElkksLYAIFSQFGQILDIvalKTLKMRGQAFVIFKEIGSASNALRTMQGFPF 74
Cdd:cd12354   2 TVYVGNITKGLTEAL----LQQTFSPFGQILEV---RVFPDKGYAFIRFDSHEAATHAIVSVNGTII 61
RRM2_MEI2_EAR1_like cd12276
RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; ...
144-211 6.01e-06

RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM2 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 409718 [Multi-domain]  Cd Length: 71  Bit Score: 42.63  E-value: 6.01e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHDIAFVEFtteLQSNAAKEALQGFKITPTHAMKI 211
Cdd:cd12276   4 LLVFNLDAPVSNDELKSLFSKFGEIKEIRPTPDKPSQKFVEF---YDVRDAEAALDGLNGRELLGGKL 68
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
26-84 8.28e-06

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 42.65  E-value: 8.28e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284  26 SLYAIFSQFGqilDIVALKT-LKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYS 84
Cdd:cd12524  17 ELRALFEQFG---EIRTLYTaCKHRGFIMVSYYDIRAAQSAKRALQGTELGGRKLDIHFS 73
RRM2_MEI2_EAR1_like cd12276
RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; ...
8-82 8.29e-06

RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM2 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 409718 [Multi-domain]  Cd Length: 71  Bit Score: 42.24  E-value: 8.29e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284   8 TIYINNLNEKIKKEelkkSLYAIFSQFGQILDIValKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIA 82
Cdd:cd12276   3 TLLVFNLDAPVSND----ELKSLFSKFGEIKEIR--PTPDKPSQKFVEFYDVRDAEAALDGLNGRELLGGKLKVA 71
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
144-201 9.88e-06

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 42.00  E-value: 9.88e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVpNRHDIAFVEFTTELQSNAAKEALQGF 201
Cdd:cd12340   2 LFVRPFPPDTSESAIREIFSPYGPVKEVKML-SDSNFAFVEFEELEDAIRAKDSVHGR 58
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
26-213 1.01e-05

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 45.57  E-value: 1.01e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284    26 SLYAIFSQFGQILDI--VALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYSKSDSDivakikgtfkerpk 103
Cdd:TIGR01628 104 ALFDTFSKFGNILSCkvATDENGKSRGYGFVHFEKEESAKAAIQKVNGMLLNDKEVYVGRFIKKHE-------------- 169
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284   104 kvkppkpapgtdekkdkkkkpssaensNPNAQTEQPPNqiLFLTNLPEETNEMMLSMLFNQFPGFKE--VRLVPNR--HD 179
Cdd:TIGR01628 170 ---------------------------REAAPLKKFTN--LYVKNLDPSVNEDKLRELFAKFGEITSaaVMKDGSGrsRG 220
                         170       180       190
                  ....*....|....*....|....*....|....
gi 17737284   180 IAFVEFTTELQSNAAKEALQGFKITPTHAMKITF 213
Cdd:TIGR01628 221 FAFVNFEKHEDAAKAVEEMNGKKIGLAKEGKKLY 254
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
143-215 1.10e-05

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 41.85  E-value: 1.10e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 17737284 143 ILFLTNLPEETNEMMLSMLFNQfpgFKEVRLVPNRHDIAFVEFTTELQSNAAKEALQGFKITPThAMKITFAK 215
Cdd:cd12251   3 VLYVRNLMLSTTEEKLRELFSE---YGKVERVKKIKDYAFVHFEERDDAVKAMEEMNGKELEGS-EIEVSLAK 71
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
144-200 1.26e-05

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 41.83  E-value: 1.26e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRL---VPNRH-DIAFVEFTTELQSNAAKEALQG 200
Cdd:cd12320   3 LIVKNVPFEATRKEIRELFSPFGQLKSVRLpkkFDGSHrGFAFVEFVTKQEAQNAMEALKS 63
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
27-85 2.25e-05

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 41.24  E-value: 2.25e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 17737284  27 LYAIFSQFGQILDIVALK---TLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYSK 85
Cdd:cd12382  18 LEAVFGKYGRIVEVLLMKdreTNKSRGFAFVTFESPADAKDAARDMNGKELDGKAIKVEQAT 79
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
8-71 2.27e-05

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 41.11  E-value: 2.27e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284   8 TIYINNLnekiKKEELKKSLYAIFSQFGQILDIVALK---TLKMRGQAFVIFKEIGSASNALRTMQG 71
Cdd:cd12393   3 TVYVSNL----PFSLTNNDLHQIFSKYGKVVKVTILKdkeTRKSKGVAFVLFLDRESAHNAVRAMNN 65
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
27-78 2.51e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 41.00  E-value: 2.51e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 17737284  27 LYAIFSQFGQILDIVALK--TLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKP 78
Cdd:cd12414  16 LKKLFSKFGKVLEVTIPKkpDGKLRGFAFVQFTNVADAAKAIKGMNGKKIKGRP 69
RRM2_NCL cd12404
RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to ...
144-203 2.85e-05

RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409838 [Multi-domain]  Cd Length: 77  Bit Score: 40.88  E-value: 2.85e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 17737284 144 LFLTNLPEETNEmmlSMLFNQFPGFKEVRLVPNRHD----IAFVEFTTELQSNAAKEALQGFKI 203
Cdd:cd12404   6 LFVKNLPYSTTQ---DELKEVFEDAVDIRIPMGRDGrskgIAYIEFKSEAEAEKALEEKQGTEV 66
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
147-201 3.15e-05

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 40.96  E-value: 3.15e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284 147 TNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHD-----IAFVEFTTELQSNAAKEALQGF 201
Cdd:cd12408   5 TNLSEDATEEDLRELFRPFGPISRVYLAKDKETgqskgFAFVTFETREDAERAIEKLNGF 64
RRM1_I_PABPs cd12378
RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily ...
27-87 4.49e-05

RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM1 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammals, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409812 [Multi-domain]  Cd Length: 80  Bit Score: 40.69  E-value: 4.49e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284  27 LYAIFSQFGQIL------DIVALKTLkmrGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYSKSD 87
Cdd:cd12378  16 LYEKFSPAGPVLsirvcrDAVTRRSL---GYAYVNFQQPADAERALDTLNFDVIKGKPIRIMWSQRD 79
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
26-83 4.96e-05

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 40.08  E-value: 4.96e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 17737284  26 SLYAIFSQFGQILDIvalKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAY 83
Cdd:cd12340  15 AIREIFSPYGPVKEV---KMLSDSNFAFVEFEELEDAIRAKDSVHGRVLNNEPLYVTY 69
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
144-200 7.51e-05

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 39.84  E-value: 7.51e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHD-----IAFVEFTTELQSNAAKEALQG 200
Cdd:cd21608   2 LYVGNLSWDTTEDDLRDLFSEFGEVESAKVITDRETgrsrgFGFVTFSTAEAAEAAIDALNG 63
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
9-82 8.06e-05

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 39.94  E-value: 8.06e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284   9 IYINNLNEKIKKEElkksLYAIFSQFGQILDIVALKTLKMR------GQAFVIFKEIGSASNALRtMQGFPFYDKPMQIA 82
Cdd:cd12298   3 IRVRNLDFELDEEA----LRGIFEKFGEIESINIPKKQKNRkgrhnnGFAFVTFEDADSAESALQ-LNGTLLDNRKISVS 77
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
27-71 2.06e-04

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 38.53  E-value: 2.06e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*...
gi 17737284  27 LYAIFSQFGQILDIVALK---TLKMRGQAFVIFKEIGSASNALRTMQG 71
Cdd:cd12353  16 LKEAFAPFGEISDARVVKdtqTGKSKGYGFVSFVKKEDAENAIQGMNG 63
RRM1_RRM2_RBM5_like cd12313
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar ...
140-203 2.52e-04

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar proteins; This subfamily includes the RRM1 and RRM2 of RNA-binding protein 5 (RBM5 or LUCA15 or H37) and RNA-binding protein 10 (RBM10 or S1-1), and the RRM2 of RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). These RBMs share high sequence homology and may play an important role in regulating apoptosis. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM6 has been predicted to be a nuclear factor based on its nuclear localization signal. Both, RBM6 and RBM5, specifically bind poly(G) RNA. RBM10 is a paralog of RBM5. It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. All family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409752 [Multi-domain]  Cd Length: 85  Bit Score: 38.79  E-value: 2.52e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284 140 PNQILFLTNLPEETNEMMLSMLFNQFPG--FKEVRLVPNR-----HDIAFVEFTTELQSNAAKEALQG----FKI 203
Cdd:cd12313   1 PTNVLILRGLDVLTTEEDILSALQAHADlpIKDVRLIRDKltgtsRGFAFVEFSSLEDATQVMDALQNllppFKI 75
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
144-203 2.53e-04

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 38.16  E-value: 2.53e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHD-----IAFVEFTTELQSNAAKEALQGFKI 203
Cdd:cd12448   1 LFVGNLPFSATQDALYEAFSQHGSIVSVRLPTDRETgqpkgFGYVDFSTIDSAEAAIDALGGEYI 65
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
26-77 2.54e-04

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 38.36  E-value: 2.54e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*
gi 17737284  26 SLYAIFSQFGQILDI---VALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDK 77
Cdd:cd12347  14 VLHAAFIPFGDIVDIqipLDYETEKHRGFAFVEFEEAEDAAAAIDNMNESELFGR 68
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
26-71 2.72e-04

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 38.23  E-value: 2.72e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*....
gi 17737284  26 SLYAIFSQFGQILDIVALK---TLKMRGQAFVIFKEIGSASNALRTMQG 71
Cdd:cd12449  16 SLEEVFSKYGQISEVVVVKdreTQRSRGFGFVTFENPDDAKDAMMAMNG 64
RRM3_PTBP1_like cd12423
RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
29-85 2.92e-04

RNA recognition motif 3 (RRM3) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM3 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409857 [Multi-domain]  Cd Length: 74  Bit Score: 37.98  E-value: 2.92e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 17737284  29 AIFSQFGQILDIVALKTL-KMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYSK 85
Cdd:cd12423  16 ALFTLFGVYGDVLRVKILfNKKDTALIQMADPQQAQTALQHLNGIKLFGKPIRVTLSK 73
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
144-203 2.96e-04

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 38.19  E-value: 2.96e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 17737284 144 LFLTNL-PEETNEMMLSMLFNQFPGFKEVRLvpnRHDIAFVEFTTELQSNAAKEALQGFKI 203
Cdd:cd12233   2 LFVVGFdPGTTREEDIEKLFEPFGPLVRCDI---RKTFAFVEFEDSEDATKALEALHGSRI 59
RRM3_hnRNPL_like cd12424
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ...
27-85 3.48e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM3 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to polypyrimidine tract binding protein (PTB) that is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. Like PTB, PTBPH3 contains four RRMs.


Pssm-ID: 409858 [Multi-domain]  Cd Length: 74  Bit Score: 37.97  E-value: 3.48e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 17737284  27 LYAIFSQFGQILDIVALKTlkMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYSK 85
Cdd:cd12424  17 LFNLLCLYGNVLKIKFLKS--KPGTAMVQMGDPVAADRAIQNLNNVVLFGQKLQLTYSK 73
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
27-77 4.61e-04

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 37.60  E-value: 4.61e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 17737284  27 LYAIFSQFGQILD---IVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDK 77
Cdd:cd12362  15 LYQLFAPFGNVVSakvFVDKNTGRSKGFGFVSYDNPLSAQAAIKAMNGFQVGGK 68
RRM4_PTBP1_like cd12425
RNA recognition motif 4 (RRM4) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
144-215 4.73e-04

RNA recognition motif 4 (RRM4) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM4 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409859 [Multi-domain]  Cd Length: 76  Bit Score: 37.64  E-value: 4.73e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGF-KEVRLVPNRHDIAFVEFTTELQSNAAKEALQGFKITPTHAMKITFAK 215
Cdd:cd12425   2 LHLSNIPPSVTEEDLKDLFTSTGGTvKAFKFFQKDRKMALIQMGSVEEAIEALIALHNYQLSENSHLRVSFSK 74
RRM_ScJSN1_like cd21616
RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein JSN1 and similar ...
3-71 5.62e-04

RNA recognition motif (RRM) found in Saccharomyces cerevisiae protein JSN1 and similar proteins; JSN1, also called Pumilio homology domain family member 1 (PUF1), is a member of the PUF family of proteins. It facilitates association of Arp2/3 complex to yeast mitochondria. It may play a role in mitosis, perhaps by affecting the stability of microtubules. Members in this family contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410195 [Multi-domain]  Cd Length: 118  Bit Score: 38.59  E-value: 5.62e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284   3 MLPNQTIYINN--------LNEKIKKEELKKSLYAIFSQFGQILDIVALKTLKMrgqAFVIFKEIGSASNALRTMQG 71
Cdd:cd21616  26 LLPTNTILVSNifpiqqtsPQPPNPINLTSTSLASLCSKFGDIISSRTLRGLNM---ALIEFESVDSAILALESLQG 99
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
144-200 5.63e-04

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 37.28  E-value: 5.63e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLvPNRHDIAFVEFTTELQSNAAKEALQG 200
Cdd:cd12332   4 LFVGNLPNDITEEEFKELFQKYGEVSEVFL-NKGKGFGFIRLDTRANAEAAKAELDG 59
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
148-203 6.21e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 37.15  E-value: 6.21e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284 148 NLPEETNEMMLSMLFNQFPGFKEVRLVPNRHD----IAFVEFTTELQSNAAKEALQGFKI 203
Cdd:cd12414   6 NLPFKCTEDDLKKLFSKFGKVLEVTIPKKPDGklrgFAFVQFTNVADAAKAIKGMNGKKI 65
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
27-84 7.74e-04

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 37.31  E-value: 7.74e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284  27 LYAIFSQFGQILDI--VALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYS 84
Cdd:cd12392  19 LEELFKQHGTVKDVrlVTYRNGKPKGLAYVEYENEADASQAVLKTDGTEIKDHTISVAIS 78
RRM_RBPMS cd12682
RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing ...
142-205 8.71e-04

RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing (RBP-MS); This subfamily corresponds to the RRM of RBP-MS, also termed heart and RRM expressed sequence (hermes), an RNA-binding proteins found in various vertebrate species. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). RBP-MS physically interacts with Smad2, Smad3 and Smad4 and plays a role in regulation of Smad-mediated transcriptional activity. In addition, RBP-MS may be involved in regulation of mRNA translation and localization during Xenopus laevis development.


Pssm-ID: 410083 [Multi-domain]  Cd Length: 76  Bit Score: 36.95  E-value: 8.71e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284 142 QILFLTNLPEETNEMMLSMLFNQFPGFKEVRL-VPNRHDIAFVEFTTELQSNAAKEALQGFKITP 205
Cdd:cd12682   2 RTLFVSGLPLDIKPRELYLLFRPFKGYEGSLIkLTSKQPVGFVSFDSRSEAEAAKNALNGIRFDP 66
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
144-205 8.90e-04

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 36.83  E-value: 8.90e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHD-----IAFVEFTTELQSNAAKEALQGFKITP 205
Cdd:cd12361   2 LFVGMIPKTASEEDVRPLFEQFGNIEEVQILRDKQTgqskgCAFVTFSTREEALRAIEALHNKKTMP 68
RRM_RBM22 cd12224
RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This ...
144-215 9.19e-04

RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This subgroup corresponds to the RRM of RBM22 (also known as RNA-binding motif protein 22, or Zinc finger CCCH domain-containing protein 16), a newly discovered RNA-binding motif protein which belongs to the SLT11 gene family. SLT11 gene encoding protein (Slt11p) is a splicing factor in yeast, which is required for spliceosome assembly. Slt11p has two distinct biochemical properties: RNA-annealing and RNA-binding activities. RBM22 is the homolog of SLT11 in vertebrate. It has been reported to be involved in pre-splicesome assembly and to interact with the Ca2+-signaling protein ALG-2. It also plays an important role in embryogenesis. RBM22 contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a zinc finger of the unusual type C-x8-C-x5-C-x3-H, and a C-terminus that is unusually rich in the amino acids Gly and Pro, including sequences of tetraprolines.


Pssm-ID: 409671 [Multi-domain]  Cd Length: 74  Bit Score: 36.88  E-value: 9.19e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLVPNRHdIAFVEFTTELQSNAAKEALQGFKITPTHAMKITFAK 215
Cdd:cd12224   4 LYVGGLGDKITEKDLRDHFYQFGEIRSITVVARQQ-CAFVQFTTRQAAERAAERTFNKLIIKGRRLKVKWGR 74
RRM_cpo cd12684
RNA recognition motif (RRM) found in Drosophila couch potato (cpo) coding RNA-binding protein ...
144-215 1.05e-03

RNA recognition motif (RRM) found in Drosophila couch potato (cpo) coding RNA-binding protein and similar proteins; This subfamily corresponds to the RRM of Cpo, an RNA-binding protein encoded by Drosophila couch potato (cpo) gene. Cpo contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It may control the processing of RNA molecules required for the proper functioning of the peripheral nervous system (PNS).


Pssm-ID: 410085 [Multi-domain]  Cd Length: 83  Bit Score: 36.81  E-value: 1.05e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRL-VPNRHD-----IAFVEFTTELQSNAAKEALQGFKITP--THAMKITFAK 215
Cdd:cd12684   4 LFVSGLPMDAKPRELYLLFRAYKGYEGSLLkVTSKNGkttspVGFVTFLSRQAAEAAKQDLQGVRFDPdlPQTLRLEFAK 83
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
142-215 1.44e-03

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 39.21  E-value: 1.44e-03
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284   142 QILFLTNLPEETNEMMLSMLFNQF-PGfkEVRLVPNRHDIAFVEFTTELQSNAAKEALQGfKITPTHAMKITFAK 215
Cdd:TIGR01648 234 KILYVRNLMTTTTEEIIEKSFSEFkPG--KVERVKKIRDYAFVHFEDREDAVKAMDELNG-KELEGSEIEVTLAK 305
RRM_RBPMS2 cd12683
RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing 2 ...
142-207 1.46e-03

RNA recognition motif (RRM) found in vertebrate RNA-binding protein with multiple splicing 2 (RBP-MS2); This subfamily corresponds to the RRM of RBP-MS2, encoded by RBPMS2 gene, a paralog of RNA-binding protein with multiple splicing (RBP-MS). The biological function of RBP-MS2 remains unclear. Like RBP-MS, RBP-MS2 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410084 [Multi-domain]  Cd Length: 76  Bit Score: 36.17  E-value: 1.46e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 17737284 142 QILFLTNLPEETNEMMLSMLFNQFPGFKE--VRLVpNRHDIAFVEFTTELQSNAAKEALQGFKITPTH 207
Cdd:cd12683   2 RTLFVSGLPVDIKPRELYLLFRPFKGYEGslIKLT-SKQPVGFVTFDSRAGAEAAKNALNGIRFDPEN 68
RRM2_PTBP1_hnRNPL_like cd12422
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
27-85 1.51e-03

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins, and RRM3 of PTBPH1 and PTBPH2. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. This family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs.


Pssm-ID: 409856 [Multi-domain]  Cd Length: 85  Bit Score: 36.40  E-value: 1.51e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 17737284  27 LYAIFSQFGQILDIValktLKMRG---QAFVIFKEIGSASNALRTMQGFPFYDK--PMQIAYSK 85
Cdd:cd12422  18 LHQVFSPYGAVEKIV----IFEKGtgvQALVQFDSVESAEAAKKALNGRNIYDGccTLDIQFSR 77
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
5-83 1.74e-03

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 38.75  E-value: 1.74e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284     5 PNQTIYINNLNEKIKKEElkksLYAIFSQFGQILDIVALK---TLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQI 81
Cdd:TIGR01622 213 PFHRLYVGNLHFNITEQD----LRQIFEPFGEIEFVQLQKdpeTGRSKGYGFIQFRDAEQAKEALEKMNGFELAGRPIKV 288

                  ..
gi 17737284    82 AY 83
Cdd:TIGR01622 289 GL 290
RRM2_RIM4_like cd12454
RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; ...
8-83 2.00e-03

RNA recognition motif 2 (RRM2) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM2 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409888 [Multi-domain]  Cd Length: 80  Bit Score: 35.91  E-value: 2.00e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284   8 TIYINNLNEKIKKEelkkSLYAIFSQFGQILDIVALKTLKMRGQ-AFVIFKEIGSASNALRTMQGFPFYDKPMQIAY 83
Cdd:cd12454   5 SIFVGQLDPKTTDS----ELFRRFSKYGKIVDCKLIKRPEPVNAfAFLRFESEEAAEAAVEEENHSEFLNKQIRVQK 77
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
27-84 2.03e-03

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 35.96  E-value: 2.03e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 17737284  27 LYAIFSQFGQILD--IVALK-TLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYS 84
Cdd:cd12398  17 LKEIFSEVGPVVSfrLVTDReTGKPKGYGFCEFRDAETALSAVRNLNGYELNGRPLRVDFA 77
RRM1_hnRNPA_like cd12578
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
26-65 2.05e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM1 in hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409992 [Multi-domain]  Cd Length: 78  Bit Score: 35.88  E-value: 2.05e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|...
gi 17737284  26 SLYAIFSQFGQILDIVALK---TLKMRGQAFVIFKEIGSASNA 65
Cdd:cd12578  15 SLRNHFEQWGEITDVVVMKdpaTKRSRGFGFVTYSSASEVDAA 57
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
26-71 2.09e-03

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 37.32  E-value: 2.09e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 17737284   26 SLYAIFSQFGQILD---IVALKTLKMRGQAFVIFKEIGSASNALRTMQG 71
Cdd:PLN03134  50 SLRDAFAHFGDVVDakvIVDRETGRSRGFGFVNFNDEGAATAAISEMDG 98
RRM3_RBM47 cd12497
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This ...
142-215 2.15e-03

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM3 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409920 [Multi-domain]  Cd Length: 74  Bit Score: 35.71  E-value: 2.15e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284 142 QILFLTNLPEETNEMMLSMLFNQF-PGFkeVRLVPNRHDIAFVEFTTELQSNAAKEALQGFKITPTHaMKITFAK 215
Cdd:cd12497   2 KILYVRNLMIETTEDTIKKIFGQFnPGC--VERVKKIRDYAFVHFASRDDAVVAMNNLNGTELEGSC-IEVTLAK 73
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
27-87 2.45e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 35.81  E-value: 2.45e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 17737284  27 LYAIFSQFGQILDI---VALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYSKSD 87
Cdd:cd12312  17 LRREFGRYGPIVDVyipLDFYTRRPRGFAYIQFEDVRDAEDALYYLDRTRFLGREIEIQFAQGD 80
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
27-81 2.62e-03

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 35.68  E-value: 2.62e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 17737284  27 LYAIFSQFGQILDIVALK---TLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQI 81
Cdd:cd12284  15 LRGIFEPFGKIEFVQLQKdpeTGRSKGYGFIQFRDAEDAKKALEQLNGFELAGRPMKV 72
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
26-81 2.66e-03

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 35.46  E-value: 2.66e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 17737284  26 SLYAIFSQFGQILDI---VALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQI 81
Cdd:cd12448  14 ALYEAFSQHGSIVSVrlpTDRETGQPKGFGYVDFSTIDSAEAAIDALGGEYIDGRPIRL 72
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
26-74 2.69e-03

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 35.61  E-value: 2.69e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|..
gi 17737284  26 SLYAIFSQFGQILD---IVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPF 74
Cdd:cd21608  15 DLRDLFSEFGEVESakvITDRETGRSRGFGFVTFSTAEAAEAAIDALNGKEL 66
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
27-71 3.17e-03

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 35.22  E-value: 3.17e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*....
gi 17737284  27 LYAIFSQFGQILDiVALKTLKM----RGQAFVIFKEIGSASNALRTMQG 71
Cdd:cd12365  15 LKEIFSVYGTVKN-VDLPIDREpnlpRGYAYVEFESPEDAEKAIKHMDG 62
RRM_SCAF4_SCAF8 cd12227
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ...
8-84 3.50e-03

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409674 [Multi-domain]  Cd Length: 77  Bit Score: 35.10  E-value: 3.50e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284   8 TIYINNLNEKIKKEelkkSLYAIFSQFGQILDIVALKTlkmRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYS 84
Cdd:cd12227   4 TLWVGHLSKKVTQE----ELKNLFEEYGEIQSIDMIPP---RGCAYVCMKTRQDAHRALQKLKNHKLRGKSIKIAWA 73
RRM3_SHARP cd12350
RNA recognition motif 3 (RRM3) found in SMART/HDAC1-associated repressor protein (SHARP) and ...
7-71 3.62e-03

RNA recognition motif 3 (RRM3) found in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins; This subfamily corresponds to the RRM3 of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins.


Pssm-ID: 409786 [Multi-domain]  Cd Length: 74  Bit Score: 35.08  E-value: 3.62e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 17737284   7 QTIYINNLNEKIKKEelkkSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKEIGSASNALRTMQG 71
Cdd:cd12350   3 RTLFIGNLEKTTTYG----DLRNIFERFGEIIDIDIKKQNGNPQYAFLQYCDIASVVKAIKKMDG 63
RRM2_4_MRN1 cd12262
RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar ...
30-85 5.08e-03

RNA recognition motif 2 (RRM2) and 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM2 and RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, and is an RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409706 [Multi-domain]  Cd Length: 78  Bit Score: 34.68  E-value: 5.08e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*.
gi 17737284  30 IFSQFGQILDIvalKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQIAYSK 85
Cdd:cd12262  23 ILEKYGEIESI---KILKEKNCAFVNYLNIANAIKAVQELPIKNPKFKKVRINYGK 75
RRM_DNAJC17 cd12429
RNA recognition motif (RRM) found in the DnaJ homolog subfamily C member 17; The CD ...
26-81 5.57e-03

RNA recognition motif (RRM) found in the DnaJ homolog subfamily C member 17; The CD corresponds to the RRM of some eukaryotic DnaJ homolog subfamily C member 17 and similar proteins. DnaJ/Hsp40 (heat shock protein 40) proteins are highly conserved and play crucial roles in protein translation, folding, unfolding, translocation, and degradation. They act primarily by stimulating the ATPase activity of Hsp70s, an important chaperonine family. Members in this family contains an N-terminal DnaJ domain or J-domain, which mediates the interaction with Hsp70. They also contains a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the C-terminus, which may play an essential role in RNA binding.


Pssm-ID: 409863 [Multi-domain]  Cd Length: 74  Bit Score: 34.56  E-value: 5.57e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*.
gi 17737284  26 SLYAIFSQFGQILDIVALKtlKMRGQAFVIFKEIGSASNALRTMQGFPfyDKPMQI 81
Cdd:cd12429  20 ELRKIFSKYGPVSDVVISS--KKKGSAIVEFATVVAADAAVENEVGLP--DNPLLV 71
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
8-81 6.30e-03

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 34.69  E-value: 6.30e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284   8 TIYINNLNekikKEELKKSLYAIFSQFGQILD---IVALKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQI 81
Cdd:COG0724   3 KIYVGNLP----YSVTEEDLRELFSEYGEVTSvklITDRETGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKV 75
RRM_ALKBH8 cd12431
RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and ...
27-71 6.46e-03

RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins; This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain.


Pssm-ID: 409865 [Multi-domain]  Cd Length: 80  Bit Score: 34.48  E-value: 6.46e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*..
gi 17737284  27 LYAIFSQFGQILDIVALktlkmRGQ--AFVIFKEIGSASNALRTMQG 71
Cdd:cd12431  20 LLEVFEKYGTVEDIVML-----PGKpySFVSFKSVEEAAKAYNALNG 61
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
144-214 6.56e-03

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 34.30  E-value: 6.56e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 17737284 144 LFLTNLPEETNEMMLSMLFNQFPGFKEVRLV--PNRHD-IAFVEFTTELQSNAAKEALQGFKITpTHAMKITFA 214
Cdd:cd12352   1 LYVGNLDRQVTEDLILQLFSQIGPCKSCKMIteHGGNDpYCFVEFYEHNHAAAALQAMNGRKIL-GKEVKVNWA 73
RRM_cwf2 cd12360
RNA recognition motif (RRM) found in yeast pre-mRNA-splicing factor Cwc2 and similar proteins; ...
171-200 6.66e-03

RNA recognition motif (RRM) found in yeast pre-mRNA-splicing factor Cwc2 and similar proteins; This subfamily corresponds to the RRM of yeast protein Cwc2, also termed Complexed with CEF1 protein 2, or PRP19-associated complex protein 40 (Ntc40), or synthetic lethal with CLF1 protein 3, one of the components of the Prp19-associated complex [nineteen complex (NTC)] that can bind to RNA. NTC is composed of the scaffold protein Prp19 and a number of associated splicing factors, and plays a crucial role in intron removal during premature mRNA splicing in eukaryotes. Cwc2 functions as an RNA-binding protein that can bind both small nuclear RNAs (snRNAs) and pre-mRNA in vitro. It interacts directly with the U6 snRNA to link the NTC to the spliceosome during pre-mRNA splicing. In the N-terminal half, Cwc2 contains a CCCH-type zinc finger (ZnF domain), a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and an intervening loop, also termed RNA-binding loop or RB loop, between ZnF and RRM, all of which are necessary and sufficient for RNA binding. The ZnF is also responsible for mediating protein-protein interaction. The C-terminal flexible region of Cwc2 interacts with the WD40 domain of Prp19.


Pssm-ID: 409795 [Multi-domain]  Cd Length: 79  Bit Score: 34.55  E-value: 6.66e-03
                        10        20        30
                ....*....|....*....|....*....|
gi 17737284 171 VRLVPNRHdIAFVEFTTELQSNAAKEALQG 200
Cdd:cd12360  36 IRVLPSKG-IAFVRYKNRANAEFAKEAMAD 64
RRM4_MRN1 cd12522
RNA recognition motif 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This ...
6-85 7.54e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein MRN1 and similar proteins; This subgroup corresponds to the RRM4 of MRN1, also termed multicopy suppressor of RSC-NHP6 synthetic lethality protein 1, or post-transcriptional regulator of 69 kDa, which is a RNA-binding protein found in yeast. Although its specific biological role remains unclear, MRN1 might be involved in translational regulation. Members in this family contain four copies of conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409942 [Multi-domain]  Cd Length: 81  Bit Score: 34.43  E-value: 7.54e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 17737284   6 NQTIYINNLNEKIKKEELkkSLYAIFSQFGQILDIvalKTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKpMQIAYSK 85
Cdd:cd12522   3 SRNVYIGNIDDVRVLTEE--RLRHDFSQYGEIEQV---NFLREKNCAFVNFTNIANAIKAIDKIKSKPYYKD-LKINFGK 76
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
27-81 7.74e-03

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 34.32  E-value: 7.74e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 17737284  27 LYAIFSQFGQILDI-VAL--KTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDKPMQI 81
Cdd:cd12566  19 LQKLFSKFGEVSEVhVPIdkKTKKSKGFAYVLFLDPEDAVQAYNELDGKVFQGRLIHI 76
RRM1_RIM4_like cd12453
RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; ...
5-71 8.12e-03

RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409887 [Multi-domain]  Cd Length: 86  Bit Score: 34.31  E-value: 8.12e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 17737284   5 PNQTIYINNLNEKIKKEELKKSLYAIFSQFGQILDIVALKTLKMRGQAFVIFKEIGSASNALRTMQG 71
Cdd:cd12453   1 PSACLFVASLSSARSDEELCAAVTNHFSKWGELLNVKVLKDWSNRPYAFVQYTNTEDAKNALVNGHN 67
RRM2_PTBP1_like cd12693
RNA recognition motif 2 (RRM2) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
27-85 8.48e-03

RNA recognition motif 2 (RRM2) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410093 [Multi-domain]  Cd Length: 96  Bit Score: 34.63  E-value: 8.48e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 17737284  27 LYAIFSQFGQILDIVALkTLKMRGQAFVIFKEIGSASNALRTMQGFPFYDK--PMQIAYSK 85
Cdd:cd12693  20 LHQIFSKFGTVLKIITF-TKNNQFQALIQFADAVSAQAAKLSLDGQNIYNGccTLRIDFSK 79
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
7-67 8.83e-03

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 34.11  E-value: 8.83e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 17737284   7 QTIYINNLNEKIKKEelkkSLYAIFSQFGQI--LDIVALK-TLKMRGQAFVIFKEIGSASNALR 67
Cdd:cd12415   1 KTVFIRNLSFDTTEE----DLKEFFSKFGEVkyARIVLDKdTGHSKGTAFVQFKTKESADKCIE 60
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH