outspread, isoform E [Drosophila melanogaster]
kinesin family protein; PEPP family PH domain-containing protein( domain architecture ID 12913554)
kinesin family protein is a microtubule-dependent molecular motor that plays an important role in intracellular transport and in cell division and has an ATPase-containing motor domain; similar to N-type kinesins that are (+) end-directed motors and have an N-terminal motor domain| PEPP (phosphoinositol 3-phosphate-binding protein) family PH (pleckstrin homology) domain-containing protein similar to PH domain region of vertebrate pleckstrin homology domain-containing family A member 4/5/6/7
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||
PH_RIP | cd01236 | Rho-Interacting Protein Pleckstrin homology (PH) domain; RIP1-RhoGDI2 was obtained in a screen ... |
48-182 | 1.25e-75 | ||||||||
Rho-Interacting Protein Pleckstrin homology (PH) domain; RIP1-RhoGDI2 was obtained in a screen for proteins that bind to wild-type RhoA. RIP2, RIP3, and RIP4 were isolated from cDNA libraries with constitutively active V14RhoA (containing the C190R mutation). RIP2 represents a novel GDP/GTP exchange factor (RhoGEF), while RIP3 (p116Rip) and RIP4 are thought to be structural proteins. RhoGEF contains a Dbl(DH)/PH region, a a zinc finger motif, a leucine-rich domain, and a coiled-coil region. The last 2 domains are thought to be involved in mediating protein-protein interactions. RIP3 is a negative regulator of RhoA signaling that inhibits, either directly or indirectly, RhoA-stimulated actomyosin contractility. In plants RIP3 is localized at microtubules and interacts with the kinesin-13 family member AtKinesin-13A, suggesting a role for RIP3 in microtubule reorganization and a possible function in Rho proteins of plants (ROP)-regulated polar growth. It has a PH domain, two proline-rich regions which are putative binding sites for SH3 domains, and a COOH-terminal coiled-coil region which overlaps with the RhoA-binding region. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 269942 Cd Length: 136 Bit Score: 246.58 E-value: 1.25e-75
|
||||||||||||
PH_M-RIP | cd13275 | Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed ... |
500-604 | 2.15e-53 | ||||||||
Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed to play a role in myosin phosphatase regulation by RhoA. M-RIP contains 2 PH domains followed by a Rho binding domain (Rho-BD), and a C-terminal myosin binding subunit (MBS) binding domain (MBS-BD). The amino terminus of M-RIP with its adjacent PH domains and polyproline motifs mediates binding to both actin and Galpha. M-RIP brings RhoA and MBS into close proximity where M-RIP can target RhoA to the myosin phosphatase complex to regulate the myosin phosphorylation state. M-RIP does this via its C-terminal coiled-coil domain which interacts with the MBS leucine zipper domain of myosin phosphatase, while its Rho-BD, directly binds RhoA in a nucleotide-independent manner. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 270094 Cd Length: 104 Bit Score: 181.76 E-value: 2.15e-53
|
||||||||||||
Smc super family | cl34174 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
716-1269 | 2.81e-17 | ||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; The actual alignment was detected with superfamily member COG1196: Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 88.07 E-value: 2.81e-17
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||
PH_RIP | cd01236 | Rho-Interacting Protein Pleckstrin homology (PH) domain; RIP1-RhoGDI2 was obtained in a screen ... |
48-182 | 1.25e-75 | ||||||||||
Rho-Interacting Protein Pleckstrin homology (PH) domain; RIP1-RhoGDI2 was obtained in a screen for proteins that bind to wild-type RhoA. RIP2, RIP3, and RIP4 were isolated from cDNA libraries with constitutively active V14RhoA (containing the C190R mutation). RIP2 represents a novel GDP/GTP exchange factor (RhoGEF), while RIP3 (p116Rip) and RIP4 are thought to be structural proteins. RhoGEF contains a Dbl(DH)/PH region, a a zinc finger motif, a leucine-rich domain, and a coiled-coil region. The last 2 domains are thought to be involved in mediating protein-protein interactions. RIP3 is a negative regulator of RhoA signaling that inhibits, either directly or indirectly, RhoA-stimulated actomyosin contractility. In plants RIP3 is localized at microtubules and interacts with the kinesin-13 family member AtKinesin-13A, suggesting a role for RIP3 in microtubule reorganization and a possible function in Rho proteins of plants (ROP)-regulated polar growth. It has a PH domain, two proline-rich regions which are putative binding sites for SH3 domains, and a COOH-terminal coiled-coil region which overlaps with the RhoA-binding region. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269942 Cd Length: 136 Bit Score: 246.58 E-value: 1.25e-75
|
||||||||||||||
PH_M-RIP | cd13275 | Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed ... |
500-604 | 2.15e-53 | ||||||||||
Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed to play a role in myosin phosphatase regulation by RhoA. M-RIP contains 2 PH domains followed by a Rho binding domain (Rho-BD), and a C-terminal myosin binding subunit (MBS) binding domain (MBS-BD). The amino terminus of M-RIP with its adjacent PH domains and polyproline motifs mediates binding to both actin and Galpha. M-RIP brings RhoA and MBS into close proximity where M-RIP can target RhoA to the myosin phosphatase complex to regulate the myosin phosphorylation state. M-RIP does this via its C-terminal coiled-coil domain which interacts with the MBS leucine zipper domain of myosin phosphatase, while its Rho-BD, directly binds RhoA in a nucleotide-independent manner. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270094 Cd Length: 104 Bit Score: 181.76 E-value: 2.15e-53
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
716-1269 | 2.81e-17 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 88.07 E-value: 2.81e-17
|
||||||||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
500-595 | 7.81e-15 | ||||||||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 71.43 E-value: 7.81e-15
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
719-1329 | 8.79e-14 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 76.63 E-value: 8.79e-14
|
||||||||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
500-594 | 9.62e-12 | ||||||||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 62.97 E-value: 9.62e-12
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
716-1328 | 8.18e-07 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 53.99 E-value: 8.18e-07
|
||||||||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
76-176 | 9.09e-07 | ||||||||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 48.70 E-value: 9.09e-07
|
||||||||||||||
Filament | pfam00038 | Intermediate filament protein; |
791-1057 | 9.34e-06 | ||||||||||
Intermediate filament protein; Pssm-ID: 459643 [Multi-domain] Cd Length: 313 Bit Score: 49.15 E-value: 9.34e-06
|
||||||||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
76-176 | 4.19e-04 | ||||||||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 41.01 E-value: 4.19e-04
|
||||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||||
PH_RIP | cd01236 | Rho-Interacting Protein Pleckstrin homology (PH) domain; RIP1-RhoGDI2 was obtained in a screen ... |
48-182 | 1.25e-75 | ||||||||||
Rho-Interacting Protein Pleckstrin homology (PH) domain; RIP1-RhoGDI2 was obtained in a screen for proteins that bind to wild-type RhoA. RIP2, RIP3, and RIP4 were isolated from cDNA libraries with constitutively active V14RhoA (containing the C190R mutation). RIP2 represents a novel GDP/GTP exchange factor (RhoGEF), while RIP3 (p116Rip) and RIP4 are thought to be structural proteins. RhoGEF contains a Dbl(DH)/PH region, a a zinc finger motif, a leucine-rich domain, and a coiled-coil region. The last 2 domains are thought to be involved in mediating protein-protein interactions. RIP3 is a negative regulator of RhoA signaling that inhibits, either directly or indirectly, RhoA-stimulated actomyosin contractility. In plants RIP3 is localized at microtubules and interacts with the kinesin-13 family member AtKinesin-13A, suggesting a role for RIP3 in microtubule reorganization and a possible function in Rho proteins of plants (ROP)-regulated polar growth. It has a PH domain, two proline-rich regions which are putative binding sites for SH3 domains, and a COOH-terminal coiled-coil region which overlaps with the RhoA-binding region. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269942 Cd Length: 136 Bit Score: 246.58 E-value: 1.25e-75
|
||||||||||||||
PH_M-RIP | cd13275 | Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed ... |
500-604 | 2.15e-53 | ||||||||||
Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed to play a role in myosin phosphatase regulation by RhoA. M-RIP contains 2 PH domains followed by a Rho binding domain (Rho-BD), and a C-terminal myosin binding subunit (MBS) binding domain (MBS-BD). The amino terminus of M-RIP with its adjacent PH domains and polyproline motifs mediates binding to both actin and Galpha. M-RIP brings RhoA and MBS into close proximity where M-RIP can target RhoA to the myosin phosphatase complex to regulate the myosin phosphorylation state. M-RIP does this via its C-terminal coiled-coil domain which interacts with the MBS leucine zipper domain of myosin phosphatase, while its Rho-BD, directly binds RhoA in a nucleotide-independent manner. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270094 Cd Length: 104 Bit Score: 181.76 E-value: 2.15e-53
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
716-1269 | 2.81e-17 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 88.07 E-value: 2.81e-17
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
718-1298 | 2.93e-17 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 88.07 E-value: 2.93e-17
|
||||||||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
500-595 | 7.81e-15 | ||||||||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 71.43 E-value: 7.81e-15
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
719-1329 | 8.79e-14 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 76.63 E-value: 8.79e-14
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
715-1197 | 1.77e-13 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 75.74 E-value: 1.77e-13
|
||||||||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
500-591 | 2.05e-13 | ||||||||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 67.18 E-value: 2.05e-13
|
||||||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
791-1278 | 6.92e-12 | ||||||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 70.18 E-value: 6.92e-12
|
||||||||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
500-594 | 9.62e-12 | ||||||||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 62.97 E-value: 9.62e-12
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
715-970 | 5.47e-11 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 67.39 E-value: 5.47e-11
|
||||||||||||||
PH_PEPP1_2_3 | cd13248 | Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ... |
487-595 | 1.01e-10 | ||||||||||
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270068 Cd Length: 104 Bit Score: 59.98 E-value: 1.01e-10
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
701-976 | 1.16e-10 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 66.62 E-value: 1.16e-10
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
710-972 | 2.32e-10 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 65.47 E-value: 2.32e-10
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
716-1269 | 8.86e-10 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 63.54 E-value: 8.86e-10
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
849-1194 | 1.83e-09 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 62.38 E-value: 1.83e-09
|
||||||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
705-951 | 2.28e-09 | ||||||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 60.93 E-value: 2.28e-09
|
||||||||||||||
PH_AtPH1 | cd13276 | Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ... |
98-191 | 3.31e-09 | ||||||||||
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270095 Cd Length: 106 Bit Score: 55.79 E-value: 3.31e-09
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
734-978 | 8.97e-09 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 60.47 E-value: 8.97e-09
|
||||||||||||||
PH_AtPH1 | cd13276 | Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ... |
500-588 | 9.83e-09 | ||||||||||
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270095 Cd Length: 106 Bit Score: 54.25 E-value: 9.83e-09
|
||||||||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
78-176 | 1.43e-08 | ||||||||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 53.32 E-value: 1.43e-08
|
||||||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
718-1270 | 1.49e-08 | ||||||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 59.54 E-value: 1.49e-08
|
||||||||||||||
PH2_MyoX | cd13296 | Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ... |
98-176 | 4.09e-08 | ||||||||||
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270108 Cd Length: 103 Bit Score: 52.47 E-value: 4.09e-08
|
||||||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
743-980 | 4.51e-08 | ||||||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 57.08 E-value: 4.51e-08
|
||||||||||||||
PH-GRAM1_AGT26 | cd13215 | Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ... |
493-592 | 5.15e-08 | ||||||||||
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275402 Cd Length: 116 Bit Score: 52.62 E-value: 5.15e-08
|
||||||||||||||
sbcc | TIGR00618 | exonuclease SbcC; All proteins in this family for which functions are known are part of an ... |
715-1351 | 1.50e-07 | ||||||||||
exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] Pssm-ID: 129705 [Multi-domain] Cd Length: 1042 Bit Score: 56.13 E-value: 1.50e-07
|
||||||||||||||
PH_SWAP-70 | cd13273 | Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ... |
500-599 | 3.98e-07 | ||||||||||
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270092 Cd Length: 110 Bit Score: 49.99 E-value: 3.98e-07
|
||||||||||||||
GumC | COG3206 | Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; |
731-972 | 5.34e-07 | ||||||||||
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442439 [Multi-domain] Cd Length: 687 Bit Score: 54.25 E-value: 5.34e-07
|
||||||||||||||
PH_DAPP1 | cd10573 | Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ... |
496-593 | 5.61e-07 | ||||||||||
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269977 [Multi-domain] Cd Length: 96 Bit Score: 48.86 E-value: 5.61e-07
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
716-1328 | 8.18e-07 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 53.99 E-value: 8.18e-07
|
||||||||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
76-176 | 9.09e-07 | ||||||||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 48.70 E-value: 9.09e-07
|
||||||||||||||
CwlO1 | COG3883 | Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function ... |
723-980 | 1.19e-06 | ||||||||||
Uncharacterized N-terminal coiled-coil domain of peptidoglycan hydrolase CwlO [Function unknown]; Pssm-ID: 443091 [Multi-domain] Cd Length: 379 Bit Score: 52.52 E-value: 1.19e-06
|
||||||||||||||
PH_RhoGap25-like | cd13263 | Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ... |
500-598 | 1.40e-06 | ||||||||||
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270083 Cd Length: 114 Bit Score: 48.53 E-value: 1.40e-06
|
||||||||||||||
Mplasa_alph_rch | TIGR04523 | helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of ... |
719-978 | 1.62e-06 | ||||||||||
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of Mycoplasma species. Members average 750 amino acids in length, including signal peptide. Sequences are predicted (Jpred 3) to be almost entirely alpha-helical. These sequences show strong periodicity (consistent with long alpha helical structures) and low complexity rich in D,E,N,Q, and K. Genes encoding these proteins are often found in tandem. The function is unknown. Pssm-ID: 275316 [Multi-domain] Cd Length: 745 Bit Score: 52.72 E-value: 1.62e-06
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
1079-1352 | 2.20e-06 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 52.25 E-value: 2.20e-06
|
||||||||||||||
PH_RhoGAP2 | cd13378 | Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ... |
500-592 | 2.67e-06 | ||||||||||
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241529 Cd Length: 116 Bit Score: 47.63 E-value: 2.67e-06
|
||||||||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
922-1292 | 3.45e-06 | ||||||||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 51.86 E-value: 3.45e-06
|
||||||||||||||
PH1_PH_fungal | cd13298 | Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ... |
500-597 | 3.51e-06 | ||||||||||
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270110 Cd Length: 106 Bit Score: 46.85 E-value: 3.51e-06
|
||||||||||||||
PH1_PLEKHH1_PLEKHH2 | cd13282 | Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ... |
500-594 | 5.65e-06 | ||||||||||
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241436 Cd Length: 96 Bit Score: 46.14 E-value: 5.65e-06
|
||||||||||||||
Filament | pfam00038 | Intermediate filament protein; |
791-1057 | 9.34e-06 | ||||||||||
Intermediate filament protein; Pssm-ID: 459643 [Multi-domain] Cd Length: 313 Bit Score: 49.15 E-value: 9.34e-06
|
||||||||||||||
CCDC158 | pfam15921 | Coiled-coil domain-containing protein 158; CCDC158 is a family of proteins found in eukaryotes. ... |
701-970 | 1.01e-05 | ||||||||||
Coiled-coil domain-containing protein 158; CCDC158 is a family of proteins found in eukaryotes. The function is not known. Pssm-ID: 464943 [Multi-domain] Cd Length: 1112 Bit Score: 50.12 E-value: 1.01e-05
|
||||||||||||||
MukB | COG3096 | Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell ... |
716-1117 | 1.01e-05 | ||||||||||
Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 442330 [Multi-domain] Cd Length: 1470 Bit Score: 50.34 E-value: 1.01e-05
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
710-975 | 1.08e-05 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 50.07 E-value: 1.08e-05
|
||||||||||||||
PH1_PH_fungal | cd13298 | Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ... |
96-179 | 1.34e-05 | ||||||||||
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270110 Cd Length: 106 Bit Score: 45.31 E-value: 1.34e-05
|
||||||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
856-1048 | 1.40e-05 | ||||||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 48.99 E-value: 1.40e-05
|
||||||||||||||
PH_KIFIA_KIFIB | cd01233 | KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ... |
500-591 | 1.56e-05 | ||||||||||
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269939 Cd Length: 103 Bit Score: 45.28 E-value: 1.56e-05
|
||||||||||||||
PH_GRP1-like | cd01252 | General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ... |
500-566 | 1.75e-05 | ||||||||||
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269954 Cd Length: 119 Bit Score: 45.38 E-value: 1.75e-05
|
||||||||||||||
PH_TAAP2-like | cd13255 | Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ... |
500-594 | 2.17e-05 | ||||||||||
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270075 Cd Length: 110 Bit Score: 45.10 E-value: 2.17e-05
|
||||||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
874-1118 | 2.59e-05 | ||||||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 48.22 E-value: 2.59e-05
|
||||||||||||||
PH_FAPP1_FAPP2 | cd01247 | Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also ... |
100-173 | 3.79e-05 | ||||||||||
Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also called PLEKHA3/Pleckstrin homology domain-containing, family A member 3) regulates secretory transport from the trans-Golgi network to the plasma membrane. It is recruited through binding of PH domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). These two binding sites have little overlap the FAPP1 PH domain to associate with both ligands simultaneously and independently. FAPP1 has a N-terminal PH domain followed by a short proline-rich region. FAPP1 is a member of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), and Goodpasture antigen binding protein (GPBP). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. FAPP2 (also called PLEKHA8/Pleckstrin homology domain-containing, family A member 8), a member of the Glycolipid lipid transfer protein(GLTP) family has an N-terminal PH domain that targets the TGN and C-terminal GLTP domain. FAPP2 functions to traffic glucosylceramide (GlcCer) which is made in the Golgi. It's interaction with vesicle-associated membrane protein-associated protein (VAP) could be a means of regulation. Some FAPP2s share the FFAT-like motifs found in GLTP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269951 Cd Length: 100 Bit Score: 43.93 E-value: 3.79e-05
|
||||||||||||||
PH_CNK_mammalian-like | cd01260 | Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ... |
502-599 | 4.19e-05 | ||||||||||
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and, with the exception of CNK3, a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from mammals, chickens, amphibians, fish, and crustacea. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269962 Cd Length: 114 Bit Score: 44.32 E-value: 4.19e-05
|
||||||||||||||
EnvC | COG4942 | Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, ... |
897-1160 | 7.62e-05 | ||||||||||
Septal ring factor EnvC, activator of murein hydrolases AmiA and AmiB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 443969 [Multi-domain] Cd Length: 377 Bit Score: 46.68 E-value: 7.62e-05
|
||||||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
766-1328 | 7.75e-05 | ||||||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 47.37 E-value: 7.75e-05
|
||||||||||||||
CCDC158 | pfam15921 | Coiled-coil domain-containing protein 158; CCDC158 is a family of proteins found in eukaryotes. ... |
730-1297 | 8.46e-05 | ||||||||||
Coiled-coil domain-containing protein 158; CCDC158 is a family of proteins found in eukaryotes. The function is not known. Pssm-ID: 464943 [Multi-domain] Cd Length: 1112 Bit Score: 47.42 E-value: 8.46e-05
|
||||||||||||||
DUF5401 | pfam17380 | Family of unknown function (DUF5401); This is a family of unknown function found in ... |
996-1283 | 9.48e-05 | ||||||||||
Family of unknown function (DUF5401); This is a family of unknown function found in Chromadorea. Pssm-ID: 375164 [Multi-domain] Cd Length: 722 Bit Score: 47.04 E-value: 9.48e-05
|
||||||||||||||
PH_TAAP2-like | cd13255 | Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ... |
96-177 | 9.77e-05 | ||||||||||
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270075 Cd Length: 110 Bit Score: 43.17 E-value: 9.77e-05
|
||||||||||||||
PRK03918 | PRK03918 | DNA double-strand break repair ATPase Rad50; |
716-1193 | 1.08e-04 | ||||||||||
DNA double-strand break repair ATPase Rad50; Pssm-ID: 235175 [Multi-domain] Cd Length: 880 Bit Score: 46.98 E-value: 1.08e-04
|
||||||||||||||
PTZ00121 | PTZ00121 | MAEBL; Provisional |
861-1265 | 1.13e-04 | ||||||||||
MAEBL; Provisional Pssm-ID: 173412 [Multi-domain] Cd Length: 2084 Bit Score: 47.06 E-value: 1.13e-04
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
719-1306 | 1.14e-04 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 46.98 E-value: 1.14e-04
|
||||||||||||||
MukB | COG3096 | Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell ... |
721-970 | 1.21e-04 | ||||||||||
Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 442330 [Multi-domain] Cd Length: 1470 Bit Score: 46.87 E-value: 1.21e-04
|
||||||||||||||
COG4913 | COG4913 | Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; |
862-1056 | 1.39e-04 | ||||||||||
Uncharacterized conserved protein, contains a C-terminal ATPase domain [Function unknown]; Pssm-ID: 443941 [Multi-domain] Cd Length: 1089 Bit Score: 46.45 E-value: 1.39e-04
|
||||||||||||||
MukB | COG3096 | Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell ... |
728-1118 | 1.88e-04 | ||||||||||
Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 442330 [Multi-domain] Cd Length: 1470 Bit Score: 46.10 E-value: 1.88e-04
|
||||||||||||||
COG5022 | COG5022 | Myosin heavy chain [General function prediction only]; |
717-970 | 3.09e-04 | ||||||||||
Myosin heavy chain [General function prediction only]; Pssm-ID: 227355 [Multi-domain] Cd Length: 1463 Bit Score: 45.45 E-value: 3.09e-04
|
||||||||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
710-1328 | 3.34e-04 | ||||||||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 45.17 E-value: 3.34e-04
|
||||||||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
76-176 | 4.19e-04 | ||||||||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 41.01 E-value: 4.19e-04
|
||||||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
900-1345 | 4.21e-04 | ||||||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 44.76 E-value: 4.21e-04
|
||||||||||||||
GumC | COG3206 | Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; |
720-907 | 4.64e-04 | ||||||||||
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442439 [Multi-domain] Cd Length: 687 Bit Score: 44.62 E-value: 4.64e-04
|
||||||||||||||
MukB | COG3096 | Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell ... |
719-1118 | 5.18e-04 | ||||||||||
Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 442330 [Multi-domain] Cd Length: 1470 Bit Score: 44.56 E-value: 5.18e-04
|
||||||||||||||
PRK11281 | PRK11281 | mechanosensitive channel MscK; |
714-911 | 7.85e-04 | ||||||||||
mechanosensitive channel MscK; Pssm-ID: 236892 [Multi-domain] Cd Length: 1113 Bit Score: 44.13 E-value: 7.85e-04
|
||||||||||||||
sbcc | TIGR00618 | exonuclease SbcC; All proteins in this family for which functions are known are part of an ... |
723-1141 | 8.94e-04 | ||||||||||
exonuclease SbcC; All proteins in this family for which functions are known are part of an exonuclease complex with sbcD homologs. This complex is involved in the initiation of recombination to regulate the levels of palindromic sequences in DNA. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair] Pssm-ID: 129705 [Multi-domain] Cd Length: 1042 Bit Score: 43.80 E-value: 8.94e-04
|
||||||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
713-1118 | 1.01e-03 | ||||||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 43.60 E-value: 1.01e-03
|
||||||||||||||
DR0291 | COG1579 | Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General ... |
856-978 | 1.05e-03 | ||||||||||
Predicted nucleic acid-binding protein DR0291, contains C4-type Zn-ribbon domain [General function prediction only]; Pssm-ID: 441187 [Multi-domain] Cd Length: 236 Bit Score: 42.22 E-value: 1.05e-03
|
||||||||||||||
PH2_ADAP | cd01251 | ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ... |
500-594 | 1.17e-03 | ||||||||||
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241282 Cd Length: 105 Bit Score: 39.88 E-value: 1.17e-03
|
||||||||||||||
mukB | PRK04863 | chromosome partition protein MukB; |
735-978 | 1.20e-03 | ||||||||||
chromosome partition protein MukB; Pssm-ID: 235316 [Multi-domain] Cd Length: 1486 Bit Score: 43.41 E-value: 1.20e-03
|
||||||||||||||
PH1_PLEKHH1_PLEKHH2 | cd13282 | Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ... |
96-176 | 1.31e-03 | ||||||||||
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241436 Cd Length: 96 Bit Score: 39.59 E-value: 1.31e-03
|
||||||||||||||
PRK10246 | PRK10246 | exonuclease subunit SbcC; Provisional |
718-978 | 1.43e-03 | ||||||||||
exonuclease subunit SbcC; Provisional Pssm-ID: 182330 [Multi-domain] Cd Length: 1047 Bit Score: 43.25 E-value: 1.43e-03
|
||||||||||||||
PRK11281 | PRK11281 | mechanosensitive channel MscK; |
856-1032 | 1.49e-03 | ||||||||||
mechanosensitive channel MscK; Pssm-ID: 236892 [Multi-domain] Cd Length: 1113 Bit Score: 42.98 E-value: 1.49e-03
|
||||||||||||||
PH_evt | cd13265 | Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also ... |
98-119 | 1.82e-03 | ||||||||||
Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also called pleckstrin homology domain containing, family B): evt-1 (also called PLEKHB1) and evt-2 (also called PLEKHB2). evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia. evt-2 is widely expressed in both neural and nonneural tissues. Evectins possess a single N-terminal PH domain and a C-terminal hydrophobic region. evt-1 is thought to function as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. It is a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and a susceptibility gene for multiple sclerosis. evt-2 is essential for retrograde endosomal membrane transport from the plasma membrane (PM) to the Golgi. Two membrane trafficking pathways pass through recycling endosomes: a recycling pathway and a retrograde pathway that links the PM to the Golgi/ER. Its PH domain that is unique in that it specifically recognizes phosphatidylserine (PS), but not polyphosphoinositides. PS is an anionic phospholipid class in eukaryotic biomembranes, is highly enriched in the PM, and plays key roles in various physiological processes such as the coagulation cascade, recruitment and activation of signaling molecules, and clearance of apoptotic cells. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270085 Cd Length: 108 Bit Score: 39.21 E-value: 1.82e-03
|
||||||||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
1008-1320 | 2.15e-03 | ||||||||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 42.74 E-value: 2.15e-03
|
||||||||||||||
Nup88 | pfam10168 | Nuclear pore component; Nup88 can be divided into two structural domains; the N-terminal ... |
859-969 | 2.26e-03 | ||||||||||
Nuclear pore component; Nup88 can be divided into two structural domains; the N-terminal two-thirds of the protein has no obvious structural motifs but is the region for binding to Nup98, one of the components of the nuclear pore. the C-terminal end is a predicted coiled-coil domain. Nup88 is overexpressed in tumour cells. Pssm-ID: 462975 [Multi-domain] Cd Length: 713 Bit Score: 42.34 E-value: 2.26e-03
|
||||||||||||||
PRK11281 | PRK11281 | mechanosensitive channel MscK; |
889-1117 | 2.46e-03 | ||||||||||
mechanosensitive channel MscK; Pssm-ID: 236892 [Multi-domain] Cd Length: 1113 Bit Score: 42.59 E-value: 2.46e-03
|
||||||||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
856-1056 | 2.73e-03 | ||||||||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 41.81 E-value: 2.73e-03
|
||||||||||||||
PH3_MyoX-like | cd13297 | Myosin X-like Pleckstrin homology (PH) domain, repeat 3; MyoX, a MyTH-FERM myosin, is a ... |
501-568 | 2.81e-03 | ||||||||||
Myosin X-like Pleckstrin homology (PH) domain, repeat 3; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the third MyoX PH repeat. PLEKHH3/Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) member 3 is also part of this CD and like MyoX contains a FERM domain, a MyTH4 domain, and a single PH domain. Not much is known about the function of PLEKHH3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270109 Cd Length: 126 Bit Score: 39.34 E-value: 2.81e-03
|
||||||||||||||
mukB | PRK04863 | chromosome partition protein MukB; |
718-958 | 2.91e-03 | ||||||||||
chromosome partition protein MukB; Pssm-ID: 235316 [Multi-domain] Cd Length: 1486 Bit Score: 42.25 E-value: 2.91e-03
|
||||||||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
716-943 | 3.53e-03 | ||||||||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 41.68 E-value: 3.53e-03
|
||||||||||||||
PH_RhoGap24 | cd13379 | Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ... |
500-531 | 4.03e-03 | ||||||||||
Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ARHGAP24, p73RhoGAp, and Filamin-A-associated RhoGAP) like other RhoGAPs are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241530 Cd Length: 114 Bit Score: 38.41 E-value: 4.03e-03
|
||||||||||||||
mukB | PRK04863 | chromosome partition protein MukB; |
713-1118 | 4.37e-03 | ||||||||||
chromosome partition protein MukB; Pssm-ID: 235316 [Multi-domain] Cd Length: 1486 Bit Score: 41.87 E-value: 4.37e-03
|
||||||||||||||
PH_DAPP1 | cd10573 | Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ... |
77-176 | 4.46e-03 | ||||||||||
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269977 [Multi-domain] Cd Length: 96 Bit Score: 38.07 E-value: 4.46e-03
|
||||||||||||||
PH_ACAP | cd13250 | ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ... |
500-594 | 5.12e-03 | ||||||||||
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270070 Cd Length: 98 Bit Score: 37.97 E-value: 5.12e-03
|
||||||||||||||
PH_Sbf1_hMTMR5 | cd01235 | Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ... |
98-174 | 5.37e-03 | ||||||||||
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269941 Cd Length: 106 Bit Score: 38.08 E-value: 5.37e-03
|
||||||||||||||
PH_OSBP_ORP4 | cd13284 | Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; ... |
500-532 | 6.66e-03 | ||||||||||
Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; Human OSBP is proposed to function is sterol-dependent regulation of ERK dephosphorylation and sphingomyelin synthesis as well as modulation of insulin signaling and hepatic lipogenesis. It contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBPs and Osh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. ORP4 is proposed to function in Vimentin-dependent sterol transport and/or signaling. Human ORP4 has 2 forms, a long (ORP4L) and a short (ORP4S). ORP4L contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP4S is truncated and contains only an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270101 Cd Length: 99 Bit Score: 37.36 E-value: 6.66e-03
|
||||||||||||||
PH_DGK_type2 | cd13274 | Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ... |
500-594 | 6.73e-03 | ||||||||||
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270093 Cd Length: 97 Bit Score: 37.38 E-value: 6.73e-03
|
||||||||||||||
PH_CpORP2-like | cd13293 | Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) ... |
92-176 | 7.05e-03 | ||||||||||
Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) domain; There are 2 types of ORPs found in Cryptosporidium: CpORP1 and CpORP2. Cryptosporium differs from other apicomplexans like Plasmodium, Toxoplasma, and Eimeria which possess only a single long-type ORP consisting of an N-terminal PH domain followed by a C-terminal ligand binding (LB) domain. CpORP2 is like this, but CpORP1 differs and has a truncated N-terminus resulting in only having a LB domain present. The exact functions of these proteins are largely unknown though CpORP1 is thought to be involved in lipid transport across the parasitophorous vacuole membrane. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241447 Cd Length: 88 Bit Score: 37.31 E-value: 7.05e-03
|
||||||||||||||
PH_ACAP | cd13250 | ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ... |
80-130 | 7.86e-03 | ||||||||||
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270070 Cd Length: 98 Bit Score: 37.20 E-value: 7.86e-03
|
||||||||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
1148-1349 | 9.51e-03 | ||||||||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 40.44 E-value: 9.51e-03
|
||||||||||||||
Blast search parameters | ||||
|