Eukaryotic aspartyl protease family protein [Arabidopsis thaliana]
pepsin/retropepsin-like aspartic protease family protein; aspartic protease/reverse transcriptase family protein( domain architecture ID 10144424)
pepsin/retropepsin-like aspartic protease family protein| aspartic protease/reverse transcriptase (RT) family protein may hydrolyze the peptide bonds of substrates and/or catalyze the conversion of single-stranded RNA into double-stranded DNA
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
nucellin_like | cd05475 | Nucellins, plant aspartic proteases specifically expressed in nucellar cells during ... |
201-568 | 9.45e-154 | ||||||
Nucellins, plant aspartic proteases specifically expressed in nucellar cells during degradation; Nucellins are important regulators of nucellar cell's progressive degradation after ovule fertilization. This degradation is a characteristic of programmed cell death. Nucellins are plant aspartic proteases specifically expressed in nucellar cells during degradation. The enzyme is characterized by having two aspartic protease catalytic site motifs, the Asp-Thr-Gly-Ser in the N-terminal and Asp-Ser-Gly-Ser in the C-terminal region, and two other regions nearly identical to two regions of plant aspartic proteases. Aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe may be evolved from the other through ancient gene-duplication event. Although the three-dimensional structures of the two lobes are very similar, the amino acid sequences are more divergent, except for the conserved catalytic site motif. : Pssm-ID: 133142 [Multi-domain] Cd Length: 273 Bit Score: 441.81 E-value: 9.45e-154
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
nucellin_like | cd05475 | Nucellins, plant aspartic proteases specifically expressed in nucellar cells during ... |
201-568 | 9.45e-154 | ||||||
Nucellins, plant aspartic proteases specifically expressed in nucellar cells during degradation; Nucellins are important regulators of nucellar cell's progressive degradation after ovule fertilization. This degradation is a characteristic of programmed cell death. Nucellins are plant aspartic proteases specifically expressed in nucellar cells during degradation. The enzyme is characterized by having two aspartic protease catalytic site motifs, the Asp-Thr-Gly-Ser in the N-terminal and Asp-Ser-Gly-Ser in the C-terminal region, and two other regions nearly identical to two regions of plant aspartic proteases. Aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe may be evolved from the other through ancient gene-duplication event. Although the three-dimensional structures of the two lobes are very similar, the amino acid sequences are more divergent, except for the conserved catalytic site motif. Pssm-ID: 133142 [Multi-domain] Cd Length: 273 Bit Score: 441.81 E-value: 9.45e-154
|
||||||||||
TAXi_N | pfam14543 | Xylanase inhibitor N-terminal; The N- and C-termini of the members of this family are jointly ... |
203-380 | 3.71e-63 | ||||||
Xylanase inhibitor N-terminal; The N- and C-termini of the members of this family are jointly necessary for creating the catalytic pocket necessary for cleaving xylanase. Phytopathogens produce xylanase that destroys plant cells, so its destruction through proteolysis is vital for plant-survival. Pssm-ID: 464203 [Multi-domain] Cd Length: 172 Bit Score: 205.20 E-value: 3.71e-63
|
||||||||||
PLN03146 | PLN03146 | aspartyl protease family protein; Provisional |
223-568 | 1.27e-27 | ||||||
aspartyl protease family protein; Provisional Pssm-ID: 178691 [Multi-domain] Cd Length: 431 Bit Score: 115.50 E-value: 1.27e-27
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
nucellin_like | cd05475 | Nucellins, plant aspartic proteases specifically expressed in nucellar cells during ... |
201-568 | 9.45e-154 | ||||||
Nucellins, plant aspartic proteases specifically expressed in nucellar cells during degradation; Nucellins are important regulators of nucellar cell's progressive degradation after ovule fertilization. This degradation is a characteristic of programmed cell death. Nucellins are plant aspartic proteases specifically expressed in nucellar cells during degradation. The enzyme is characterized by having two aspartic protease catalytic site motifs, the Asp-Thr-Gly-Ser in the N-terminal and Asp-Ser-Gly-Ser in the C-terminal region, and two other regions nearly identical to two regions of plant aspartic proteases. Aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe may be evolved from the other through ancient gene-duplication event. Although the three-dimensional structures of the two lobes are very similar, the amino acid sequences are more divergent, except for the conserved catalytic site motif. Pssm-ID: 133142 [Multi-domain] Cd Length: 273 Bit Score: 441.81 E-value: 9.45e-154
|
||||||||||
TAXi_N | pfam14543 | Xylanase inhibitor N-terminal; The N- and C-termini of the members of this family are jointly ... |
203-380 | 3.71e-63 | ||||||
Xylanase inhibitor N-terminal; The N- and C-termini of the members of this family are jointly necessary for creating the catalytic pocket necessary for cleaving xylanase. Phytopathogens produce xylanase that destroys plant cells, so its destruction through proteolysis is vital for plant-survival. Pssm-ID: 464203 [Multi-domain] Cd Length: 172 Bit Score: 205.20 E-value: 3.71e-63
|
||||||||||
pepsin_A_like_plant | cd05476 | Chroloplast Nucleoids DNA-binding Protease and Nucellin, pepsin-like aspartic proteases from ... |
203-568 | 3.08e-49 | ||||||
Chroloplast Nucleoids DNA-binding Protease and Nucellin, pepsin-like aspartic proteases from plants; This family contains pepsin like aspartic proteases from plants including Chloroplast Nucleoids DNA-binding Protease and Nucellin. Chloroplast Nucleoids DNA-binding Protease catalyzes the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in senescent leaves of tobacco and Nucellins are important regulators of nucellar cell's progressive degradation after ovule fertilization. Structurally, aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. The N- and C-terminal domains, although structurally related by a 2-fold axis, have only limited sequence homology except the vicinity of the active site. This suggests that the enzymes evolved by an ancient duplication event. The enzymes specifically cleave bonds in peptides which have at least six residues in length with hydrophobic residues in both the P1 and P1' positions. The active site is located at the groove formed by the two lobes, with an extended loop projecting over the cleft to form an 11-residue flap, which encloses substrates and inhibitors in the active site. Specificity is determined by nearest-neighbor hydrophobic residues surrounding the catalytic aspartates, and by three residues in the flap. The enzymes are mostly secreted from cells as inactive proenzymes that activate autocatalytically at acidic pH. Pssm-ID: 133143 [Multi-domain] Cd Length: 265 Bit Score: 171.68 E-value: 3.08e-49
|
||||||||||
cnd41_like | cd05472 | Chloroplast Nucleoids DNA-binding Protease, catalyzes the degradation of ribulose-1, ... |
203-568 | 3.57e-40 | ||||||
Chloroplast Nucleoids DNA-binding Protease, catalyzes the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase; Chloroplast Nucleoids DNA-binding Protease catalyzes the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in senescent leaves of tobacco. Antisense tobacco with reduced amount of CND41 maintained green leaves and constant protein levels, especially Rubisco. CND41 has DNA-binding as well as aspartic protease activities. The pepsin-like aspartic protease domain is located at the C-terminus of the protein. The enzyme is characterized by having two aspartic protease catalytic site motifs, the Asp-Thr-Gly-Ser in the N-terminal and Asp-Ser-Gly-Ser in the C-terminal region. Aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe may be evolved from the other through ancient gene-duplication event. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). Pssm-ID: 133139 [Multi-domain] Cd Length: 299 Bit Score: 148.19 E-value: 3.57e-40
|
||||||||||
pepsin_like | cd05471 | Pepsin-like aspartic proteases, bilobal enzymes that cleave bonds in peptides at acidic pH; ... |
203-563 | 8.61e-39 | ||||||
Pepsin-like aspartic proteases, bilobal enzymes that cleave bonds in peptides at acidic pH; Pepsin-like aspartic proteases are found in mammals, plants, fungi and bacteria. These well known and extensively characterized enzymes include pepsins, chymosin, renin, cathepsins, and fungal aspartic proteases. Several have long been known to be medically (renin, cathepsin D and E, pepsin) or commercially (chymosin) important. Structurally, aspartic proteases are bilobal enzymes, each lobe contributing a catalytic Aspartate residue, with an extended active site cleft localized between the two lobes of the molecule. The N- and C-terminal domains, although structurally related by a 2-fold axis, have only limited sequence homology except the vicinity of the active site. This suggests that the enzymes evolved by an ancient duplication event. Most members of the pepsin family specifically cleave bonds in peptides that are at least six residues in length, with hydrophobic residues in both the P1 and P1' positions. The active site is located at the groove formed by the two lobes, with an extended loop projecting over the cleft to form an 11-residue flap, which encloses substrates and inhibitors in the active site. Specificity is determined by nearest-neighbor hydrophobic residues surrounding the catalytic aspartates, and by three residues in the flap.The enzymes are mostly secreted from cells as inactive proenzymes that activate autocatalytically at acidic pH. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). Pssm-ID: 133138 [Multi-domain] Cd Length: 283 Bit Score: 143.72 E-value: 8.61e-39
|
||||||||||
PLN03146 | PLN03146 | aspartyl protease family protein; Provisional |
223-568 | 1.27e-27 | ||||||
aspartyl protease family protein; Provisional Pssm-ID: 178691 [Multi-domain] Cd Length: 431 Bit Score: 115.50 E-value: 1.27e-27
|
||||||||||
Plasmepsin_5 | cd06096 | Plasmepsins are a class of aspartic proteinases produced by the plasmodium parasite; The ... |
201-568 | 1.06e-19 | ||||||
Plasmepsins are a class of aspartic proteinases produced by the plasmodium parasite; The family contains a group of aspartic proteinases homologous to plasmepsin 5. Plasmepsins are a class of at least 10 enzymes produced by the plasmodium parasite. Through their haemoglobin-degrading activity, they are an important cause of symptoms in malaria sufferers. This family of enzymes is a potential target for anti-malarial drugs. Plasmepsins are aspartic acid proteases, which means their active site contains two aspartic acid residues. These two aspartic acid residue act respectively as proton donor and proton acceptor, catalyzing the hydrolysis of peptide bond in proteins. Aspartic proteinases are composed of two structurally similar beta barrel lobes, each lobe contributing an aspartic acid residue to form a catalytic dyad that acts to cleave the substrate peptide bond. The catalytic Asp residues are contained in an Asp-Thr-Gly-Ser/thr motif in both N- and C-terminal lobes of the enzyme. There are four types of plasmepsins, closely related but varying in the specificity of cleavage site. The name plasmepsin may come from plasmodium (the organism) and pepsin (a common aspartic acid protease with similar molecular structure). This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). Pssm-ID: 133160 [Multi-domain] Cd Length: 326 Bit Score: 90.52 E-value: 1.06e-19
|
||||||||||
xylanase_inhibitor_I_like | cd05489 | TAXI-I inhibits degradation of xylan in the cell wall; Xylanase inhibitor-I (TAXI-I) is a ... |
222-562 | 4.62e-15 | ||||||
TAXI-I inhibits degradation of xylan in the cell wall; Xylanase inhibitor-I (TAXI-I) is a member of potent TAXI-type inhibitors of fungal and bacterial family 11 xylanases. Plants developed a diverse battery of defense mechanisms in response to continual challenges by a broad spectrum of pathogenic microorganisms. Their defense arsenal includes inhibitors of cell wall-degrading enzymes, which hinder a possible invasion and colonization by antagonists. Xylanases of fungal and bacterial pathogens are the key enzymes in the degradation of xylan in the cell wall. Plants secrete proteins that inhibit these degradation glycosidases, including xylanase. Surprisingly, TAXI-I displays structural homology with the pepsin-like family of aspartic proteases but is proteolytically nonfunctional, because one or more residues of the essential catalytic triad are absent. The structure of the TAXI-inhibitor, Aspergillus niger xylanase I complex, illustrates the ability of tight binding and inhibition with subnanomolar affinity and indicates the importance of the C-terminal end for the differences in xylanase specificity among different TAXI-type inhibitors. This family also contains pepsin-like aspartic proteinases homologous to TAXI-I. Unlike TAXI-I, they have active site aspartates and are functionally active. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). Pssm-ID: 133156 [Multi-domain] Cd Length: 362 Bit Score: 77.01 E-value: 4.62e-15
|
||||||||||
TAXi_C | pfam14541 | Xylanase inhibitor C-terminal; The N- and C-termini of the members of this family are jointly ... |
401-562 | 3.91e-12 | ||||||
Xylanase inhibitor C-terminal; The N- and C-termini of the members of this family are jointly necessary for creating the catalytic pocket necessary for cleaving xylasnase. Phytopathogens produce xylanase that destroys plant cells, so its destruction through proteolysis is vital for plant-survival. Pssm-ID: 434029 Cd Length: 160 Bit Score: 64.60 E-value: 3.91e-12
|
||||||||||
SAP_like | cd05474 | SAPs, pepsin-like proteinases secreted from pathogens to degrade host proteins; SAPs (Secreted ... |
201-555 | 1.19e-10 | ||||||
SAPs, pepsin-like proteinases secreted from pathogens to degrade host proteins; SAPs (Secreted aspartic proteinases) are secreted from a group of pathogenic fungi, predominantly Candida species. They are secreted from the pathogen to degrade host proteins. SAP is one of the most significant extracellular hydrolytic enzymes produced by C. albicans. SAP proteins, encoded by a family of 10 SAP genes. All 10 SAP genes of C. albicans encode preproenzymes, approximately 60 amino acid longer than the mature enzyme, which are processed when transported via the secretory pathway. The mature enzymes contain sequence motifs typical for all aspartyl proteinases, including the two conserved aspartate residues other active site and conserved cysteine residues implicated in the maintenance of the three-dimensional structure. Most Sap proteins contain putative N-glycosylation sites, but it remains to be determined which Sap proteins are glycosylated. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). The overall structure of Sap protein conforms to the classical aspartic proteinase fold typified by pepsin. SAP is a bilobal enzyme, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. One lobe may be evolved from the other through ancient gene-duplication event. More recently evolved enzymes have similar three-dimensional structures, however their amino acid sequences are more divergent except for the conserved catalytic site motif. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). Pssm-ID: 133141 [Multi-domain] Cd Length: 295 Bit Score: 62.58 E-value: 1.19e-10
|
||||||||||
Asp | pfam00026 | Eukaryotic aspartyl protease; Aspartyl (acid) proteases include pepsins, cathepsins, and ... |
203-562 | 9.75e-10 | ||||||
Eukaryotic aspartyl protease; Aspartyl (acid) proteases include pepsins, cathepsins, and renins. Two-domain structure, probably arising from ancestral duplication. This family does not include the retroviral nor retrotransposon proteases (pfam00077), which are much smaller and appear to be homologous to a single domain of the eukaryotic asp proteases. Pssm-ID: 394983 [Multi-domain] Cd Length: 313 Bit Score: 59.98 E-value: 9.75e-10
|
||||||||||
pepsin_retropepsin_like | cd05470 | Cellular and retroviral pepsin-like aspartate proteases; This family includes both cellular ... |
205-341 | 3.98e-09 | ||||||
Cellular and retroviral pepsin-like aspartate proteases; This family includes both cellular and retroviral pepsin-like aspartate proteases. The cellular pepsin and pepsin-like enzymes are twice as long as their retroviral counterparts. The cellular pepsin-like aspartic proteases are found in mammals, plants, fungi and bacteria. These well known and extensively characterized enzymes include pepsins, chymosin, rennin, cathepsins, and fungal aspartic proteases. Several have long been known to be medically (rennin, cathepsin D and E, pepsin) or commercially (chymosin) important. The eukaryotic pepsin-like proteases contain two domains possessing similar topological features. The N- and C-terminal domains, although structurally related by a 2-fold axis, have only limited sequence homology except in the vicinity of the active site. This suggests that the enzymes evolved by an ancient duplication event. The eukaryotic pepsin-like proteases have two active site ASP residues with each N- and C-terminal lobe contributing one residue. While the fungal and mammalian pepsins are bilobal proteins, retropepsins function as dimers and the monomer resembles structure of the N- or C-terminal domains of eukaryotic enzyme. The active site motif (Asp-Thr/Ser-Gly-Ser) is conserved between the retroviral and eukaryotic proteases and between the N-and C-terminal of eukaryotic pepsin-like proteases. The retropepsin-like family includes pepsin-like aspartate proteases from retroviruses, retrotransposons and retroelements; as well as eukaryotic DNA-damage-inducible proteins (DDIs), and bacterial aspartate peptidases. Retropepsin is synthesized as part of the POL polyprotein that contains an aspartyl-protease, a reverse transcriptase, RNase H, and an integrase. The POL polyprotein undergoes specific enzymatic cleavage to yield the mature proteins. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A) and A2 (retropepsin family). Pssm-ID: 133137 [Multi-domain] Cd Length: 109 Bit Score: 54.31 E-value: 3.98e-09
|
||||||||||
Aspergillopepsin_like | cd06097 | Aspergillopepsin_like, aspartic proteases of fungal origin; The members of this family are ... |
203-444 | 3.07e-05 | ||||||
Aspergillopepsin_like, aspartic proteases of fungal origin; The members of this family are aspartic proteases of fungal origin, including aspergillopepsin, rhizopuspepsin, endothiapepsin, and rodosporapepsin. The various fungal species in this family may be the most economically important genus of fungi. They may serve as virulence factors or as industrial aids. For example, Aspergillopepsin from A. fumigatus is involved in invasive aspergillosis owing to its elastolytic activity and Aspergillopepsins from the mold A. saitoi are used in fermentation industry. Aspartic proteinases are a group of proteolytic enzymes in which the scissile peptide bond is attacked by a nucleophilic water molecule activated by two aspartic residues in a DT(S)G motif at the active site. They have a similar fold composed of two beta-barrel domains. Between the N-terminal and C-terminal domains, each of which contributes one catalytic aspartic residue, there is an extended active-site cleft capable of interacting with multiple residues of a substrate. Although members of the aspartic protease family of enzymes have very similar three-dimensional structures and catalytic mechanisms, each has unique substrate specificity. The members of this family has an optimal acidic pH (5.5) and cleaves protein substrates with similar specificity to that of porcine pepsin A, preferring hydrophobic residues at P1 and P1' in the cleave site. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). Pssm-ID: 133161 [Multi-domain] Cd Length: 278 Bit Score: 46.14 E-value: 3.07e-05
|
||||||||||
beta_secretase_like | cd05473 | Beta-secretase, aspartic-acid protease important in the pathogenesis of Alzheimer's disease; ... |
337-568 | 9.07e-04 | ||||||
Beta-secretase, aspartic-acid protease important in the pathogenesis of Alzheimer's disease; Beta-secretase also called BACE (beta-site of APP cleaving enzyme) or memapsin-2. Beta-secretase is an aspartic-acid protease important in the pathogenesis of Alzheimer's disease, and in the formation of myelin sheaths in peripheral nerve cells. It cleaves amyloid precursor protein (APP) to reveal the N-terminus of the beta-amyloid peptides. The beta-amyloid peptides are the major components of the amyloid plaques formed in the brain of patients with Alzheimer's disease (AD). Since BACE mediates one of the cleavages responsible for generation of AD, it is regarded as a potential target for pharmacological intervention in AD. Beta-secretase is a member of pepsin family of aspartic proteases. Same as other aspartic proteases, beta-secretase is a bilobal enzyme, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between the two lobes of the molecule. The N- and C-terminal domains, although structurally related by a 2-fold axis, have only limited sequence homology except the vicinity of the active site. This suggests that the enzymes evolved by an ancient duplication event. The enzymes specifically cleave bonds in peptides which have at least six residues in length with hydrophobic residues in both the P1 and P1' positions. The active site is located at the groove formed by the two lobes, with an extended loop projecting over the cleft to form an 11-residue flap, which encloses substrates and inhibitors in the active site. Specificity is determined by nearest-neighbor hydrophobic residues surrounding the catalytic aspartates, and by three residues in the flap. The enzymes are mostly secreted from cells as inactive proenzymes that activate autocatalytically at acidic pH. This family of aspartate proteases is classified by MEROPS as the peptidase family A1 (pepsin A, clan AA). Pssm-ID: 133140 [Multi-domain] Cd Length: 364 Bit Score: 41.64 E-value: 9.07e-04
|
||||||||||
Blast search parameters | ||||
|