uncharacterized protein Dmel_CG16868 [Drosophila melanogaster]
List of domain hits
Name | Accession | Description | Interval | E-value | |||
vWFA super family | cl00057 | Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ... |
308-426 | 8.86e-07 | |||
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. The actual alignment was detected with superfamily member cd01463: Pssm-ID: 469594 [Multi-domain] Cd Length: 190 Bit Score: 50.86 E-value: 8.86e-07
|
|||||||
HK_sensor super family | cl38916 | Sensor domains of Histidine Kinase receptors; Histidine kinase (HK) receptors are part of ... |
867-933 | 4.79e-06 | |||
Sensor domains of Histidine Kinase receptors; Histidine kinase (HK) receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. HK receptors in this family contain double PDC (PhoQ/DcuS/CitA) sensor domains. Signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. The HK family includes not just histidine kinase receptors but also sensors for chemotaxis proteins and diguanylate cyclase receptors, implying a combinatorial molecular evolution. The actual alignment was detected with superfamily member cd12913: Pssm-ID: 365792 Cd Length: 139 Bit Score: 47.52 E-value: 4.79e-06
|
|||||||
Name | Accession | Description | Interval | E-value | |||
vWA_VGCC_like | cd01463 | VWA Voltage gated Calcium channel like: Voltage-gated calcium channels are a complex of five ... |
308-426 | 8.86e-07 | |||
VWA Voltage gated Calcium channel like: Voltage-gated calcium channels are a complex of five proteins: alpha 1, beta 1, gamma, alpha 2 and delta. The alpha 2 and delta subunits result from proteolytic processing of a single gene product and carries at its N-terminus the VWA and cache domains, The alpha 2 delta gene family has orthologues in D. melanogaster and C. elegans but none have been detected in aither A. thaliana or yeast. The exact biochemical function of the VWA domain is not known but the alpha 2 delta complex has been shown to regulate various functional properties of the channel complex. Pssm-ID: 238740 [Multi-domain] Cd Length: 190 Bit Score: 50.86 E-value: 8.86e-07
|
|||||||
PDC1_MCP_like | cd12913 | first PDC (PhoQ/DcuS/CitA) domain of methyl-accepting chemotaxis proteins and similar domains; ... |
867-933 | 4.79e-06 | |||
first PDC (PhoQ/DcuS/CitA) domain of methyl-accepting chemotaxis proteins and similar domains; Members of this subfamily display varying domain architectures but all contain double PDC (PhoQ/DcuS/CitA) sensor domains. This model represents the first PDC domain of Methyl-accepting chemotaxis proteins (MCPs), Histidine kinases (HKs), and other similar domains. Many members contain both HAMP (HK, Adenylyl cyclase, MCP, and Phosphatase) and MCP domains, which are signalling domains that interact with protein partners to relay a signal. MCPs are part of a transmembrane protein complex that controls bacterial chemotaxis. HK receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. In the case of HKs, signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. Pssm-ID: 350338 Cd Length: 139 Bit Score: 47.52 E-value: 4.79e-06
|
|||||||
Name | Accession | Description | Interval | E-value | |||
vWA_VGCC_like | cd01463 | VWA Voltage gated Calcium channel like: Voltage-gated calcium channels are a complex of five ... |
308-426 | 8.86e-07 | |||
VWA Voltage gated Calcium channel like: Voltage-gated calcium channels are a complex of five proteins: alpha 1, beta 1, gamma, alpha 2 and delta. The alpha 2 and delta subunits result from proteolytic processing of a single gene product and carries at its N-terminus the VWA and cache domains, The alpha 2 delta gene family has orthologues in D. melanogaster and C. elegans but none have been detected in aither A. thaliana or yeast. The exact biochemical function of the VWA domain is not known but the alpha 2 delta complex has been shown to regulate various functional properties of the channel complex. Pssm-ID: 238740 [Multi-domain] Cd Length: 190 Bit Score: 50.86 E-value: 8.86e-07
|
|||||||
PDC1_MCP_like | cd12913 | first PDC (PhoQ/DcuS/CitA) domain of methyl-accepting chemotaxis proteins and similar domains; ... |
867-933 | 4.79e-06 | |||
first PDC (PhoQ/DcuS/CitA) domain of methyl-accepting chemotaxis proteins and similar domains; Members of this subfamily display varying domain architectures but all contain double PDC (PhoQ/DcuS/CitA) sensor domains. This model represents the first PDC domain of Methyl-accepting chemotaxis proteins (MCPs), Histidine kinases (HKs), and other similar domains. Many members contain both HAMP (HK, Adenylyl cyclase, MCP, and Phosphatase) and MCP domains, which are signalling domains that interact with protein partners to relay a signal. MCPs are part of a transmembrane protein complex that controls bacterial chemotaxis. HK receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. In the case of HKs, signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. Pssm-ID: 350338 Cd Length: 139 Bit Score: 47.52 E-value: 4.79e-06
|
|||||||
vWA_subgroup | cd01465 | VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
323-429 | 8.79e-05 | |||
VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the function of the VWA domain in these proteins. The members do have a conserved MIDAS motif. The biochemical function however is not known. Pssm-ID: 238742 [Multi-domain] Cd Length: 170 Bit Score: 44.57 E-value: 8.79e-05
|
|||||||
PDC1_HK_sensor | cd18773 | first PDC (PhoQ/DcuS/CitA) domain of methyl-accepting chemotaxis proteins, diguanylate-cyclase ... |
792-933 | 1.44e-03 | |||
first PDC (PhoQ/DcuS/CitA) domain of methyl-accepting chemotaxis proteins, diguanylate-cyclase and similar domains; Histidine kinase (HK) receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. HK receptors in this family contain double PDC (PhoQ/DcuS/CitA) sensor domains. Signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. The HK family includes not just histidine kinase receptors but also sensors for chemotaxis proteins and diguanylate cyclase receptors, implying a combinatorial molecular evolution. Pssm-ID: 350341 [Multi-domain] Cd Length: 125 Bit Score: 40.24 E-value: 1.44e-03
|
|||||||
PDC1_DGC_like | cd12914 | first PDC (PhoQ/DcuS/CitA) domain of diguanylate-cyclase and similar domains; Members of this ... |
799-933 | 1.90e-03 | |||
first PDC (PhoQ/DcuS/CitA) domain of diguanylate-cyclase and similar domains; Members of this subfamily display varying domain architectures but all contain double PDC (PhoQ/DcuS/CitA) sensor domains. This model represents the first PDC domain of Diguanylate-cyclases (DGCs), Histidine kinases (HKs), and other similar domains. Many members of this subfamily contain a C-terminal DGC (also called GGDEF) domain. DGCs regulate the turnover of cyclic diguanosine monophosphate. HK receptors are part of two-component systems (TCS) in bacteria that play a critical role for sensing and adapting to environmental changes. Typically, HK receptors contain an extracellular sensing domain flanked by two transmembrane helices, an intracellular dimerization histidine phosphorylation domain (DHp), and a C-terminal kinase domain, with many variations on this theme. In the case of HKs, signals detected by the sensor domain are transmitted through DHp to the kinase domain, resulting in the phosphorylation of a conserved histidine residue in DHp; phosphotransfer to a conserved aspartate in its cognate response regulator (RR) follows, which leads to the activation of genes for downstream cellular responses. Pssm-ID: 350339 Cd Length: 123 Bit Score: 39.67 E-value: 1.90e-03
|
|||||||
Blast search parameters | ||||
|