NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|20149724|ref|NP_619591|]
View 

diacylglycerol kinase gamma isoform 1 [Mus musculus]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
DAGKa smart00045
Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger ...
575-749 2.24e-88

Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain might either be an accessory domain or else contribute to the catalytic domain. Bacterial homologues are known.


:

Pssm-ID: 214486  Cd Length: 160  Bit Score: 275.37  E-value: 2.24e-88
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    575 IMNNYFSIGVDASIAHRFHMMREKHPEKFNSRMKNKLWYFEFGTSETFAATCKKLHDHIELECDGVEVDLSNIfLEGIAI 654
Cdd:smart00045   1 VMNNYFSIGVDAHIALEFHNKREANPEKFNSRLKNKMWYFELGTKDLFFRTCKDLHERIELECDGVDVDLPNS-LEGIAV 79
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    655 LNIPSMYGGTNLWGEtkknraviresrksvTDPKELKCCVQDLSDQLLEVVGLEGAMEMGQIYtGLKSAGRRLAQCSSV- 733
Cdd:smart00045  80 LNIPSYGGGTNLWGT---------------TDKEDLNFSKQSHDDGLLEVVGLTGAMHMAQIR-QVGLAGRRIAQCSEVr 143
                          170
                   ....*....|....*..
gi 20149724    734 -TIRTNKLLPMQVDGEP 749
Cdd:smart00045 144 iTIKTSKTIPMQVDGEP 160
DAG_kinase_N pfam14513
Diacylglycerol kinase N-terminus; This domain is found at the N-terminus of diacylglycerol ...
5-172 3.63e-69

Diacylglycerol kinase N-terminus; This domain is found at the N-terminus of diacylglycerol kinases.


:

Pssm-ID: 464196  Cd Length: 135  Bit Score: 223.79  E-value: 3.63e-69
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724     5 QWVSLSSEEFDQLQKYSEYSSKKIKDVLAEFNEGGSLRQYDPHKPISYDVFKLFMRAYLEVDLPQPLSTHLFLAFSQKPR 84
Cdd:pfam14513   1 EWVSLSPEEFAQLQKYAEYSSKKLKDVLEEFNEDGVLAKYNPEEPIDYEGFKLFMKTYLEVDLPEDLCQHLFLSFQTKPS 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    85 QETPDHPKEGASSSEPNVSDYNsdnaakadeacapdteskttktqapskeleaaaPWEDPGALASSSDAPVVYLKDVVCY 164
Cdd:pfam14513  81 QESPDSPKEGASSSVKAGFDKN---------------------------------PSSLPPAPSSPSASPVVYLKDVSCY 127

                  ....*...
gi 20149724   165 LSLMETGR 172
Cdd:pfam14513 128 LSLLEGGR 135
DAGKc smart00046
Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger ...
433-554 8.30e-54

Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain is presumed to be the catalytic domain. Bacterial homologues areknown.


:

Pssm-ID: 214487 [Multi-domain]  Cd Length: 124  Bit Score: 181.73  E-value: 8.30e-54
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    433 LVLVNPKSGGRQGERILRKFHYLLNPEQVFNLDNGGPTPGLNFFHDTPDF-RVLACGGDGTVGWILDCIDKANFTKH-PP 510
Cdd:smart00046   1 LVFVNPKSGGGKGEKLLRKFRLLLNPRQVFDLTKKGPAVALVIFRDVPDFnRVLVCGGDGTVGWVLNALDKRELPLPePP 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|....
gi 20149724    511 VAVLPLGTGNDLARCLRWGGGYEGGSLTKILKEIEQSPLVMLDR 554
Cdd:smart00046  81 VAVLPLGTGNDLARSLGWGGGYDGEKLLKTLRDALESDTVKLDR 124
C1 super family cl00040
protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich ...
252-325 7.43e-38

protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains. It contains the motif HX12CX2CXnCX2CX4HX2CX7C, where C and H are cysteine and histidine, respectively; X represents other residues; and n is either 13 or 14. C1 has a globular fold with two separate Zn(2+)-binding sites. It was originally discovered as lipid-binding modules in protein kinase C (PKC) isoforms. C1 domains that bind and respond to phorbol esters (PE) and diacylglycerol (DAG) are referred to as typical, and those that do not respond to PE and DAG are deemed atypical. A C1 domain may also be referred to as PKC or non-PKC C1, based on the parent protein's activity. Most C1 domain-containing non-PKC proteins act as lipid kinases and scaffolds, except PKD which acts as a protein kinase. PKC C1 domains play roles in membrane translocation and activation of the enzyme.


The actual alignment was detected with superfamily member cd20846:

Pssm-ID: 412127  Cd Length: 73  Bit Score: 135.44  E-value: 7.43e-38
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20149724 252 LLVLLGMDDSgSKGDGRHAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVKTNSKA 325
Cdd:cd20846   1 LLVLLGMETN-VKDDGQHAWRLKHFKKPAYCNFCHTMLLGVRKQGLCCSFCKYTVHERCVSKDIASCISTYVKS 73
C1_DGKgamma_rpt2 cd20892
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma ...
334-392 1.00e-31

second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma (DAG kinase gamma) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DGK-gamma contains two copies of the C1 domain. This model corresponds to the second one. DGK-gamma contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


:

Pssm-ID: 410442  Cd Length: 61  Bit Score: 117.60  E-value: 1.00e-31
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20149724 334 HAWVEGNSSVKCDRCHKSIKCYQSVTARHCVWCRMTFHRKCELST--VCDGGELKDHILLP 392
Cdd:cd20892   1 HVWVEGNSPVKCDRCHKSIKCYQGLTGLHCVWCQITLHNKCASHVspECDGGQLKDHILLP 61
EFh cd00051
EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal ...
176-245 8.24e-13

EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal modulators; most examples in this alignment model have 2 active canonical EF hands. Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. EF-hands tend to occur in pairs or higher copy numbers.


:

Pssm-ID: 238008 [Multi-domain]  Cd Length: 63  Bit Score: 63.72  E-value: 8.24e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 176 KLEFMFRLYDSDENGLLDQAEMDQIVSQmlhvaqyLEWDPTElrPILKEMLQGMDYDKDGFVSLQEWING 245
Cdd:cd00051   1 ELREAFRLFDKDGDGTISADELKAALKS-------LGEGLSE--EEIDEMIREVDKDGDGKIDFEEFLEL 61
 
Name Accession Description Interval E-value
DAGKa smart00045
Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger ...
575-749 2.24e-88

Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain might either be an accessory domain or else contribute to the catalytic domain. Bacterial homologues are known.


Pssm-ID: 214486  Cd Length: 160  Bit Score: 275.37  E-value: 2.24e-88
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    575 IMNNYFSIGVDASIAHRFHMMREKHPEKFNSRMKNKLWYFEFGTSETFAATCKKLHDHIELECDGVEVDLSNIfLEGIAI 654
Cdd:smart00045   1 VMNNYFSIGVDAHIALEFHNKREANPEKFNSRLKNKMWYFELGTKDLFFRTCKDLHERIELECDGVDVDLPNS-LEGIAV 79
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    655 LNIPSMYGGTNLWGEtkknraviresrksvTDPKELKCCVQDLSDQLLEVVGLEGAMEMGQIYtGLKSAGRRLAQCSSV- 733
Cdd:smart00045  80 LNIPSYGGGTNLWGT---------------TDKEDLNFSKQSHDDGLLEVVGLTGAMHMAQIR-QVGLAGRRIAQCSEVr 143
                          170
                   ....*....|....*..
gi 20149724    734 -TIRTNKLLPMQVDGEP 749
Cdd:smart00045 144 iTIKTSKTIPMQVDGEP 160
DAGK_acc pfam00609
Diacylglycerol kinase accessory domain; Diacylglycerol (DAG) is a second messenger that acts ...
575-749 1.43e-79

Diacylglycerol kinase accessory domain; Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. This domain is assumed to be an accessory domain: its function is unknown.


Pssm-ID: 459866  Cd Length: 158  Bit Score: 252.14  E-value: 1.43e-79
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724   575 IMNNYFSIGVDASIAHRFHMMREKHPEKFNSRMKNKLWYFEFGTSETFAATCKKLHDHIELECDGVEVDLSnIFLEGIAI 654
Cdd:pfam00609   1 VMNNYFSIGVDARIALGFHRLREEHPELFNSRLKNKLIYGVFGFKDMFQRSCKNLIEKVELEVDGKDLPLP-KSLEGIVV 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724   655 LNIPSMYGGTNLWGETKKNRaviresrksvtdpkeLKCCVQDLSDQLLEVVGLEGAMEMGQIYTGLKSAgRRLAQCSSVT 734
Cdd:pfam00609  80 LNIPSYAGGTDLWGNSKEDG---------------LGFAPQSVDDGLLEVVGLTGALHLGQVQVGLGSA-KRIAQGGPIR 143
                         170
                  ....*....|....*
gi 20149724   735 IRTNKLLPMQVDGEP 749
Cdd:pfam00609 144 ITTKKKIPMQVDGEP 158
DAG_kinase_N pfam14513
Diacylglycerol kinase N-terminus; This domain is found at the N-terminus of diacylglycerol ...
5-172 3.63e-69

Diacylglycerol kinase N-terminus; This domain is found at the N-terminus of diacylglycerol kinases.


Pssm-ID: 464196  Cd Length: 135  Bit Score: 223.79  E-value: 3.63e-69
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724     5 QWVSLSSEEFDQLQKYSEYSSKKIKDVLAEFNEGGSLRQYDPHKPISYDVFKLFMRAYLEVDLPQPLSTHLFLAFSQKPR 84
Cdd:pfam14513   1 EWVSLSPEEFAQLQKYAEYSSKKLKDVLEEFNEDGVLAKYNPEEPIDYEGFKLFMKTYLEVDLPEDLCQHLFLSFQTKPS 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    85 QETPDHPKEGASSSEPNVSDYNsdnaakadeacapdteskttktqapskeleaaaPWEDPGALASSSDAPVVYLKDVVCY 164
Cdd:pfam14513  81 QESPDSPKEGASSSVKAGFDKN---------------------------------PSSLPPAPSSPSASPVVYLKDVSCY 127

                  ....*...
gi 20149724   165 LSLMETGR 172
Cdd:pfam14513 128 LSLLEGGR 135
DAGKc smart00046
Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger ...
433-554 8.30e-54

Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain is presumed to be the catalytic domain. Bacterial homologues areknown.


Pssm-ID: 214487 [Multi-domain]  Cd Length: 124  Bit Score: 181.73  E-value: 8.30e-54
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    433 LVLVNPKSGGRQGERILRKFHYLLNPEQVFNLDNGGPTPGLNFFHDTPDF-RVLACGGDGTVGWILDCIDKANFTKH-PP 510
Cdd:smart00046   1 LVFVNPKSGGGKGEKLLRKFRLLLNPRQVFDLTKKGPAVALVIFRDVPDFnRVLVCGGDGTVGWVLNALDKRELPLPePP 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|....
gi 20149724    511 VAVLPLGTGNDLARCLRWGGGYEGGSLTKILKEIEQSPLVMLDR 554
Cdd:smart00046  81 VAVLPLGTGNDLARSLGWGGGYDGEKLLKTLRDALESDTVKLDR 124
C1_DGKgamma_rpt1 cd20846
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma ...
252-325 7.43e-38

first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma (DAG kinase gamma) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DGK-gamma contains two copies of the C1 domain. This model corresponds to the first one. DGK-gamma contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410396  Cd Length: 73  Bit Score: 135.44  E-value: 7.43e-38
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20149724 252 LLVLLGMDDSgSKGDGRHAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVKTNSKA 325
Cdd:cd20846   1 LLVLLGMETN-VKDDGQHAWRLKHFKKPAYCNFCHTMLLGVRKQGLCCSFCKYTVHERCVSKDIASCISTYVKS 73
C1_DGKgamma_rpt2 cd20892
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma ...
334-392 1.00e-31

second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma (DAG kinase gamma) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DGK-gamma contains two copies of the C1 domain. This model corresponds to the second one. DGK-gamma contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410442  Cd Length: 61  Bit Score: 117.60  E-value: 1.00e-31
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20149724 334 HAWVEGNSSVKCDRCHKSIKCYQSVTARHCVWCRMTFHRKCELST--VCDGGELKDHILLP 392
Cdd:cd20892   1 HVWVEGNSPVKCDRCHKSIKCYQGLTGLHCVWCQITLHNKCASHVspECDGGQLKDHILLP 61
DAGK_cat pfam00781
Diacylglycerol kinase catalytic domain; Diacylglycerol (DAG) is a second messenger that acts ...
431-530 6.36e-31

Diacylglycerol kinase catalytic domain; Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. The catalytic domain is assumed from the finding of bacterial homologs. YegS is the Escherichia coli protein in this family whose crystal structure reveals an active site in the inter-domain cleft formed by four conserved sequence motifs, revealing a novel metal-binding site. The residues of this site are conserved across the family.


Pssm-ID: 425868 [Multi-domain]  Cd Length: 125  Bit Score: 117.69  E-value: 6.36e-31
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724   431 PLLVLVNPKSGGRQGERILRKFHYLLNPEQV-FNLDN-GGPTPGLNFFHDTPD---FRVLACGGDGTVGWILDCIDKANf 505
Cdd:pfam00781   1 KLLVIVNPKSGGGKGKKLLRKVRPLLNKAGVeVELVLtEGPGDALELAREAAEdgyDRIVVAGGDGTVNEVLNGLAGLA- 79
                          90       100
                  ....*....|....*....|....*
gi 20149724   506 tKHPPVAVLPLGTGNDLARCLRWGG 530
Cdd:pfam00781  80 -TRPPLGIIPLGTGNDFARALGIPG 103
LCB5 COG1597
Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, ...
432-762 2.47e-19

Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, General function prediction only];


Pssm-ID: 441205 [Multi-domain]  Cd Length: 295  Bit Score: 89.14  E-value: 2.47e-19
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 432 LLVLVNPKSGGRQGERILRKFHYLLNPE----QVFNLDNGGPTPGL--NFFHDTPDfRVLACGGDGTVGWILDCIDKANf 505
Cdd:COG1597   5 ALLIVNPASGRGRAARLLERLVAALRAAglevEVLETESPGDATELarEAAAEGAD-LVVAAGGDGTVNEVANGLAGTG- 82
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 506 tkhPPVAVLPLGTGNDLARCLRWgggyeGGSLTKILKEIEQSPLVMLD------RWYLEVmpreevengdqvpynimnny 579
Cdd:COG1597  83 ---PPLGILPLGTGNDFARALGI-----PLDPEAALEALLTGRTRRIDlgrvngRYFLNV-------------------- 134
                       170       180       190       200       210       220       230       240
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 580 FSIGVDASIAHRfhmmrekhpekFNSRMKNKlwyfeFGTSETFAATCKKL----HDHIELECDGVEVDLsNIFLegIAIL 655
Cdd:COG1597 135 AGIGFDAEVVER-----------ANRALKRR-----LGKLAYVLAALRALlryrPFRLRIELDGEEIEG-EALL--VAVG 195
                       250       260       270       280       290       300       310       320
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 656 NIPSMYGGTNLWGETkknraviresrksvtdpkelkccvqDLSDQLLEVVGLEG------AMEMGQIYTG--LKSAGRRL 727
Cdd:COG1597 196 NGPYYGGGLRLAPDA-------------------------SLDDGLLDVVVVRPlsrlrlLRLLPRLLRGrhLRHPGVRY 250
                       330       340       350
                ....*....|....*....|....*....|....*.
gi 20149724 728 AQCSSVTIRTNKLLPMQVDGEP-WMQPQCTIKITHK 762
Cdd:COG1597 251 FRAREVEIESDRPLPVQLDGEPlGLATPLEFEVLPG 286
C1 smart00109
Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol ...
269-318 5.82e-13

Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains.


Pssm-ID: 197519  Cd Length: 50  Bit Score: 63.64  E-value: 5.82e-13
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|
gi 20149724    269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:smart00109   1 HKHVFRTFTKPTFCCVCRKSIWGSFKQGLRCSECKVKCHKKCADKVPKAC 50
C1_1 pfam00130
Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the ...
269-313 7.24e-13

Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the Protein kinase C conserved region 1 (C1) domain.


Pssm-ID: 395079  Cd Length: 53  Bit Score: 63.62  E-value: 7.24e-13
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 20149724   269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSK 313
Cdd:pfam00130   1 HHFVHRNFKQPTFCDHCGEFLWGLGKQGLKCSWCKLNVHKRCHEK 45
EFh cd00051
EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal ...
176-245 8.24e-13

EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal modulators; most examples in this alignment model have 2 active canonical EF hands. Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. EF-hands tend to occur in pairs or higher copy numbers.


Pssm-ID: 238008 [Multi-domain]  Cd Length: 63  Bit Score: 63.72  E-value: 8.24e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 176 KLEFMFRLYDSDENGLLDQAEMDQIVSQmlhvaqyLEWDPTElrPILKEMLQGMDYDKDGFVSLQEWING 245
Cdd:cd00051   1 ELREAFRLFDKDGDGTISADELKAALKS-------LGEGLSE--EEIDEMIREVDKDGDGKIDFEEFLEL 61
C1 smart00109
Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol ...
333-374 8.20e-08

Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains.


Pssm-ID: 197519  Cd Length: 50  Bit Score: 49.39  E-value: 8.20e-08
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|..
gi 20149724    333 QHAWVEGNSSVKCDRCHKSIKCYQSvTARHCVWCRMTFHRKC 374
Cdd:smart00109   2 KHVFRTFTKPTFCCVCRKSIWGSFK-QGLRCSECKVKCHKKC 42
EF-hand_7 pfam13499
EF-hand domain pair;
175-241 1.77e-07

EF-hand domain pair;


Pssm-ID: 463900 [Multi-domain]  Cd Length: 67  Bit Score: 48.79  E-value: 1.77e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20149724   175 DKLEFMFRLYDSDENGLLDQAEMDQIVsQMLHVAQylEWDPTELRPILKEmlqgMDYDKDGFVSLQE 241
Cdd:pfam13499   2 EKLKEAFKLLDSDGDGYLDVEELKKLL-RKLEEGE--PLSDEEVEELFKE----FDLDKDGRISFEE 61
PRK13059 PRK13059
putative lipid kinase; Reviewed
484-553 7.93e-05

putative lipid kinase; Reviewed


Pssm-ID: 183858  Cd Length: 295  Bit Score: 45.41  E-value: 7.93e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20149724  484 VLACGGDGTVGWILDCIDKANFTKhpPVAVLPLGTGNDLARCLrwgggyegGSLTKILKEIEQ---SPLVMLD 553
Cdd:PRK13059  60 ILIAGGDGTVDNVVNAMKKLNIDL--PIGILPVGTANDFAKFL--------GMPTDIGEACEQilkSKPKKVD 122
C1_1 pfam00130
Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the ...
334-383 9.28e-05

Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the Protein kinase C conserved region 1 (C1) domain.


Pssm-ID: 395079  Cd Length: 53  Bit Score: 40.50  E-value: 9.28e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 20149724   334 HAWVEGN--SSVKCDRCHKSIKcYQSVTARHCVWCRMTFHRKCE--LSTVCDGG 383
Cdd:pfam00130   1 HHFVHRNfkQPTFCDHCGEFLW-GLGKQGLKCSWCKLNVHKRCHekVPPECGCD 53
FRQ1 COG5126
Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms];
173-241 1.53e-04

Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms];


Pssm-ID: 444056 [Multi-domain]  Cd Length: 137  Bit Score: 42.47  E-value: 1.53e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 173 PQDKLEFMFRLYDSDENGLLDQAEMDQIVSQMLH-------------------VAQYLEWDPTELRPILKEMLQGMDYDK 233
Cdd:COG5126   3 QRRKLDRRFDLLDADGDGVLERDDFEALFRRLWAtlfseadtdgdgrisreefVAGMESLFEATVEPFARAAFDLLDTDG 82

                ....*...
gi 20149724 234 DGFVSLQE 241
Cdd:COG5126  83 DGKISADE 90
 
Name Accession Description Interval E-value
DAGKa smart00045
Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger ...
575-749 2.24e-88

Diacylglycerol kinase accessory domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain might either be an accessory domain or else contribute to the catalytic domain. Bacterial homologues are known.


Pssm-ID: 214486  Cd Length: 160  Bit Score: 275.37  E-value: 2.24e-88
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    575 IMNNYFSIGVDASIAHRFHMMREKHPEKFNSRMKNKLWYFEFGTSETFAATCKKLHDHIELECDGVEVDLSNIfLEGIAI 654
Cdd:smart00045   1 VMNNYFSIGVDAHIALEFHNKREANPEKFNSRLKNKMWYFELGTKDLFFRTCKDLHERIELECDGVDVDLPNS-LEGIAV 79
                           90       100       110       120       130       140       150       160
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    655 LNIPSMYGGTNLWGEtkknraviresrksvTDPKELKCCVQDLSDQLLEVVGLEGAMEMGQIYtGLKSAGRRLAQCSSV- 733
Cdd:smart00045  80 LNIPSYGGGTNLWGT---------------TDKEDLNFSKQSHDDGLLEVVGLTGAMHMAQIR-QVGLAGRRIAQCSEVr 143
                          170
                   ....*....|....*..
gi 20149724    734 -TIRTNKLLPMQVDGEP 749
Cdd:smart00045 144 iTIKTSKTIPMQVDGEP 160
DAGK_acc pfam00609
Diacylglycerol kinase accessory domain; Diacylglycerol (DAG) is a second messenger that acts ...
575-749 1.43e-79

Diacylglycerol kinase accessory domain; Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. This domain is assumed to be an accessory domain: its function is unknown.


Pssm-ID: 459866  Cd Length: 158  Bit Score: 252.14  E-value: 1.43e-79
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724   575 IMNNYFSIGVDASIAHRFHMMREKHPEKFNSRMKNKLWYFEFGTSETFAATCKKLHDHIELECDGVEVDLSnIFLEGIAI 654
Cdd:pfam00609   1 VMNNYFSIGVDARIALGFHRLREEHPELFNSRLKNKLIYGVFGFKDMFQRSCKNLIEKVELEVDGKDLPLP-KSLEGIVV 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724   655 LNIPSMYGGTNLWGETKKNRaviresrksvtdpkeLKCCVQDLSDQLLEVVGLEGAMEMGQIYTGLKSAgRRLAQCSSVT 734
Cdd:pfam00609  80 LNIPSYAGGTDLWGNSKEDG---------------LGFAPQSVDDGLLEVVGLTGALHLGQVQVGLGSA-KRIAQGGPIR 143
                         170
                  ....*....|....*
gi 20149724   735 IRTNKLLPMQVDGEP 749
Cdd:pfam00609 144 ITTKKKIPMQVDGEP 158
DAG_kinase_N pfam14513
Diacylglycerol kinase N-terminus; This domain is found at the N-terminus of diacylglycerol ...
5-172 3.63e-69

Diacylglycerol kinase N-terminus; This domain is found at the N-terminus of diacylglycerol kinases.


Pssm-ID: 464196  Cd Length: 135  Bit Score: 223.79  E-value: 3.63e-69
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724     5 QWVSLSSEEFDQLQKYSEYSSKKIKDVLAEFNEGGSLRQYDPHKPISYDVFKLFMRAYLEVDLPQPLSTHLFLAFSQKPR 84
Cdd:pfam14513   1 EWVSLSPEEFAQLQKYAEYSSKKLKDVLEEFNEDGVLAKYNPEEPIDYEGFKLFMKTYLEVDLPEDLCQHLFLSFQTKPS 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    85 QETPDHPKEGASSSEPNVSDYNsdnaakadeacapdteskttktqapskeleaaaPWEDPGALASSSDAPVVYLKDVVCY 164
Cdd:pfam14513  81 QESPDSPKEGASSSVKAGFDKN---------------------------------PSSLPPAPSSPSASPVVYLKDVSCY 127

                  ....*...
gi 20149724   165 LSLMETGR 172
Cdd:pfam14513 128 LSLLEGGR 135
DAGKc smart00046
Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger ...
433-554 8.30e-54

Diacylglycerol kinase catalytic domain (presumed); Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. DAG can be produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by a phosphoinositide-specific phospholipase C and by the degradation of phosphatidylcholine (PC) by a phospholipase C or the concerted actions of phospholipase D and phosphatidate phosphohydrolase. This domain is presumed to be the catalytic domain. Bacterial homologues areknown.


Pssm-ID: 214487 [Multi-domain]  Cd Length: 124  Bit Score: 181.73  E-value: 8.30e-54
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724    433 LVLVNPKSGGRQGERILRKFHYLLNPEQVFNLDNGGPTPGLNFFHDTPDF-RVLACGGDGTVGWILDCIDKANFTKH-PP 510
Cdd:smart00046   1 LVFVNPKSGGGKGEKLLRKFRLLLNPRQVFDLTKKGPAVALVIFRDVPDFnRVLVCGGDGTVGWVLNALDKRELPLPePP 80
                           90       100       110       120
                   ....*....|....*....|....*....|....*....|....
gi 20149724    511 VAVLPLGTGNDLARCLRWGGGYEGGSLTKILKEIEQSPLVMLDR 554
Cdd:smart00046  81 VAVLPLGTGNDLARSLGWGGGYDGEKLLKTLRDALESDTVKLDR 124
C1_DGKgamma_rpt1 cd20846
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma ...
252-325 7.43e-38

first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma (DAG kinase gamma) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DGK-gamma contains two copies of the C1 domain. This model corresponds to the first one. DGK-gamma contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410396  Cd Length: 73  Bit Score: 135.44  E-value: 7.43e-38
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20149724 252 LLVLLGMDDSgSKGDGRHAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVKTNSKA 325
Cdd:cd20846   1 LLVLLGMETN-VKDDGQHAWRLKHFKKPAYCNFCHTMLLGVRKQGLCCSFCKYTVHERCVSKDIASCISTYVKS 73
C1_DGKgamma_rpt2 cd20892
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma ...
334-392 1.00e-31

second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase gamma (DAG kinase gamma) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DGK-gamma contains two copies of the C1 domain. This model corresponds to the second one. DGK-gamma contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410442  Cd Length: 61  Bit Score: 117.60  E-value: 1.00e-31
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 20149724 334 HAWVEGNSSVKCDRCHKSIKCYQSVTARHCVWCRMTFHRKCELST--VCDGGELKDHILLP 392
Cdd:cd20892   1 HVWVEGNSPVKCDRCHKSIKCYQGLTGLHCVWCQITLHNKCASHVspECDGGQLKDHILLP 61
C1_DGK_typeI_rpt1 cd20799
first protein kinase C conserved region 1 (C1 domain) found in type I diacylglycerol kinases; ...
264-325 1.68e-31

first protein kinase C conserved region 1 (C1 domain) found in type I diacylglycerol kinases; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. Type I DAG kinases (DGKs) contain EF-hand structures that bind Ca(2+) and recoverin homology domains, in addition to C1 and catalytic domains that are present in all DGKs. Type I DGKs, regulated by calcium binding, include three DGK isozymes (alpha, beta and gamma). DAG kinase alpha, also called 80 kDa DAG kinase, or diglyceride kinase alpha (DGK-alpha), is active upon cell stimulation, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity. DAG kinase beta, also called 90 kDa DAG kinase, or diglyceride kinase beta (DGK-beta), exhibits high phosphorylation activity for long-chain diacylglycerols. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. DGK-alpha contains atypical C1 domains, while DGK-beta and DGK-gamma contain typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410349  Cd Length: 62  Bit Score: 117.09  E-value: 1.68e-31
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20149724 264 KGDGRHAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVKTNSKA 325
Cdd:cd20799   1 KDDGQHVWRLKHFNKPAYCNVCENMLVGLRKQGLCCTFCKYTVHERCVSRAPASCIRTYVKS 62
DAGK_cat pfam00781
Diacylglycerol kinase catalytic domain; Diacylglycerol (DAG) is a second messenger that acts ...
431-530 6.36e-31

Diacylglycerol kinase catalytic domain; Diacylglycerol (DAG) is a second messenger that acts as a protein kinase C activator. The catalytic domain is assumed from the finding of bacterial homologs. YegS is the Escherichia coli protein in this family whose crystal structure reveals an active site in the inter-domain cleft formed by four conserved sequence motifs, revealing a novel metal-binding site. The residues of this site are conserved across the family.


Pssm-ID: 425868 [Multi-domain]  Cd Length: 125  Bit Score: 117.69  E-value: 6.36e-31
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724   431 PLLVLVNPKSGGRQGERILRKFHYLLNPEQV-FNLDN-GGPTPGLNFFHDTPD---FRVLACGGDGTVGWILDCIDKANf 505
Cdd:pfam00781   1 KLLVIVNPKSGGGKGKKLLRKVRPLLNKAGVeVELVLtEGPGDALELAREAAEdgyDRIVVAGGDGTVNEVLNGLAGLA- 79
                          90       100
                  ....*....|....*....|....*
gi 20149724   506 tKHPPVAVLPLGTGNDLARCLRWGG 530
Cdd:pfam00781  80 -TRPPLGIIPLGTGNDFARALGIPG 103
C1_DGKbeta_rpt1 cd20845
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase beta (DAG ...
264-327 8.28e-26

first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase beta (DAG kinase beta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase beta, also called 90 kDa diacylglycerol kinase, or diglyceride kinase beta (DGK-beta), exhibits high phosphorylation activity for long-chain diacylglycerols. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DAG kinase beta contains two copies of the C1 domain. This model corresponds to the first one. DGK-beta contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410395  Cd Length: 66  Bit Score: 100.70  E-value: 8.28e-26
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 20149724 264 KGDGRHAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVKTNSKAKR 327
Cdd:cd20845   3 KDDGQHVWRLKHFNKPAYCNLCLNMLVGLGKQGLCCSFCKYTVHERCVQRAPASCIKTYVKSKK 66
C1_DGK_typeI_like_rpt2 cd20851
second protein kinase C conserved region 1 (C1 domain) found in type I diacylglycerol kinases; ...
334-383 1.22e-24

second protein kinase C conserved region 1 (C1 domain) found in type I diacylglycerol kinases; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. Type I DAG kinases (DGKs) contain EF-hand structures that bind Ca(2+) and recoverin homology domains, in addition to C1 and catalytic domains that are present in all DGKs. Type I DGKs, regulated by calcium binding, include three DGK isozymes (alpha, beta and gamma). DAG kinase alpha, also called 80 kDa DAG kinase, or diglyceride kinase alpha (DGK-alpha), is active upon cell stimulation, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity. DAG kinase beta, also called 90 kDa DAG kinase, or diglyceride kinase beta (DGK-beta), exhibits high phosphorylation activity for long-chain diacylglycerols. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. Members of this family contain two copies of the C1 domain. This model corresponds to the second one. DGK-alpha contains atypical C1 domains, while DGK-beta and DGK-gamma contain typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410401  Cd Length: 52  Bit Score: 97.03  E-value: 1.22e-24
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|..
gi 20149724 334 HAWVEGNSSVKCDRCHKSIKCYQSVTARHCVWCRMTFHRKC--ELSTVCDGG 383
Cdd:cd20851   1 HHWVEGNCPGKCDKCHKSIKSYQGLTGLHCVWCHITLHNKCasHVKPECDLG 52
C1_DGKbeta_rpt2 cd20891
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase beta ...
332-388 1.51e-21

second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase beta (DAG kinase beta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase beta, also called 90 kDa diacylglycerol kinase, or diglyceride kinase beta (DGK-beta), exhibits high phosphorylation activity for long-chain diacylglycerols. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DAG kinase beta contains two copies of the C1 domain. This model corresponds to the second one. DGK-beta contains typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410441  Cd Length: 59  Bit Score: 88.51  E-value: 1.51e-21
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 20149724 332 MQHAWVEGNSSVKCDRCHKSIKCYQSVTARHCVWCRMTFHRKC--ELSTVCDGGELKDH 388
Cdd:cd20891   1 MHHFWVEGNCPTKCDKCHKTIKCYQGLTGLHCVWCQITLHNKCasHVKPECDCGPLKDH 59
LCB5 COG1597
Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, ...
432-762 2.47e-19

Phosphatidylglycerol kinase, diacylglycerol kinase family [Lipid transport and metabolism, General function prediction only];


Pssm-ID: 441205 [Multi-domain]  Cd Length: 295  Bit Score: 89.14  E-value: 2.47e-19
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 432 LLVLVNPKSGGRQGERILRKFHYLLNPE----QVFNLDNGGPTPGL--NFFHDTPDfRVLACGGDGTVGWILDCIDKANf 505
Cdd:COG1597   5 ALLIVNPASGRGRAARLLERLVAALRAAglevEVLETESPGDATELarEAAAEGAD-LVVAAGGDGTVNEVANGLAGTG- 82
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 506 tkhPPVAVLPLGTGNDLARCLRWgggyeGGSLTKILKEIEQSPLVMLD------RWYLEVmpreevengdqvpynimnny 579
Cdd:COG1597  83 ---PPLGILPLGTGNDFARALGI-----PLDPEAALEALLTGRTRRIDlgrvngRYFLNV-------------------- 134
                       170       180       190       200       210       220       230       240
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 580 FSIGVDASIAHRfhmmrekhpekFNSRMKNKlwyfeFGTSETFAATCKKL----HDHIELECDGVEVDLsNIFLegIAIL 655
Cdd:COG1597 135 AGIGFDAEVVER-----------ANRALKRR-----LGKLAYVLAALRALlryrPFRLRIELDGEEIEG-EALL--VAVG 195
                       250       260       270       280       290       300       310       320
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 656 NIPSMYGGTNLWGETkknraviresrksvtdpkelkccvqDLSDQLLEVVGLEG------AMEMGQIYTG--LKSAGRRL 727
Cdd:COG1597 196 NGPYYGGGLRLAPDA-------------------------SLDDGLLDVVVVRPlsrlrlLRLLPRLLRGrhLRHPGVRY 250
                       330       340       350
                ....*....|....*....|....*....|....*.
gi 20149724 728 AQCSSVTIRTNKLLPMQVDGEP-WMQPQCTIKITHK 762
Cdd:COG1597 251 FRAREVEIESDRPLPVQLDGEPlGLATPLEFEVLPG 286
C1_DGKalpha_rpt2 cd20890
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase alpha ...
334-392 2.90e-19

second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase alpha (DAG kinase alpha) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase alpha, also called 80 kDa diacylglycerol kinase, or diglyceride kinase alpha (DGK-alpha), converts the second messenger diacylglycerol into phosphatidate upon cell stimulation, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity. It is classified as a type I DAG kinase (DGK), containing EF-hand structures that bind Ca(2+) and a recoverin homology domain, in addition to C1 and catalytic domains that are present in all DGKs. As a type I DGK, it is regulated by calcium binding. DAG kinase alpha contains two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410440  Cd Length: 62  Bit Score: 82.20  E-value: 2.90e-19
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 20149724 334 HAWVEGN-SSVKCDRCHKSIKCYQSVTARHCVWCRMTFHRKC--ELSTVCDGGELKDHILLP 392
Cdd:cd20890   1 HVWVSGGcESSKCDKCQKKIKSFQSLTGLHCVWCHLKRHDEClsSVPSTCDCGPLRDHILPP 62
C1 smart00109
Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol ...
269-318 5.82e-13

Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains.


Pssm-ID: 197519  Cd Length: 50  Bit Score: 63.64  E-value: 5.82e-13
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|
gi 20149724    269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:smart00109   1 HKHVFRTFTKPTFCCVCRKSIWGSFKQGLRCSECKVKCHKKCADKVPKAC 50
C1_1 pfam00130
Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the ...
269-313 7.24e-13

Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the Protein kinase C conserved region 1 (C1) domain.


Pssm-ID: 395079  Cd Length: 53  Bit Score: 63.62  E-value: 7.24e-13
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 20149724   269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSK 313
Cdd:pfam00130   1 HHFVHRNFKQPTFCDHCGEFLWGLGKQGLKCSWCKLNVHKRCHEK 45
EFh cd00051
EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal ...
176-245 8.24e-13

EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal modulators; most examples in this alignment model have 2 active canonical EF hands. Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. EF-hands tend to occur in pairs or higher copy numbers.


Pssm-ID: 238008 [Multi-domain]  Cd Length: 63  Bit Score: 63.72  E-value: 8.24e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 176 KLEFMFRLYDSDENGLLDQAEMDQIVSQmlhvaqyLEWDPTElrPILKEMLQGMDYDKDGFVSLQEWING 245
Cdd:cd00051   1 ELREAFRLFDKDGDGTISADELKAALKS-------LGEGLSE--EEIDEMIREVDKDGDGKIDFEEFLEL 61
C1_nPKC_theta-like_rpt1 cd20834
first protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) ...
269-321 1.14e-12

first protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) theta, delta, and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domains. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410384  Cd Length: 61  Bit Score: 63.11  E-value: 1.14e-12
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVKT 321
Cdd:cd20834   8 HEFIAKFFRQPTFCSVCKEFLWGFNKQGYQCRQCNAAVHKKCHDKILGKCPGS 60
C1_cPKC_nPKC_rpt1 cd20792
first protein kinase C conserved region 1 (C1 domain) found in classical (or conventional) ...
269-318 3.36e-12

first protein kinase C conserved region 1 (C1 domain) found in classical (or conventional) protein kinase C (cPKC), novel protein kinase C (nPKC), and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domains. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. nPKCs are calcium-independent, but require DAG and PS for activity, while atypical PKCs (aPKCs) only require PS. PKCs phosphorylate and modify the activities of a wide variety of cellular proteins including receptors, enzymes, cytoskeletal proteins, transcription factors, and other kinases. They play a central role in signal transduction pathways that regulate cell migration and polarity, proliferation, differentiation, and apoptosis. This family includes classical PKCs (cPKCs) and novel PKCs (nPKCs). There are four cPKC isoforms (named alpha, betaI, betaII, and gamma) and four nPKC isoforms (delta, epsilon, eta, and theta). Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410342  Cd Length: 53  Bit Score: 61.88  E-value: 3.36e-12
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20792   2 HKFVATFFKQPTFCSHCKDFIWGLGKQGYQCQVCRFVVHKRCHEYVVFKC 51
C1 cd00029
protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich ...
269-318 3.36e-12

protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains. It contains the motif HX12CX2CXnCX2CX4HX2CX7C, where C and H are cysteine and histidine, respectively; X represents other residues; and n is either 13 or 14. C1 has a globular fold with two separate Zn(2+)-binding sites. It was originally discovered as lipid-binding modules in protein kinase C (PKC) isoforms. C1 domains that bind and respond to phorbol esters (PE) and diacylglycerol (DAG) are referred to as typical, and those that do not respond to PE and DAG are deemed atypical. A C1 domain may also be referred to as PKC or non-PKC C1, based on the parent protein's activity. Most C1 domain-containing non-PKC proteins act as lipid kinases and scaffolds, except PKD which acts as a protein kinase. PKC C1 domains play roles in membrane translocation and activation of the enzyme.


Pssm-ID: 410341  Cd Length: 50  Bit Score: 61.76  E-value: 3.36e-12
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd00029   1 HRFVPTTFSSPTFCDVCGKLIWGLFKQGLKCSDCGLVCHKKCLDKAPSPC 50
C1_DGK_typeII_rpt1 cd20800
first protein kinase C conserved region 1 (C1 domain) found in type II diacylglycerol kinases; ...
265-318 4.67e-12

first protein kinase C conserved region 1 (C1 domain) found in type II diacylglycerol kinases; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. Type II DAG kinases (DGKs) contain pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. Three DGK isozymes (delta, eta and kappa) are classified as type II. DAG kinase delta, also called 130 kDa DAG kinase, or diglyceride kinase delta (DGK-delta), is a residential lipid kinase in the endoplasmic reticulum. It promotes lipogenesis and is involved in triglyceride biosynthesis. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. The DAG kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase kappa is also called diglyceride kinase kappa (DGK-kappa) or 142 kDa DAG kinase. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410350  Cd Length: 60  Bit Score: 61.57  E-value: 4.67e-12
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 20149724 265 GDGRHAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20800   1 LSGSHNWYACSHARPTYCNVCREALSGVTSHGLSCEVCKFKAHKRCAVKAPNNC 54
C1_PKD_rpt2 cd20796
second protein kinase C conserved region 1 (C1 domain) found in the family of protein kinase D ...
269-318 1.26e-10

second protein kinase C conserved region 1 (C1 domain) found in the family of protein kinase D (PKD); PKDs are important regulators of many intracellular signaling pathways such as ERK and JNK, and cellular processes including the organization of the trans-Golgi network, membrane trafficking, cell proliferation, migration, and apoptosis. They are activated in a PKC-dependent manner by many agents including diacylglycerol (DAG), PDGF, neuropeptides, oxidative stress, and tumor-promoting phorbol esters, among others. Mammals harbor three types of PKDs: PKD1 (or PKCmu), PKD2, and PKD3 (or PKCnu). PKDs contain N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the second C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410346  Cd Length: 54  Bit Score: 57.30  E-value: 1.26e-10
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20796   2 HTFVVHTYTKPTVCQHCKKLLKGLFRQGLQCKDCKFNCHKKCAEKVPKDC 51
C1_CeDKF1-like_rpt1 cd20797
first protein kinase C conserved region 1 (C1 domain) found in Caenorhabditis elegans serine ...
269-319 5.72e-10

first protein kinase C conserved region 1 (C1 domain) found in Caenorhabditis elegans serine/threonine-protein kinase DKF-1 and similar proteins; DKF-1 converts transient diacylglycerol (DAG) signals into prolonged physiological effects, independently of PKC. It plays a role in the regulation of growth and neuromuscular control of movement. It is involved in immune response to Staphylococcus aureus bacterium by activating transcription factor hlh-30 downstream of phospholipase plc-1. Members of this group contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410347  Cd Length: 56  Bit Score: 55.56  E-value: 5.72e-10
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCV 319
Cdd:cd20797   4 HVVEVEQYMTPTFCDYCGEMLTGLMKQGVKCKNCRCNFHKRCANAPRNNCA 54
C1_DGK_rpt2 cd20805
second protein kinase C conserved region 1 (C1 domain) found in the diacylglycerol kinase ...
334-383 1.21e-09

second protein kinase C conserved region 1 (C1 domain) found in the diacylglycerol kinase family; The diacylglycerol kinase (DGK, EC 2.7.1.107) family of enzymes plays critical roles in lipid signaling pathways by converting diacylglycerol to phosphatidic acid, thereby downregulating signaling by the former and upregulating signaling by the latter second messenger. Ten DGK family isozymes have been identified to date, which possess different interaction motifs imparting distinct temporal and spatial control of DGK activity to each isozyme. They have been classified into five types (I-V), according to domain architecture and some common features. All DGK isozymes, except for DGKtheta, contain two copies of the C1 domain. This model corresponds to the second one. DGKtheta harbors three C1 domains. Its third C1 domain is included here. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410355  Cd Length: 55  Bit Score: 54.38  E-value: 1.21e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*
gi 20149724 334 HAWVEGN--SSVKCDRCHKSIKCYQSVTARHCVWCRMTFHRKC---ELSTVCDGG 383
Cdd:cd20805   1 HHWVEGNlpSGAKCSVCGKKCGSSFGLAGYRCSWCKRTVHSECidkLGPEECDLG 55
C1_cPKC_nPKC_rpt2 cd20793
second protein kinase C conserved region 1 (C1 domain) found in classical (or conventional) ...
269-318 1.62e-09

second protein kinase C conserved region 1 (C1 domain) found in classical (or conventional) protein kinase C (cPKC), novel protein kinase C (nPKC), and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. PKCs undergo three phosphorylations in order to take mature forms. In addition, cPKCs depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. nPKCs are calcium-independent, but require DAG and PS for activity, while atypical PKCs (aPKCs) only require PS. PKCs phosphorylate and modify the activities of a wide variety of cellular proteins including receptors, enzymes, cytoskeletal proteins, transcription factors, and other kinases. They play a central role in signal transduction pathways that regulate cell migration and polarity, proliferation, differentiation, and apoptosis. This family includes classical PKCs (cPKCs) and novel PKCs (nPKCs). There are four cPKC isoforms (named alpha, betaI, betaII, and gamma) and four nPKC isoforms (delta, epsilon, eta, and theta). Members of this family contain two copies of C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410343  Cd Length: 50  Bit Score: 53.82  E-value: 1.62e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20793   1 HKFKVHTYYSPTFCDHCGSLLYGLVRQGLKCKDCGMNVHHRCKENVPHLC 50
C1_nPKC_epsilon-like_rpt2 cd20838
second protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) ...
269-318 2.60e-09

second protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) epsilon, eta, and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. PKC-epsilon has been shown to behave as an oncoprotein. Its overexpression contributes to neoplastic transformation depending on the cell type. It contributes to oncogenesis by inducing disordered cell growth and inhibiting cell death. It also plays a role in tumor invasion and metastasis. PKC-epsilon has also been found to confer cardioprotection against ischemia and reperfusion-mediated damage. Other cellular functions include the regulation of gene expression, cell adhesion, and cell motility. PKC-eta is predominantly expressed in squamous epithelia, where it plays a crucial role in the signaling of cell-type specific differentiation. It is also expressed in pro-B cells and early-stage thymocytes, and acts as a key regulator in early B-cell development. PKC-eta increases glioblastoma multiforme (GBM) proliferation and resistance to radiation, and is being developed as a therapeutic target for the management of GBM. Members of this family contain two copies of C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410388  Cd Length: 55  Bit Score: 53.43  E-value: 2.60e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20838   3 HRFSVHNYKRPTFCDHCGSLLYGLYKQGLQCKVCKMNVHKRCQKNVANNC 52
C1_PKD1_rpt2 cd20842
second protein kinase C conserved region 1 (C1 domain) found in protein kinase D (PKD) and ...
269-319 2.84e-09

second protein kinase C conserved region 1 (C1 domain) found in protein kinase D (PKD) and similar proteins; PKD is also called PKD1, PRKD1, protein kinase C mu type (nPKC-mu), PRKCM, serine/threonine-protein kinase D1, or nPKC-D1. It is a serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response. PKD contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the second C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410392  Cd Length: 94  Bit Score: 54.64  E-value: 2.84e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCV 319
Cdd:cd20842  35 HTFVIHSYTRPTVCQYCKKLLKGLFRQGLQCKDCKFNCHKRCAPKVPNNCL 85
C1_PKD2_rpt2 cd20843
second protein kinase C conserved region 1 (C1 domain) found in protein kinase D2 (PKD2) and ...
269-319 3.97e-09

second protein kinase C conserved region 1 (C1 domain) found in protein kinase D2 (PKD2) and similar proteins; PKD2, also called PRKD2, HSPC187, or serine/threonine-protein kinase D2 (nPKC-D2), is a serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion. PKD2 contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the second C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410393  Cd Length: 79  Bit Score: 53.82  E-value: 3.97e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCV 319
Cdd:cd20843  12 HTFVIHSYTRPTVCQFCKKLLKGLFRQGLQCKDCKFNCHKRCATRVPNDCL 62
C1_DGKeta_rpt1 cd20848
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG ...
267-318 5.35e-09

first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG kinase eta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. The diacylglycerol kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase eta contains two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410398  Cd Length: 86  Bit Score: 53.63  E-value: 5.35e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|..
gi 20149724 267 GRHAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20848  28 GMHNWYACSHARPTFCNVCRESLSGVTSHGLSCEVCKFKAHKRCAVRATNNC 79
C1_cPKC_rpt1 cd20833
first protein kinase C conserved region 1 (C1 domain) found in the classical (or conventional) ...
269-310 5.63e-09

first protein kinase C conserved region 1 (C1 domain) found in the classical (or conventional) protein kinase C (cPKC) family; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domains. cPKCs are potent kinases for histones, myelin basic protein, and protamine. They depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. There are four cPKC isoforms, named alpha, betaI, betaII, and gamma. PKC-alpha is expressed in many tissues and is associated with cell proliferation, apoptosis, and cell motility. It plays a role in the signaling of the growth factors PDGF, VEGF, EGF, and FGF. Abnormal levels of PKC-alpha have been detected in many transformed cell lines and several human tumors. In addition, PKC-alpha is required for HER2 dependent breast cancer invasion. The PKC beta isoforms (I and II), generated by alternative splicing of a single gene, are preferentially activated by hyperglycemia-induced DAG (1,2-diacylglycerol) in retinal tissues. This is implicated in diabetic microangiopathy such as ischemia, neovascularization, and abnormal vasodilator function. PKC-beta also plays an important role in VEGF signaling. In addition, glucose regulates proliferation in retinal endothelial cells via PKC-betaI. PKC-beta is also being explored as a therapeutic target in cancer. It contributes to tumor formation and is involved in the tumor host mechanisms of inflammation and angiogenesis. PKC-gamma is mainly expressed in neuronal tissues. It plays a role in protection from ischemia. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410383  Cd Length: 58  Bit Score: 52.80  E-value: 5.63e-09
                        10        20        30        40
                ....*....|....*....|....*....|....*....|..
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRC 310
Cdd:cd20833   3 HKFIARFFKQPTFCSHCTDFIWGFGKQGFQCQVCSFVVHKRC 44
C1_DGKdelta_rpt1 cd20847
first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase delta ...
267-318 5.94e-09

first protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase delta (DAG kinase delta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase delta, also called 130 kDa diacylglycerol kinase, or diglyceride kinase delta (DGK-delta), is a residential lipid kinase in the endoplasmic reticulum. It promotes lipogenesis and is involved in triglyceride biosynthesis. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. DAG kinase delta contains two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410397  Cd Length: 85  Bit Score: 53.57  E-value: 5.94e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|..
gi 20149724 267 GRHAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20847  23 GMHNWYACSHARPTYCNVCREALSGVTSHGLSCEVCKFKAHKRCAVRATNNC 74
C1_ARHGEF-like cd20832
protein kinase C conserved region 1 (C1 domain) found in uncharacterized Rho guanine ...
269-319 5.96e-09

protein kinase C conserved region 1 (C1 domain) found in uncharacterized Rho guanine nucleotide exchange factor (ARHGEF)-like proteins; The family includes a group of uncharacterized proteins that show high sequence similarity to vertebrate Rho guanine nucleotide exchange factors ARHGEF11 and ARHGEF12, which may play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Unlike typical ARHGEF11 and ARHGEF12, members of this family contain a C1 domain. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410382  Cd Length: 53  Bit Score: 52.37  E-value: 5.96e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCV 319
Cdd:cd20832   2 HQFVLQHYYQVTFCNHCSGLLWGIGYQGYQCSDCEFNIHKQCIEVIEESCP 52
C1_PKD3_rpt2 cd20844
second protein kinase C conserved region 1 (C1 domain) found in protein kinase D3 (PKD3) and ...
269-319 1.60e-08

second protein kinase C conserved region 1 (C1 domain) found in protein kinase D3 (PKD3) and similar proteins; PKD3 is also called PRKD3, PRKCN, serine/threonine-protein kinase D3 (nPKC-D3), protein kinase C nu type (nPKC-nu), or protein kinase EPK2. It converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. It is involved in the regulation of the cell cycle by modulating microtubule nucleation and dynamics. PKD3 acts as a key mediator in several cancer development signaling pathways. PKD3 contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the second C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410394  Cd Length: 69  Bit Score: 51.94  E-value: 1.60e-08
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCV 319
Cdd:cd20844   6 HTFAVHSYTRPTICQYCKRLLKGLFRQGMQCKDCRFNCHKRCASKVPRDCL 56
C1_PKD_rpt1 cd20795
first protein kinase C conserved region 1 (C1 domain) found in the protein kinase D (PKD) ...
269-318 1.91e-08

first protein kinase C conserved region 1 (C1 domain) found in the protein kinase D (PKD) family; PKDs are important regulators of many intracellular signaling pathways such as ERK and JNK, and cellular processes including the organization of the trans-Golgi network, membrane trafficking, cell proliferation, migration, and apoptosis. They are activated in a PKC-dependent manner by many agents including diacylglycerol (DAG), PDGF, neuropeptides, oxidative stress, and tumor-promoting phorbol esters, among others. Mammals harbor three types of PKDs: PKD1 (or PKCmu), PKD2, and PKD3 (or PKCnu). PKDs contain N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the first C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410345  Cd Length: 56  Bit Score: 51.15  E-value: 1.91e-08
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20795   4 HSLFVHSYKSPTFCDFCGEMLFGLVRQGLKCEGCGLNFHKRCAYKIPNNC 53
C1_DGKtheta_typeV_rpt1 cd20803
first protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, ...
269-318 1.95e-08

first protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, DAG kinase theta, and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase theta, also called diglyceride kinase theta (DGK-theta), is the only isoform classified as type V; it contains a pleckstrin homology (PH)-like domain and an additional C1 domain, compared to other DGKs. It may regulate the activity of protein kinase C by controlling the balance between the two signaling lipids, diacylglycerol and phosphatidic acid. DAG kinase theta contains three copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410353  Cd Length: 56  Bit Score: 51.15  E-value: 1.95e-08
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20803   2 HSFRKKTFHKPTYCHHCTDLLWGLLNQGYQCEVCNFVSHERCLKTVVTPC 51
C1_SpBZZ1-like cd20824
protein kinase C conserved region 1 (C1 domain) found in Schizosaccharomyces pombe protein ...
269-313 2.97e-08

protein kinase C conserved region 1 (C1 domain) found in Schizosaccharomyces pombe protein BZZ1 and similar proteins; BZZ1 is a syndapin-like F-BAR protein that plays a role in endocytosis and trafficking to the vacuole. It functions with type I myosins to restore polarity of the actin cytoskeleton after NaCl stress. BZZ1 contains an N-terminal F-BAR (FES-CIP4 Homology and Bin/Amphiphysin/Rvs), a central coiled-coil, and two C-terminal SH3 domains. Schizosaccharomyces pombe BZZ1 also harbors a C1 domain, but Saccharomyces cerevisiae BZZ1 doesn't have any. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410374  Cd Length: 53  Bit Score: 50.39  E-value: 2.97e-08
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSK 313
Cdd:cd20824   2 HNFKPHSFSIPTKCDYCGEKIWGLSKKGLSCKDCGFNCHIKCELK 46
C1_nPKC_theta-like_rpt2 cd20837
second protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) ...
269-318 3.33e-08

second protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) theta, delta, and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. PKC-theta is selectively expressed in T-cells and plays an important and non-redundant role in several aspects of T-cell biology. PKC-delta plays a role in cell cycle regulation and programmed cell death in many cell types. Members of this family contain two copies of C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410387  Cd Length: 50  Bit Score: 50.13  E-value: 3.33e-08
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20837   1 HRFKVYNYMSPTFCDHCGSLLWGLFRQGLKCEECGMNVHHKCQKKVANLC 50
C1_Sbf-like cd20827
protein kinase C conserved region 1 (C1 domain) found in the myotubularin-related protein Sbf ...
276-320 7.17e-08

protein kinase C conserved region 1 (C1 domain) found in the myotubularin-related protein Sbf and similar proteins; This group includes Drosophila melanogaster SET domain binding factor (Sbf), the single homolog of human MTMR5/MTMR13, and similar proteins, that show high sequence similarity to vertebrate myotubularin-related proteins (MTMRs) which may function as guanine nucleotide exchange factors (GEFs). Sbf is a pseudophosphatase that coordinates both phosphatidylinositol 3-phosphate (PI(3)P) turnover and Rab21 GTPase activation in an endosomal pathway that controls macrophage remodeling. It also functions as a GEF that promotes Rab21 GTPase activation associated with PI(3)P endosomes. Vertebrate MTMR5 and MTMR13 contain an N-terminal DENN domain, a PH-GRAM domain, an inactive PTP domain, a SET interaction domain, a coiled-coil domain, and a C-terminal PH domain. Members of this family contain these domains and have an additional C1 domain. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410377  Cd Length: 53  Bit Score: 49.34  E-value: 7.17e-08
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*
gi 20149724 276 FKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVK 320
Cdd:cd20827   9 FTTPTYCDYCSSLLWGLVKTGMRCADCGYSCHEKCLEHVPKNCTK 53
C1 smart00109
Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol ...
333-374 8.20e-08

Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains.


Pssm-ID: 197519  Cd Length: 50  Bit Score: 49.39  E-value: 8.20e-08
                           10        20        30        40
                   ....*....|....*....|....*....|....*....|..
gi 20149724    333 QHAWVEGNSSVKCDRCHKSIKCYQSvTARHCVWCRMTFHRKC 374
Cdd:smart00109   2 KHVFRTFTKPTFCCVCRKSIWGSFK-QGLRCSECKVKCHKKC 42
C1_TNS2-like cd20826
protein kinase C conserved region 1 (C1 domain) found in tensin-2 like (TNS2-like) proteins; ...
267-321 1.22e-07

protein kinase C conserved region 1 (C1 domain) found in tensin-2 like (TNS2-like) proteins; The TNS2-like group includes TNS2, and variants of TNS1 and TNS3. Tensin-2 (TNS2), also called C1 domain-containing phosphatase and tensin (C1-TEN), or tensin-like C1 domain-containing phosphatase (TENC1), is an essential component for the maintenance of glomerular basement membrane (GBM) structures. It regulates cell motility and proliferation. It may have phosphatase activity. TNS2 reduces AKT1 phosphorylation, lowers AKT1 kinase activity and interferes with AKT1 signaling. Tensin-1 (TNS1) plays a role in fibrillar adhesion formation. It may be involved in cell migration, cartilage development and in linking signal transduction pathways to the cytoskeleton. Tensin-3 (TNS3), also called tensin-like SH2 domain-containing protein 1 (TENS1), or tumor endothelial marker 6 (TEM6), may play a role in actin remodeling. It is involved in the dissociation of the integrin-tensin-actin complex. Typical TNS1 and TNS3 do not contain C1 domains, but some isoforms/variants do. Members of this family contain an N-terminal region with a zinc finger (C1 domain), a protein tyrosine phosphatase (PTP)-like domain and a protein kinase 2 (C2) domain, and a C-terminal region with SH2 and pTyr binding (PTB) domains. This model corresponds to C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410376  Cd Length: 52  Bit Score: 48.92  E-value: 1.22e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*
gi 20149724 267 GRHAWTLKHFKKPTYCNFCRAMLMGvgkQGLCCIYCKYTVHQRCVSKTIHGCVKT 321
Cdd:cd20826   1 KSHSFKEKSFRKPRTCDVCKQIIWN---EGSSCRVCKYACHRKCEPKVTAACSPS 52
C1_MTMR-like cd20828
protein kinase C conserved region 1 (C1 domain) found in uncharacterized proteins similar to ...
269-320 1.23e-07

protein kinase C conserved region 1 (C1 domain) found in uncharacterized proteins similar to myotubularin-related proteins; The family includes a group of uncharacterized proteins that show high sequence similarity to vertebrate myotubularin-related proteins (MTMRs), such as MTMR5 and MTMR13. MTMRs may function as guanine nucleotide exchange factors (GEFs). Vertebrate MTMR5 and MTMR13 contain an N-terminal DENN domain, a PH-GRAM domain, an inactive PTP domain, a SET interaction domain, a coiled-coil domain, and a C-terminal PH domain. Members of this family contain these domains and have an additional C1 domain. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410378  Cd Length: 57  Bit Score: 48.98  E-value: 1.23e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|..
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVK 320
Cdd:cd20828   6 HNFEPHSFVTPTNCDYCLQILWGIVKKGMKCSECGYNCHEKCQPQVPKQCSK 57
C1_MRCKalpha cd20864
protein kinase C conserved region 1 (C1 domain) found in myotonic dystrophy kinase-related ...
269-318 1.31e-07

protein kinase C conserved region 1 (C1 domain) found in myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCK alpha) and similar proteins; MRCK alpha, also called Cdc42-binding protein kinase alpha, DMPK-like alpha, or myotonic dystrophy protein kinase-like alpha, is a serine/threonine-protein kinase expressed ubiquitously in many tissues. It plays a role in the regulation of peripheral actin reorganization and neurite outgrowth. It may also play a role in the transferrin iron uptake pathway. MRCK alpha is an important downstream effector of Cdc42 and plays a role in the regulation of cytoskeleton reorganization and cell migration. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410414  Cd Length: 60  Bit Score: 48.86  E-value: 1.31e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20864   3 HQFVVKSFTTPTKCNQCTSLMVGLIRQGCTCEVCGFSCHVTCADKAPSVC 52
C1_Stac cd20817
protein kinase C conserved region 1 (C1 domain) found in the SH3 and cysteine-rich ...
276-310 1.36e-07

protein kinase C conserved region 1 (C1 domain) found in the SH3 and cysteine-rich domain-containing protein (Stac) family; Stac proteins are putative adaptor proteins that are important for neuronal function. There are three mammalian members (Stac1, Stac2 and Stac3) of this family. Stac1 and Stac3 contain two SH3 domains while Stac2 contains a single SH3 domain at the C-terminus. Stac1 and Stac2 have been found to be expressed differently in mature dorsal root ganglia (DRG) neurons. Stac1 is mainly expressed in peptidergic neurons while Stac2 is found in a subset of nonpeptidergic and all trkB+ neurons. Stac proteins contain a cysteine-rich C1 domain and one or two SH3 domains at the C-terminus. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410367  Cd Length: 51  Bit Score: 48.48  E-value: 1.36e-07
                        10        20        30
                ....*....|....*....|....*....|....*
gi 20149724 276 FKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRC 310
Cdd:cd20817   8 FKKPTFCDVCKELLVGLSKQGLRCKNCKMNVHHKC 42
C1_Stac2 cd20881
protein kinase C conserved region 1 (C1 domain) found in SH3 and cysteine-rich ...
276-316 1.64e-07

protein kinase C conserved region 1 (C1 domain) found in SH3 and cysteine-rich domain-containing protein 2 (Stac2) and similar proteins; Stac2, also called 24b2/Stac2, or Src homology 3 and cysteine-rich domain-containing protein 2, plays a redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. It slows down the inactivation rate of the calcium channel CACNA1C. Stac2 contains a cysteine-rich C1 domain and one SH3 domain at the C-terminus. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410431  Cd Length: 59  Bit Score: 48.68  E-value: 1.64e-07
                        10        20        30        40
                ....*....|....*....|....*....|....*....|.
gi 20149724 276 FKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIH 316
Cdd:cd20881  13 FKKPSPCELCHQMIVGNSKQGLRCKMCKVSVHLWCSEEVSH 53
EF-hand_7 pfam13499
EF-hand domain pair;
175-241 1.77e-07

EF-hand domain pair;


Pssm-ID: 463900 [Multi-domain]  Cd Length: 67  Bit Score: 48.79  E-value: 1.77e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 20149724   175 DKLEFMFRLYDSDENGLLDQAEMDQIVsQMLHVAQylEWDPTELRPILKEmlqgMDYDKDGFVSLQE 241
Cdd:pfam13499   2 EKLKEAFKLLDSDGDGYLDVEELKKLL-RKLEEGE--PLSDEEVEELFKE----FDLDKDGRISFEE 61
C1_aPKC cd20794
protein kinase C conserved region 1 (C1 domain) found in the atypical protein kinase C (aPKC) ...
269-318 2.32e-07

protein kinase C conserved region 1 (C1 domain) found in the atypical protein kinase C (aPKC) family; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. aPKCs only require phosphatidylserine (PS) for activation. They contain a C2-like region, instead of a calcium-binding (C2) region found in classical PKCs, in their regulatory domain. There are two aPKC isoforms, zeta and iota. aPKCs are involved in many cellular functions including proliferation, migration, apoptosis, polarity maintenance and cytoskeletal regulation. They also play a critical role in the regulation of glucose metabolism and in the pathogenesis of type 2 diabetes. PKC-zeta plays a critical role in activating the glucose transport response. It is activated by glucose, insulin, and exercise through diverse pathways. PKC-zeta also plays a central role in maintaining cell polarity in yeast and mammalian cells. In addition, it affects actin remodeling in muscle cells. PKC-iota is directly implicated in carcinogenesis. It is critical to oncogenic signaling mediated by Ras and Bcr-Abl. The PKC-iota gene is the target of tumor-specific gene amplification in many human cancers, and has been identified as a human oncogene. In addition to its role in transformed growth, PKC-iota also promotes invasion, chemoresistance, and tumor cell survival. Expression profiling of PKC-iota is a prognostic marker of poor clinical outcome in several human cancers. PKC-iota also plays a role in establishing cell polarity, and has critical embryonic functions. Members of this family contain one C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410344  Cd Length: 55  Bit Score: 48.03  E-value: 2.32e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20794   3 HLFQAKRFNRRAVCAYCSDRIWGLGRQGYKCINCKLLVHKKCHKLVKVAC 52
C1_RASSF1 cd20885
protein kinase C conserved region 1 (C1 domain) found in Ras association domain-containing ...
269-311 3.44e-07

protein kinase C conserved region 1 (C1 domain) found in Ras association domain-containing protein 1 (RASSF1) and similar proteins; RASSF1 is a member of a family of RAS effectors, of which there are currently 8 members (RASSF1-8), all containing a Ras-association (RA) domain of the Ral-GDS/AF6 type. RASSF1 has eight transcripts (A-H) arising from alternative splicing and differential promoter usage. RASSF1A and 1C are the most extensively studied RASSF1 with both localized to microtubules and involved in regulation of growth and migration. RASSF1 is a potential tumor suppressor that is required for death receptor-dependent apoptosis. It contains a C1 domain, which is descibed in this model. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410435  Cd Length: 54  Bit Score: 47.65  E-value: 3.44e-07
                        10        20        30        40
                ....*....|....*....|....*....|....*....|...
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCV 311
Cdd:cd20885   4 HDFQPCSLTNPTWCDLCGDFIWGLYKQCLRCTHCKYTCHLRCR 46
C1_CHN cd20806
protein kinase C conserved region 1 (C1 domain) found in the chimaerin family; Chimaerins are ...
269-320 3.63e-07

protein kinase C conserved region 1 (C1 domain) found in the chimaerin family; Chimaerins are a family of phorbolester- and diacylglycerol-responsive GTPase activating proteins (GAPs) specific for the Rho-like GTPase Rac. Alpha1-chimerin (formerly known as N-chimerin) and alpha2-chimerin are alternatively spliced products of a single gene, as are beta1- and beta2-chimerin. Alpha1- and beta1-chimerin have a relatively short N-terminal region that does not encode any recognizable domains, whereas alpha2- and beta2-chimerin both include a functional SH2 domain that can bind to phosphotyrosine motifs within receptors. All the isoforms contain a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410356  Cd Length: 53  Bit Score: 47.30  E-value: 3.63e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|..
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVK 320
Cdd:cd20806   2 HNFKVHTFKGPHWCDYCGNFMWGLIAQGVKCEDCGFNAHKQCSKLVPHDCQP 53
C1_PKD3_rpt1 cd20841
first protein kinase C conserved region 1 (C1 domain) found in protein kinase D3 (PKD3) and ...
269-318 5.91e-07

first protein kinase C conserved region 1 (C1 domain) found in protein kinase D3 (PKD3) and similar proteins; PKD3 is also called PRKD3, PRKCN, serine/threonine-protein kinase D3 (nPKC-D3), protein kinase C nu type (nPKC-nu), or protein kinase EPK2. It converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. It is involved in the regulation of the cell cycle by modulating microtubule nucleation and dynamics. PKD3 acts as a key mediator in several cancer development signaling pathways. PKD3 contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the first C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410391  Cd Length: 75  Bit Score: 47.73  E-value: 5.91e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20841  11 HTLYVHSYKAPTFCDYCGEMLWGLVRQGLKCEGCGLNYHKRCAFKIPNNC 60
C1_TNS3_v cd20889
protein kinase C conserved region 1 (C1 domain) found in tensin-3 (TNS3) variant and similar ...
269-318 9.26e-07

protein kinase C conserved region 1 (C1 domain) found in tensin-3 (TNS3) variant and similar proteins; Tensin-3 (TNS3), also called tensin-like SH2 domain-containing protein 1 (TENS1), or tumor endothelial marker 6 (TEM6), may play a role in actin remodeling. It is involved in the dissociation of the integrin-tensin-actin complex. This model corresponds to the C1 domain found in TNS3 variant. Typical TNS3 does not contain C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410439  Cd Length: 56  Bit Score: 46.42  E-value: 9.26e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMlmgVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20889   3 HTFKNKTFKKPKVCSICKQV---IDSQGISCRVCKYACHKKCEAKVVTPC 49
C1_CeDKF1-like_rpt2 cd20798
second protein kinase C conserved region 1 (C1 domain) found in Caenorhabditis elegans serine ...
269-319 1.02e-06

second protein kinase C conserved region 1 (C1 domain) found in Caenorhabditis elegans serine/threonine-protein kinase DKF-1 and similar proteins; DKF-1 converts transient diacylglycerol (DAG) signals into prolonged physiological effects, independently of PKC. It plays a role in the regulation of growth and neuromuscular control of movement. It is involved in immune response to Staphylococcus aureus bacterium by activating transcription factor hlh-30 downstream of phospholipase plc-1. Members of this group contain two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410348  Cd Length: 54  Bit Score: 46.34  E-value: 1.02e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCV 319
Cdd:cd20798   2 HTLAEHNYKKPTVCKVCDKLLVGLVRQGLKCRDCGVNVHKKCASLLPSNCR 52
C1_VAV cd20810
protein kinase C conserved region 1 (C1 domain) found in VAV proteins; VAV proteins function ...
269-314 1.14e-06

protein kinase C conserved region 1 (C1 domain) found in VAV proteins; VAV proteins function both as cytoplasmic guanine nucleotide exchange factors (GEFs) for Rho GTPases and as scaffold proteins, and they play important roles in cell signaling by coupling cell surface receptors to various effector functions. They play key roles in processes that require cytoskeletal reorganization including immune synapse formation, phagocytosis, cell spreading, and platelet aggregation, among others. Vertebrates have three VAV proteins (VAV1, VAV2, and VAV3). VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410360  Cd Length: 52  Bit Score: 46.10  E-value: 1.14e-06
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*.
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKT 314
Cdd:cd20810   3 HSFELTTFKEPTTCSVCKKLLKGLFFQGYKCSVCGAAVHKECIAKV 48
C1_nPKC_epsilon-like_rpt1 cd20835
first protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) ...
269-318 1.37e-06

first protein kinase C conserved region 1 (C1 domain) found in novel protein kinase C (nPKC) epsilon, eta, and similar proteins; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domains. nPKCs are calcium-independent, but require DAG (1,2-diacylglycerol) and phosphatidylserine (PS) for activity. PKC-epsilon has been shown to behave as an oncoprotein. Its overexpression contributes to neoplastic transformation depending on the cell type. It contributes to oncogenesis by inducing disordered cell growth and inhibiting cell death. It also plays a role in tumor invasion and metastasis. PKC-epsilon has also been found to confer cardioprotection against ischemia and reperfusion-mediated damage. Other cellular functions include the regulation of gene expression, cell adhesion, and cell motility. PKC-eta is predominantly expressed in squamous epithelia, where it plays a crucial role in the signaling of cell-type specific differentiation. It is also expressed in pro-B cells and early-stage thymocytes, and acts as a key regulator in early B-cell development. PKC-eta increases glioblastoma multiforme (GBM) proliferation and resistance to radiation, and is being developed as a therapeutic target for the management of GBM. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410385  Cd Length: 64  Bit Score: 46.31  E-value: 1.37e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGV-GKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20835  10 HKFMATYLRQPTYCSHCKDFIWGViGKQGYQCQVCTCVVHKRCHQLVVTKC 60
C1_Stac1 cd20880
protein kinase C conserved region 1 (C1 domain) found in SH3 and cysteine-rich ...
269-311 2.94e-06

protein kinase C conserved region 1 (C1 domain) found in SH3 and cysteine-rich domain-containing protein (Stac1) and similar proteins; Stac1, also called Src homology 3 and cysteine-rich domain-containing protein, promotes expression of the ion channel CACNA1H at the cell membrane, and thereby contributes to the regulation of channel activity. It plays a minor and redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. It slows down the inactivation rate of the calcium channel CACNA1C. Stac1 contains a cysteine-rich C1 domain and two SH3 domains at the C-terminus. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410430  Cd Length: 57  Bit Score: 44.93  E-value: 2.94e-06
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGV-GKQGLCCIYCKYTVHQRCV 311
Cdd:cd20880   3 HSFQEYIFKKPTFCDVCNHMIVGTnAKHGLRCKACKMSIHHKCT 46
C1_ScPKC1-like_rpt1 cd20822
first protein kinase C conserved region 1 (C1 domain) found in Saccharomyces cerevisiae ...
269-318 3.64e-06

first protein kinase C conserved region 1 (C1 domain) found in Saccharomyces cerevisiae protein kinase C-like 1 (ScPKC1) and similar proteins; ScPKC1 is required for cell growth and for the G2 to M transition of the cell division cycle. It mediates a protein kinase cascade, activating BCK1 which itself activates MKK1/MKK2. The family also includes Schizosaccharomyces pombe PKC1 and PKC2, which are involved in the control of cell shape and act as targets of the inhibitor staurosporine. Members of this family contain two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410372  Cd Length: 52  Bit Score: 44.59  E-value: 3.64e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQglcCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20822   3 HKFVQKQFYQIMRCAVCGEFLVNAGYQ---CEDCKYTCHKKCYEKVVTKC 49
C1_aPKC_zeta cd21095
protein kinase C conserved region 1 (C1 domain) found in the atypical protein kinase C (aPKC) ...
269-310 3.90e-06

protein kinase C conserved region 1 (C1 domain) found in the atypical protein kinase C (aPKC) zeta type; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. aPKCs only require phosphatidylserine (PS) for activation. They contain a C2-like region, instead of a calcium-binding (C2) region found in classical PKCs, in their regulatory domain. There are two aPKC isoforms, zeta and iota. aPKCs are involved in many cellular functions including proliferation, migration, apoptosis, polarity maintenance and cytoskeletal regulation. They also play a critical role in the regulation of glucose metabolism and in the pathogenesis of type 2 diabetes. PKC-zeta plays a critical role in activating the glucose transport response. It is activated by glucose, insulin, and exercise through diverse pathways. PKC-zeta also plays a central role in maintaining cell polarity in yeast and mammalian cells. In addition, it affects actin remodeling in muscle cells. Members of this family contain C1 domain found in aPKC isoform zeta. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410448  Cd Length: 55  Bit Score: 44.59  E-value: 3.90e-06
                        10        20        30        40
                ....*....|....*....|....*....|....*....|..
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRC 310
Cdd:cd21095   3 HLFQAKRFNRRAYCGQCSERIWGLGRQGYKCINCKLLVHKRC 44
C1_aPKC_iota cd21094
protein kinase C conserved region 1 (C1 domain) found in the atypical protein kinase C (aPKC) ...
269-310 5.28e-06

protein kinase C conserved region 1 (C1 domain) found in the atypical protein kinase C (aPKC) iota type; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. aPKCs only require phosphatidylserine (PS) for activation. They contain a C2-like region, instead of a calcium-binding (C2) region found in classical PKCs, in their regulatory domain. There are two aPKC isoforms, zeta and iota. aPKCs are involved in many cellular functions including proliferation, migration, apoptosis, polarity maintenance and cytoskeletal regulation. They also play a critical role in the regulation of glucose metabolism and in the pathogenesis of type 2 diabetes. PKC-iota is directly implicated in carcinogenesis. It is critical to oncogenic signaling mediated by Ras and Bcr-Abl. The PKC-iota gene is the target of tumor-specific gene amplification in many human cancers, and has been identified as a human oncogene. In addition to its role in transformed growth, PKC-iota also promotes invasion, chemoresistance, and tumor cell survival. Expression profiling of PKC-iota is a prognostic marker of poor clinical outcome in several human cancers. PKC-iota also plays a role in establishing cell polarity, and has critical embryonic functions. Members of this family contain C1 domain found in aPKC isoform iota. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410447  Cd Length: 55  Bit Score: 44.22  E-value: 5.28e-06
                        10        20        30        40
                ....*....|....*....|....*....|....*....|..
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRC 310
Cdd:cd21094   3 HTFQAKRFNRRAHCAICTDRIWGLGRQGYKCINCKLLVHKKC 44
C1_cPKC_rpt2 cd20836
second protein kinase C conserved region 1 (C1 domain) found in the classical (or conventional) ...
269-311 5.47e-06

second protein kinase C conserved region 1 (C1 domain) found in the classical (or conventional) protein kinase C (cPKC) family; PKCs are classified into three groups (classical, atypical, and novel) depending on their mode of activation and the structural characteristics of their regulatory domain. cPKCs are potent kinases for histones, myelin basic protein, and protamine. They depend on calcium, DAG (1,2-diacylglycerol), and in most cases, phosphatidylserine (PS) for activation. There are four cPKC isoforms, named alpha, betaI, betaII, and gamma. PKC-alpha is expressed in many tissues and is associated with cell proliferation, apoptosis, and cell motility. It plays a role in the signaling of the growth factors PDGF, VEGF, EGF, and FGF. Abnormal levels of PKC-alpha have been detected in many transformed cell lines and several human tumors. In addition, PKC-alpha is required for HER2 dependent breast cancer invasion. The PKC beta isoforms (I and II), generated by alternative splicing of a single gene, are preferentially activated by hyperglycemia-induced DAG (1,2-diacylglycerol) in retinal tissues. This is implicated in diabetic microangiopathy such as ischemia, neovascularization, and abnormal vasodilator function. PKC-beta also plays an important role in VEGF signaling. In addition, glucose regulates proliferation in retinal endothelial cells via PKC-betaI. PKC-beta is also being explored as a therapeutic target in cancer. It contributes to tumor formation and is involved in the tumor host mechanisms of inflammation and angiogenesis. PKC-gamma is mainly expressed in neuronal tissues. It plays a role in protection from ischemia. Members of this family contain two copies of C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410386  Cd Length: 54  Bit Score: 44.25  E-value: 5.47e-06
                        10        20        30        40
                ....*....|....*....|....*....|....*....|...
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCV 311
Cdd:cd20836   1 HKFKVHTYSSPTFCDHCGSLLYGLIHQGMKCDTCDMNVHKRCV 43
C1_PKD2_rpt1 cd20840
first protein kinase C conserved region 1 (C1 domain) found in protein kinase D2 (PKD2) and ...
269-318 5.95e-06

first protein kinase C conserved region 1 (C1 domain) found in protein kinase D2 (PKD2) and similar proteins; PKD2, also called PRKD2, HSPC187, or serine/threonine-protein kinase D2 (nPKC-D2), is a serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion. PKD2 contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the first C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410390  Cd Length: 73  Bit Score: 44.66  E-value: 5.95e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20840  11 HALNVHSYRAPAFCDHCGEMLFGLVRQGLKCDGCGLNYHKRCAFSIPNNC 60
C1_PDZD8 cd20825
protein kinase C conserved region 1 (C1 domain) found in PDZ domain-containing protein 8 ...
266-315 8.17e-06

protein kinase C conserved region 1 (C1 domain) found in PDZ domain-containing protein 8 (PDZD8) and similar proteins; PDZD8, also called Sarcoma antigen NY-SAR-84/NY-SAR-104, is a molecular tethering protein that connects endoplasmic reticulum (ER) and mitochondrial membranes. PDZD8-dependent ER-mitochondria membrane tethering is essential for ER-mitochondria Ca2+ transfer. In neurons, it is involved in the regulation of dendritic Ca2+ dynamics by regulating mitochondrial Ca2+ uptake. PDZD8 also plays an indirect role in the regulation of cell morphology and cytoskeletal organization. It contains a PDZ domain and a C1 domain. This model describes the C1 domain, a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410375  Cd Length: 55  Bit Score: 43.81  E-value: 8.17e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 266 DGRHAWTLKHFKKPTYCNFC-RAMLMGVGKQglcCIYCKYTVHQRCVSKTI 315
Cdd:cd20825   1 EGKHDFVLTQFQNATYCDFCkKKIWLKEAFQ---CRLCGMICHKKCLDKCQ 48
C1_DGKdelta_rpt2 cd20893
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase delta ...
329-384 8.82e-06

second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase delta (DAG kinase delta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase delta, also called 130 kDa diacylglycerol kinase, or diglyceride kinase delta (DGK-delta), is a residential lipid kinase in the endoplasmic reticulum. It promotes lipogenesis and is involved in triglyceride biosynthesis. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. DAG kinase delta contains two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410443  Cd Length: 61  Bit Score: 43.90  E-value: 8.82e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 329 GEVMQHAWVEGN--SSVKCDRCHKSIKCYQSVTARHCVWCRMTFHRKCE--LSTVCDGGE 384
Cdd:cd20893   1 GISMPHQWLEGNlpVSAKCTVCDKTCGSVLRLQDWRCLWCKAMVHTSCKelLLTKCPLGQ 60
C1_MRCK cd20809
protein kinase C conserved region 1 (C1 domain) found in the Myotonic dystrophy kinase-related ...
269-318 9.04e-06

protein kinase C conserved region 1 (C1 domain) found in the Myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) family; MRCK is thought to be a coincidence detector of signaling by the small GTPase Cdc42 and phosphoinositides. MRCK/Cdc42 signaling mediates myosin-dependent cell motility. MRCK has been shown to promote cytoskeletal reorganization, which affects many biological processes. Three isoforms of MRCK are known, named alpha, beta and gamma. MRCKgamma is expressed in heart and skeletal muscles, unlike MRCKalpha and MRCKbeta, which are expressed ubiquitously. MRCK consists of a serine/threonine kinase domain, a cysteine rich (C1) region, a PH domain and a p21 binding motif. This model corresponds to C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410359  Cd Length: 53  Bit Score: 43.41  E-value: 9.04e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20809   1 HKFIVRTFSTPTKCNHCTSLMVGLVRQGLVCEVCGYACHVSCADKAPQVC 50
C1_DGKtheta_typeV_rpt3 cd20854
third protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, ...
334-393 1.32e-05

third protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, DAG kinase theta, and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase theta, also called diglyceride kinase theta (DGK-theta), is the only isoform classified as type V; it contains a pleckstrin homology (PH)-like domain and an additional C1 domain, compared to other DGKs. It may regulate the activity of protein kinase C by controlling the balance between the two signaling lipids, diacylglycerol and phosphatidic acid. DAG kinase theta contains three copies of the C1 domain. This model corresponds to the third one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410404  Cd Length: 63  Bit Score: 43.41  E-value: 1.32e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 20149724 334 HAWVEGN--SSVKCDRCHKSikCYQS--VTARHCVWCRMTFHRKC--ELSTVCDGGELKdHILLPT 393
Cdd:cd20854   1 HHWREGNlpSNSKCEVCKKS--CGSSecLAGMRCEWCGITAHASCykSLPKECNFGRLR-NIILPP 63
C1_Myosin-IX cd20818
protein kinase C conserved region 1 (C1 domain) found in the unconventional myosin-IX family; ...
269-321 2.06e-05

protein kinase C conserved region 1 (C1 domain) found in the unconventional myosin-IX family; Myosins IX (Myo9) is a class of unique motor proteins with a common structure of an N-terminal extension preceding a myosin head homologous to the Ras-association (RA) domain, a head (motor) domain, a neck with IQ motifs that bind light chains, and a C-terminal tail containing cysteine-rich zinc binding (C1) and Rho-GTPase activating protein (RhoGAP) domains. There are two genes for myosins IX in humans, IXa and IXb, that are different in their expression and localization. IXa is expressed abundantly in brain and testis, and IXb is expressed abundantly in tissues of the immune system. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410368  Cd Length: 56  Bit Score: 42.67  E-value: 2.06e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKqGLCCIYCKYTVHQRCVSKTIHGCVKT 321
Cdd:cd20818   4 HKFATVQFNIPTYCEVCNSFIWLMEK-GLVCQVCKFTCHKKCYSKITAPCKGN 55
C1_DGK_typeII_rpt2 cd20852
second protein kinase C conserved region 1 (C1 domain) found in type II diacylglycerol kinases; ...
334-383 2.17e-05

second protein kinase C conserved region 1 (C1 domain) found in type II diacylglycerol kinases; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. Type II DAG kinases (DGKs) contain pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. Three DGK isozymes (delta, eta and kappa) are classified as type II. DAG kinase delta, also called 130 kDa DAG kinase, or diglyceride kinase delta (DGK-delta), is a residential lipid kinase in the endoplasmic reticulum. It promotes lipogenesis and is involved in triglyceride biosynthesis. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. The DAG kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase kappa is also called diglyceride kinase kappa (DGK-kappa) or 142 kDa DAG kinase. Members of this family contain two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410402  Cd Length: 54  Bit Score: 42.31  E-value: 2.17e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 20149724 334 HAWVEGN--SSVKCDRCHKSIKCYQSVTARHCVWCRMTFHRKC--ELSTVCDGG 383
Cdd:cd20852   1 HQWLEGNlpVSSKCAVCDKTCGSVLRLQDWRCLWCGATVHTACkdSLPTKCSLG 54
C1_RASGRP4 cd20863
protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 4 ...
268-320 2.42e-05

protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 4 (RASGRP4) and similar proteins; RASGRP4 functions as a cation- and diacylglycerol (DAG)-regulated nucleotide exchange factor activating Ras through the exchange of bound GDP for GTP. It may function in mast cell differentiation. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410413  Cd Length: 57  Bit Score: 42.46  E-value: 2.42e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 20149724 268 RHAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVK 320
Cdd:cd20863   3 LHNFHETTFKKPTFCDSCSGFLWGVTKQGYRCQDCGINCHKHCKDQVDVECKK 55
C1_PKD1_rpt1 cd20839
first protein kinase C conserved region 1 (C1 domain) found in protein kinase D (PKD) and ...
269-318 2.56e-05

first protein kinase C conserved region 1 (C1 domain) found in protein kinase D (PKD) and similar proteins; PKD is also called PKD1, PRKD1, protein kinase C mu type (nPKC-mu), PRKCM, serine/threonine-protein kinase D1, or nPKC-D1. It is a serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response. PKD contains N-terminal tandem cysteine-rich zinc binding C1 (PKC conserved region 1), central PH (Pleckstrin Homology), and C-terminal catalytic kinase domains. This model corresponds to the first C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410389  Cd Length: 72  Bit Score: 42.70  E-value: 2.56e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20839   8 HALFVHSYRAPAFCDHCGEMLWGLVRQGLKCEGCGLNYHKRCAFKIPNNC 57
C1_DGKepsilon_typeIII_rpt1 cd20801
first protein kinase C conserved region 1 (C1 domain) found in type III diacylglycerol kinase, ...
268-313 3.22e-05

first protein kinase C conserved region 1 (C1 domain) found in type III diacylglycerol kinase, DAG kinase epsilon, and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase epsilon, also called diglyceride kinase epsilon (DGK-epsilon), is the only isoform classified as type III; it possesses a hydrophobic domain in addition to C1 and catalytic domains that are present in all DGKs, and shows selectivity for acyl chains. It is highly selective for arachidonate-containing species of DAG. It may terminate signals transmitted through arachidonoyl-DAG or may contribute to the synthesis of phospholipids with defined fatty acid composition. DAG kinase epsilon contains two copies of the C1 domain. This model corresponds to the first one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410351  Cd Length: 54  Bit Score: 41.92  E-value: 3.22e-05
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*..
gi 20149724 268 RHAWTLKH-FKKPTYCNFCRAMLMgvgkQGLCCIYCKYTVHQRCVSK 313
Cdd:cd20801   3 GHHWVSTDlFSKPTYCSVCETLIL----SGAFCDCCGLCVDEGCLRK 45
C1_RASSF1-like cd20820
protein kinase C conserved region 1 (C1 domain) found in the Ras association domain-containing ...
277-312 3.32e-05

protein kinase C conserved region 1 (C1 domain) found in the Ras association domain-containing protein 1 (RASSF1)-like family; The RASSF1-like family includes RASSF1 and RASSF5. RASSF1 and RASSF5 are members of a family of RAS effectors, of which there are currently 8 members (RASSF1-8), all containing a Ras-association (RA) domain of the Ral-GDS/AF6 type. RASSF1 has eight transcripts (A-H) arising from alternative splicing and differential promoter usage. RASSF1A and 1C are the most extensively studied RASSF1; both are localized to microtubules and involved in the regulation of growth and migration. RASSF1 is a potential tumor suppressor that is required for death receptor-dependent apoptosis. RASSF5, also called new ras effector 1 (NORE1), or regulator for cell adhesion and polarization enriched in lymphoid tissues (RAPL), is expressed as three transcripts (A-C) via differential promoter usage and alternative splicing. RASSF5A is a pro-apoptotic Ras effector and functions as a Ras regulated tumor suppressor. RASSF5C is regulated by Ras related protein and modulates cellular adhesion. RASSF5 is a potential tumor suppressor that seems to be involved in lymphocyte adhesion by linking RAP1A activation upon T-cell receptor or chemokine stimulation to integrin activation. RASSF1 and RASSF5 contain a C1 domain, which is descibed in this model. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410370  Cd Length: 52  Bit Score: 42.04  E-value: 3.32e-05
                        10        20        30
                ....*....|....*....|....*....|....*.
gi 20149724 277 KKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVS 312
Cdd:cd20820  10 EQPTWCDLCGSVILGLFRKCLRCANCKMTCHPRCRS 45
C1_MRCKgamma cd20866
protein kinase C conserved region 1 (C1 domain) found in myotonic dystrophy kinase-related ...
269-314 4.31e-05

protein kinase C conserved region 1 (C1 domain) found in myotonic dystrophy kinase-related Cdc42-binding kinase gamma (MRCK gamma) and similar proteins; MRCK gamma (MRCKG), also called Cdc42-binding protein kinase gamma, DMPK-like gamma, myotonic dystrophy protein kinase-like gamma, or myotonic dystrophy protein kinase-like alpha, is a serine/threonine-protein kinase expressed in heart and skeletal muscles. It may act as a downstream effector of Cdc42 in cytoskeletal reorganization and contributes to the actomyosin contractility required for cell invasion, through the regulation of MYPT1 and thus MLC2 phosphorylation. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410416  Cd Length: 52  Bit Score: 41.66  E-value: 4.31e-05
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*.
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKT 314
Cdd:cd20866   1 HTFKPKTFTSPTKCLRCTSLMVGLVRQGLACEACNYVCHVSCAEGA 46
C1_dGM13116p-like cd20831
protein kinase C conserved region 1 (C1 domain) found in Drosophila melanogaster GM13116p and ...
269-318 5.19e-05

protein kinase C conserved region 1 (C1 domain) found in Drosophila melanogaster GM13116p and similar proteins; This group contains uncharacterized proteins including Drosophila melanogaster GM13116p and Caenorhabditis elegans hypothetical protein R11G1.4, both of which contain C2 (a calcium-binding domain) and C1 domains. This model describes the C1 domain, a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410381  Cd Length: 58  Bit Score: 41.56  E-value: 5.19e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 269 HAWTLKHFKKPTYCNFC-RAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20831   6 HTFVATHFKGGPSCAVCnKLIPGRFGKQGYQCRDCGLICHKRCHVKVETHC 56
C1_Myosin-IXa cd20883
protein kinase C conserved region 1 (C1 domain) found in unconventional myosin-IXa and similar ...
269-322 5.76e-05

protein kinase C conserved region 1 (C1 domain) found in unconventional myosin-IXa and similar proteins; Myosin-IXa, also called unconventional myosin-9a (Myo9a), is a single-headed, actin-dependent motor protein of the unconventional myosin IX class. It is expressed in several tissues and is enriched in the brain and testes. Myosin-IXa contains a Ras-associating (RA) domain, a motor domain, a protein kinase C conserved region 1 (C1), and a Rho GTPase activating domain (RhoGAP). Myosin-IXa binds the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA2 subunit, and plays a key role in controlling the molecular structure and function of hippocampal synapses. Moreover, Myosin-IXa functions in epithelial cell morphology and differentiation, such that its knockout mice develop hydrocephalus and kidney dysfunction. Myosin-IXa regulates collective epithelial cell migration by targeting RhoGAP activity to cell-cell junctions. Myosin-IXa negatively regulates Rho GTPase signaling, and functions as a regulator of kidney tubule function. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410433  Cd Length: 58  Bit Score: 41.49  E-value: 5.76e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIyCKYTVHQRCVSKTIHGCVKTN 322
Cdd:cd20883   6 HIFKSTQYSIPTYCEYCSSLIWMMDRAYVCKL-CRYACHKKCCLKTTTKCSKKY 58
PRK13059 PRK13059
putative lipid kinase; Reviewed
484-553 7.93e-05

putative lipid kinase; Reviewed


Pssm-ID: 183858  Cd Length: 295  Bit Score: 45.41  E-value: 7.93e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20149724  484 VLACGGDGTVGWILDCIDKANFTKhpPVAVLPLGTGNDLARCLrwgggyegGSLTKILKEIEQ---SPLVMLD 553
Cdd:PRK13059  60 ILIAGGDGTVDNVVNAMKKLNIDL--PIGILPVGTANDFAKFL--------GMPTDIGEACEQilkSKPKKVD 122
C1_Raf cd20811
protein kinase C conserved region 1 (C1 domain) found in the Raf (Rapidly Accelerated ...
269-313 8.19e-05

protein kinase C conserved region 1 (C1 domain) found in the Raf (Rapidly Accelerated Fibrosarcoma) kinase family; Raf kinases are serine/threonine kinases (STKs) that catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. They act as mitogen-activated protein kinase kinase kinases (MAP3Ks, MKKKs, MAPKKKs), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. Aberrant expression or activation of components in this pathway are associated with tumor initiation, progression, and metastasis. Raf proteins contain a Ras binding domain, a zinc finger cysteine-rich domain (C1), and a catalytic kinase domain. Vertebrates have three Raf isoforms (A-, B-, and C-Raf) with different expression profiles, modes of regulation, and abilities to function in the ERK cascade, depending on cellular context and stimuli. They have essential and non-overlapping roles during embryo- and organogenesis. Knockout of each isoform results in a lethal phenotype or abnormality in most mouse strains. This model describes the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410361  Cd Length: 49  Bit Score: 40.74  E-value: 8.19e-05
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMgvgkQGLCCIYCKYTVHQRCVSK 313
Cdd:cd20811   3 HNFVRKTFFTLAFCDVCRKLLF----QGFRCQTCGFKFHQRCSDQ 43
C1_MRCKbeta cd20865
protein kinase C conserved region 1 (C1 domain) found in myotonic dystrophy kinase-related ...
269-318 8.54e-05

protein kinase C conserved region 1 (C1 domain) found in myotonic dystrophy kinase-related Cdc42-binding kinase beta (MRCK beta) and similar proteins; MRCK beta, also called Cdc42-binding protein kinase beta (Cdc42BP-beta), DMPK-like beta, or myotonic dystrophy protein kinase-like beta, is a serine/threonine-protein kinase expressed ubiquitously in many tissues. MRCK beta is an important downstream effector of Cdc42 and plays a role in the regulation of cytoskeleton reorganization and cell migration. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410415  Cd Length: 53  Bit Score: 40.74  E-value: 8.54e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20865   1 HQLSIKSFSSPTQCSHCTSLMVGLVRQGYACEVCSFACHVSCKDSAPQVC 50
C1_1 pfam00130
Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the ...
334-383 9.28e-05

Phorbol esters/diacylglycerol binding domain (C1 domain); This domain is also known as the Protein kinase C conserved region 1 (C1) domain.


Pssm-ID: 395079  Cd Length: 53  Bit Score: 40.50  E-value: 9.28e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 20149724   334 HAWVEGN--SSVKCDRCHKSIKcYQSVTARHCVWCRMTFHRKCE--LSTVCDGG 383
Cdd:pfam00130   1 HHFVHRNfkQPTFCDHCGEFLW-GLGKQGLKCSWCKLNVHKRCHekVPPECGCD 53
EFh_CREC cd15899
EF-hand, calcium binding motif, found in CREC-EF hand family; The CREC (Cab45/reticulocalbin ...
176-243 1.04e-04

EF-hand, calcium binding motif, found in CREC-EF hand family; The CREC (Cab45/reticulocalbin/ERC45/calumenin)-EF hand family contains a group of six EF-hand, low-affinity Ca2+-binding proteins, including reticulocalbin (RCN-1), ER Ca2+-binding protein of 55 kDa (ERC-55, also known as TCBP-49 or E6BP), reticulocalbin-3 (RCN-3), Ca2+-binding protein of 45 kDa (Cab45 and its splice variant Cab45b), and calumenin ( also known as crocalbin or CBP-50). The proteins are not only localized in various parts of the secretory pathway, but also found in the cytosolic compartment and at the cell surface. They interact with different ligands or proteins and have been implicated in the secretory process, chaperone activity, signal transduction as well as in a large variety of disease processes.


Pssm-ID: 320021 [Multi-domain]  Cd Length: 267  Bit Score: 44.74  E-value: 1.04e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 20149724 176 KLEFMFRLYDSDENGLLDQAEMdqivSQMLHVAQYlewdPTELRPILKEMLQGMDYDKDGFVSLQEWI 243
Cdd:cd15899 124 KDKKRFEAADQDGDLILTLEEF----LAFLHPEES----PYMLDFVIKETLEDLDKNGDGFISLEEFI 183
PRK13055 PRK13055
putative lipid kinase; Reviewed
484-527 1.17e-04

putative lipid kinase; Reviewed


Pssm-ID: 237282 [Multi-domain]  Cd Length: 334  Bit Score: 44.98  E-value: 1.17e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....
gi 20149724  484 VLACGGDGTVGWILDCIdkANFTKHPPVAVLPLGTGNDLARCLR 527
Cdd:PRK13055  63 IIAAGGDGTINEVVNGI--APLEKRPKMAIIPAGTTNDYARALK 104
C1_DGKepsilon_typeIII_rpt2 cd20853
second protein kinase C conserved region 1 (C1 domain) found in type III diacylglycerol kinase, ...
334-392 1.19e-04

second protein kinase C conserved region 1 (C1 domain) found in type III diacylglycerol kinase, DAG kinase epsilon, and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase epsilon, also called diglyceride kinase epsilon (DGK-epsilon), is the only isoform classified as type III; it possesses a hydrophobic domain in addition to C1 and catalytic domains that are present in all DGKs, and shows selectivity for acyl chains. It is highly selective for arachidonate-containing species of DAG. It may terminate signals transmitted through arachidonoyl-DAG or may contribute to the synthesis of phospholipids with defined fatty acid composition. DAG kinase epsilon contains two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410403  Cd Length: 63  Bit Score: 40.72  E-value: 1.19e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 20149724 334 HAWVEGNSSV--KCDRCHKSIKCYQSVTARHCVWCRMTFHRKC--ELSTVCDGGELKDHILLP 392
Cdd:cd20853   1 HHWVRGNLPLcsVCCVCNEQCGNQPGLCDYRCCWCQRTVHDDClaKLPKECDLGAFRNFIVPP 63
C1_RASGRP cd20808
protein kinase C conserved region 1 (C1 domain) found in the RAS guanyl-releasing protein ...
276-310 1.31e-04

protein kinase C conserved region 1 (C1 domain) found in the RAS guanyl-releasing protein (RASGRP) family; The RASGRP family includes RASGRP1-4. They function as cation-, usually calcium-, and diacylglycerol (DAG)-regulated nucleotide exchange factor activating Ras through the exchange of bound GDP for GTP. RASGRP1, also called calcium and DAG-regulated guanine nucleotide exchange factor II (CalDAG-GEFII) or Ras guanyl-releasing protein, activates the Erk/MAP kinase cascade and regulates T-cell/B-cell development, homeostasis and differentiation by coupling T-lymphocyte/B-lymphocyte antigen receptors to Ras. RASGRP1 also regulates NK cell cytotoxicity and ITAM-dependent cytokine production by activation of Ras-mediated ERK and JNK pathways. RASGRP2, also called calcium and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), Cdc25-like protein (CDC25L), or F25B3.3 kinase-like protein, specifically activates Rap and may also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. RASGRP2 is involved in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation, as well as in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. RASGRP3, also called calcium and DAG-regulated guanine nucleotide exchange factor III (CalDAG-GEFIII), or guanine nucleotide exchange factor for Rap1, is a guanine nucleotide-exchange factor activating H-Ras, R-Ras and Ras-associated protein-1/2. It functions as an important mediator of signaling downstream from receptor coupled phosphoinositide turnover in B and T cells. RASGRP4 may function in mast cell differentiation. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410358  Cd Length: 52  Bit Score: 40.40  E-value: 1.31e-04
                        10        20        30
                ....*....|....*....|....*....|....*
gi 20149724 276 FKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRC 310
Cdd:cd20808   9 YFKPTFCDHCTGLLWGLIKQGYKCKDCGINCHKHC 43
C1_Munc13 cd20807
protein kinase C conserved region 1 (C1 domain) found in the Munc13 family; The Munc13 gene ...
269-310 1.44e-04

protein kinase C conserved region 1 (C1 domain) found in the Munc13 family; The Munc13 gene family encodes a family of neuron-specific, synaptic molecules that bind to syntaxin, an essential mediator of neurotransmitter release. Munc13-1 is a component of presynaptic active zones in which it acts as an essential synaptic vesicle priming protein. Munc13-2 is essential for normal release probability at hippocampal mossy fiber synapses. Munc13-3 is almost exclusively expressed in the cerebellum. It acts as a tumor suppressor and plays a critical role in the formation of release sites with calcium channel nanodomains. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410357  Cd Length: 53  Bit Score: 40.15  E-value: 1.44e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|..
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRC 310
Cdd:cd20807   1 HNFEVWTATTPTYCYECEGLLWGIARQGVRCTECGVKCHEKC 42
FRQ1 COG5126
Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms];
173-241 1.53e-04

Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms];


Pssm-ID: 444056 [Multi-domain]  Cd Length: 137  Bit Score: 42.47  E-value: 1.53e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 173 PQDKLEFMFRLYDSDENGLLDQAEMDQIVSQMLH-------------------VAQYLEWDPTELRPILKEMLQGMDYDK 233
Cdd:COG5126   3 QRRKLDRRFDLLDADGDGVLERDDFEALFRRLWAtlfseadtdgdgrisreefVAGMESLFEATVEPFARAAFDLLDTDG 82

                ....*...
gi 20149724 234 DGFVSLQE 241
Cdd:COG5126  83 DGKISADE 90
C1_TNS2 cd20887
protein kinase C conserved region 1 (C1 domain) found in tensin-2 and similar proteins; ...
268-318 1.76e-04

protein kinase C conserved region 1 (C1 domain) found in tensin-2 and similar proteins; Tensin-2 (TNS2), also called C1 domain-containing phosphatase and tensin (C1-TEN), or tensin-like C1 domain-containing phosphatase (TENC1), is an essential component for the maintenance of glomerular basement membrane (GBM) structures. It regulates cell motility and proliferation. It may have phosphatase activity. TNS2 reduces AKT1 phosphorylation, lowers AKT1 kinase activity, and interferes with AKT1 signaling. It contains an N-terminal region with a zinc finger (C1 domain), a protein tyrosine phosphatase (PTP)-like domain and a protein kinase 2 (C2) domain, and a C-terminal region with SH2 and pTyr binding (PTB) domains. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410437  Cd Length: 53  Bit Score: 39.76  E-value: 1.76e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 268 RHAWTLKHFKKPTYCNFCRAmlmGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20887   2 PHSFKEKTFKKKRACAVCRE---PVGGQGLVCRVCKVASHKKCEAKVTSAC 49
PRK13054 PRK13054
lipid kinase; Reviewed
483-524 2.02e-04

lipid kinase; Reviewed


Pssm-ID: 237281 [Multi-domain]  Cd Length: 300  Bit Score: 44.09  E-value: 2.02e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|..
gi 20149724  483 RVLACGGDGTVGWILDCIDKANFTKHPPVAVLPLGTGNDLAR 524
Cdd:PRK13054  59 TVIAGGGDGTINEVATALAQLEGDARPALGILPLGTANDFAT 100
C1_DGKtheta_typeV_rpt2 cd20804
second protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, ...
269-321 2.61e-04

second protein kinase C conserved region 1 (C1 domain) found in type V diacylglycerol kinase, DAG kinase theta, and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase theta, also called diglyceride kinase theta (DGK-theta), is the only isoform classified as type V; it contains a pleckstrin homology (PH)-like domain and an additional C1 domain, compared to other DGKs. It may regulate the activity of protein kinase C by controlling the balance between the two signaling lipids, diacylglycerol and phosphatidic acid. DAG kinase theta contains three copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410354  Cd Length: 57  Bit Score: 39.59  E-value: 2.61e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGvgKQGLCCIYCKYTVHQRCVSKTIHGCVKT 321
Cdd:cd20804   6 HCWSEPGHSKRKFCNVCRKRLED--SPAFRCEVCEYYVHSDCQDFAVSDCREC 56
C1_Munc13-1 cd20858
protein kinase C conserved region 1 (C1 domain) found in Munc13-1 and similar proteins; ...
279-310 3.02e-04

protein kinase C conserved region 1 (C1 domain) found in Munc13-1 and similar proteins; Munc13-1, also called protein unc-13 homolog A (Unc13A), is a diacylglycerol (DAG) receptor that plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. It is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-dependent refilling of readily releasable vesicle pool (RRP). Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410408  Cd Length: 60  Bit Score: 39.69  E-value: 3.02e-04
                        10        20        30
                ....*....|....*....|....*....|..
gi 20149724 279 PTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRC 310
Cdd:cd20858  18 PTYCYECEGLLWGIARQGMRCTECGVKCHEKC 49
EFh_CREC_RCN2_like cd16227
EF-hand, calcium binding motif, found in reticulocalbin-2 (RCN2) mainly from protostomes; This ...
165-243 3.37e-04

EF-hand, calcium binding motif, found in reticulocalbin-2 (RCN2) mainly from protostomes; This family corresponds to a group of uncharacterized RCN2-like proteins, which are mainly found in protostomes. Although their biological function remains unclear, they show high sequence similarity with RCN2 (also known as E6BP or TCBP-49), which is an endoplasmic reticulum resident low-affinity Ca2+-binding protein that has been implicated in immunity, redox homeostasis, cell cycle regulation and coagulation. Members in this family contain six copies of the EF-hand Ca2+-binding motif, but may lack a C-terminal His-Asp-Glu-Leu (HDEL) tetrapeptide that is required for retention of RCN2 in the endoplasmic reticulum (ER).


Pssm-ID: 320025 [Multi-domain]  Cd Length: 263  Bit Score: 43.07  E-value: 3.37e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 20149724 165 LSLMEtgrpQDKLefMFRLYDSDENGLLDQAEMdqivSQMLHVAQYLEWDPTELRPILKEMlqgmDYDKDGFVSLQEWI 243
Cdd:cd16227 118 LKLLE----DDKE--MFEAADLNKDGKLDKTEF----SAFQHPEEYPHMHPVLIEQTLRDK----DKDNDGFISFQEFL 182
C1_TNS1_v cd20888
protein kinase C conserved region 1 (C1 domain) found in tensin-1 (TNS1) variant and similar ...
269-319 3.52e-04

protein kinase C conserved region 1 (C1 domain) found in tensin-1 (TNS1) variant and similar proteins; Tensin-1 (TNS1) plays a role in fibrillar adhesion formation. It may be involved in cell migration, cartilage development and in linking signal transduction pathways to the cytoskeleton. This model corresponds to the C1 domain found in TNS1 variant. Typical TNS1 does not contain C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410438  Cd Length: 57  Bit Score: 39.08  E-value: 3.52e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 269 HAWTLKHFKKPTYCNFCRamlMGVGKQGLCCIYCKYTVHQRCVSKTIHGCV 319
Cdd:cd20888   6 HTFKVKTFKKVKSCGICK---QAITREGSTCRVCKLSCHKKCEAKVATPCV 53
C1_Stac3 cd20882
protein kinase C conserved region 1 (C1 domain) found in SH3 and cysteine-rich ...
266-312 4.34e-04

protein kinase C conserved region 1 (C1 domain) found in SH3 and cysteine-rich domain-containing protein 3 (Stac3) and similar proteins; Stac3 is an essential component of the skeletal muscle excitation-contraction coupling (ECC) machinery. It is required for normal excitation-contraction coupling in skeletal muscle and for normal muscle contraction in response to membrane depolarization. It plays an essential role for normal Ca2+ release from the sarcplasmic reticulum, which ultimately leads to muscle contraction. Stac3 contains a cysteine-rich C1 domain and two SH3 domains at the C-terminus. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410432  Cd Length: 59  Bit Score: 39.17  E-value: 4.34e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*..
gi 20149724 266 DGRHAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVS 312
Cdd:cd20882   3 DKPHKFKDHYFKKPKFCDVCARMIVLNNKFGLRCKNCKTNIHHHCQS 49
FRQ1 COG5126
Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms];
161-245 5.10e-04

Ca2+-binding protein, EF-hand superfamily [Signal transduction mechanisms];


Pssm-ID: 444056 [Multi-domain]  Cd Length: 137  Bit Score: 40.93  E-value: 5.10e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 20149724 161 VVCYLSLMETGRPQDkLEFMFRLYDSDENGLLDQAEMdqivsqmlhvAQYLE-WDPTElrPILKEMLQGMDYDKDGFVSL 239
Cdd:COG5126  56 VAGMESLFEATVEPF-ARAAFDLLDTDGDGKISADEF----------RRLLTaLGVSE--EEADELFARLDTDGDGKISF 122

                ....*.
gi 20149724 240 QEWING 245
Cdd:COG5126 123 EEFVAA 128
C1_RASGRP2 cd20861
protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 2 ...
269-310 5.40e-04

protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 2 (RASGRP2) and similar proteins; RASGRP2, also called calcium and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), Cdc25-like protein (CDC25L), or F25B3.3 kinase-like protein, functions as a calcium- and DAG-regulated nucleotide exchange factor specifically activating Rap through the exchange of bound GDP for GTP. It may also activate other GTPases such as RRAS, RRAS2, NRAS, KRAS but not HRAS. RASGRP2 is also involved in aggregation of platelets and adhesion of T-lymphocytes and neutrophils probably through inside-out integrin activation, as well as in the muscarinic acetylcholine receptor M1/CHRM1 signaling pathway. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410411  Cd Length: 56  Bit Score: 38.71  E-value: 5.40e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|..
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRC 310
Cdd:cd20861   4 HNFAERTFLRPVACRHCKNLILGIYKQGLKCRACGVNCHKQC 45
C1_B-Raf cd20871
protein kinase C conserved region 1 (C1 domain) found in B-Raf (Rapidly Accelerated ...
269-322 6.08e-04

protein kinase C conserved region 1 (C1 domain) found in B-Raf (Rapidly Accelerated Fibrosarcoma) kinase and similar proteins; Serine/threonine-protein kinase B-Raf, also called proto-oncogene B-Raf, p94, or v-Raf murine sarcoma viral oncogene homolog B1, activates ERK with the strongest magnitude, compared with other Raf kinases. Mice embryos deficient in B-Raf die around midgestation due to vascular hemorrhage caused by apoptotic endothelial cells. Mutations in B-Raf have been implicated in initiating tumorigenesis and tumor progression, and are found in malignant cutaneous melanoma, papillary thyroid cancer, as well as in ovarian and colorectal carcinomas. Most oncogenic B-Raf mutations are located at the activation loop of the kinase and surrounding regions; the V600E mutation accounts for around 90% of oncogenic mutations. The V600E mutant constitutively activates MEK, resulting in sustained activation of ERK. B-Raf is a mitogen-activated protein kinase kinase kinase (MAP3K, MKKK, MAPKKK), which phosphorylates and activates MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. Raf proteins contain a Ras binding domain, a zinc finger cysteine-rich domain (C1), and a catalytic kinase domain. This model describes the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410421  Cd Length: 60  Bit Score: 38.47  E-value: 6.08e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMgvgkQGLCCIYCKYTVHQRCVSKTIHGCVKTN 322
Cdd:cd20871   6 HNFVRKTFFTLAFCDFCRKLLF----QGFRCQTCGYKFHQRCSTEVPLMCVNYD 55
C1_MgcRacGAP cd20821
protein kinase C conserved region 1 (C1 domain) found in male germ cell RacGap (MgcRacGAP) and ...
269-322 1.83e-03

protein kinase C conserved region 1 (C1 domain) found in male germ cell RacGap (MgcRacGAP) and similar proteins; MgcRacGAP, also called Rac GTPase-activating protein 1 (RACGAP1) or protein CYK4, plays an important dual role in cytokinesis: i) it is part of centralspindlin-complex, together with the mitotic kinesin MKLP1, which is critical for the structure of the central spindle by promoting microtuble bundling; and ii) after phosphorylation by aurora B, MgcRacGAP becomes an effective regulator of RhoA and plays an important role in the assembly of the contractile ring and the initiation of cytokinesis. MgcRacGAP-like proteins contain an N-terminal C1 domain, and a C-terminal RhoGAP domain. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410371  Cd Length: 55  Bit Score: 37.00  E-value: 1.83e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 20149724 269 HAWTLKHFKKPTYCNFCrAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVKTN 322
Cdd:cd20821   3 HRFVSKTVIKPETCVVC-GKRIKFGKKALKCKDCRVVCHPDCKDKLPLPCVPTS 55
EFh_HEF_CBN cd16179
EF-hand, calcium binding motif, found in Drosophila melanogaster calbindin-32 (CBN) and ...
177-241 1.90e-03

EF-hand, calcium binding motif, found in Drosophila melanogaster calbindin-32 (CBN) and similar proteins; CBN, the product of the cbn gene, is a Drosophila homolog to vertebrate neuronal six EF-hand calcium binding proteins. It is expressed through most of ontogenesis with a selective distribution in the nervous system and in a few small adult thoracic muscles. Its precise biological role remains unclear. CBN contains six EF-hand motifs, but some of them may not bind calcium ions due to the lack of key residues.


Pssm-ID: 320079 [Multi-domain]  Cd Length: 261  Bit Score: 40.86  E-value: 1.90e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20149724 177 LEFMFRLYDSDENGLLDQAEMDQIVSQMLHVAQYlEWDPTELRPILKEMLQGMDYDKDGFVSLQE 241
Cdd:cd16179 190 IDRVFALYDRDNNGTIENEELTGFLKDLLELVQE-DYDEQDLEEFKEIILRGWDFNNDGKISRKE 253
C1_RASGRP1 cd20860
protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 1 ...
269-320 2.07e-03

protein kinase C conserved region 1 (C1 domain) found in RAS guanyl-releasing protein 1 (RASGRP1) and similar proteins; RASGRP1, also called calcium and DAG-regulated guanine nucleotide exchange factor II (CalDAG-GEFII) or Ras guanyl-releasing protein, functions as a calcium- and diacylglycerol (DAG)-regulated nucleotide exchange factor specifically activating Ras through the exchange of bound GDP for GTP. It activates the Erk/MAP kinase cascade and regulates T-cell/B-cell development, homeostasis and differentiation by coupling T-lymphocyte/B-lymphocyte antigen receptors to Ras. RASGRP1 also regulates NK cell cytotoxicity and ITAM-dependent cytokine production by activation of Ras-mediated ERK and JNK pathways. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410410  Cd Length: 55  Bit Score: 36.83  E-value: 2.07e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|..
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGCVK 320
Cdd:cd20860   3 HNFQETTYLKPTFCDNCAGFLWGVIKQGYRCKDCGMNCHKQCKDLVVFECKK 54
C1_PIK3R-like_rpt2 cd20830
second protein kinase C conserved region 1 (C1 domain) found in uncharacterized ...
269-311 2.28e-03

second protein kinase C conserved region 1 (C1 domain) found in uncharacterized phosphatidylinositol 3-kinase regulatory subunit-like proteins; The family includes a group of uncharacterized proteins that show high sequence similarity to vertebrate phosphatidylinositol 3-kinase regulatory subunits (PIK3Rs), which bind to activated (phosphorylated) protein-tyrosine kinases through its SH2 domain and regulate their kinase activity. Unlike typical PIK3Rs, members of this family have two C1 domains. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410380  Cd Length: 52  Bit Score: 36.84  E-value: 2.28e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|...
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCV 311
Cdd:cd20830   1 HRFVEQSFSTLQWCDKCGKFLFGLVHQGLQCQDCGLVCHRTCA 43
C1 cd00029
protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich ...
334-374 2.42e-03

protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains. It contains the motif HX12CX2CXnCX2CX4HX2CX7C, where C and H are cysteine and histidine, respectively; X represents other residues; and n is either 13 or 14. C1 has a globular fold with two separate Zn(2+)-binding sites. It was originally discovered as lipid-binding modules in protein kinase C (PKC) isoforms. C1 domains that bind and respond to phorbol esters (PE) and diacylglycerol (DAG) are referred to as typical, and those that do not respond to PE and DAG are deemed atypical. A C1 domain may also be referred to as PKC or non-PKC C1, based on the parent protein's activity. Most C1 domain-containing non-PKC proteins act as lipid kinases and scaffolds, except PKD which acts as a protein kinase. PKC C1 domains play roles in membrane translocation and activation of the enzyme.


Pssm-ID: 410341  Cd Length: 50  Bit Score: 36.73  E-value: 2.42e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|...
gi 20149724 334 HAWVEGN--SSVKCDRCHKSIKcYQSVTARHCVWCRMTFHRKC 374
Cdd:cd00029   1 HRFVPTTfsSPTFCDVCGKLIW-GLFKQGLKCSDCGLVCHKKC 42
C1_VAV2 cd20868
protein kinase C conserved region 1 (C1 domain) found in VAV2 protein; VAV2 is widely ...
269-321 2.54e-03

protein kinase C conserved region 1 (C1 domain) found in VAV2 protein; VAV2 is widely expressed and functions as a guanine nucleotide exchange factor (GEF) for RhoA, RhoB and RhoG and also activates Rac1 and Cdc42. It is implicated in many cellular and physiological functions including blood pressure control, eye development, neurite outgrowth and branching, EGFR endocytosis and degradation, and cell cluster morphology, among others. It has been reported to associate with Nek3. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410418  Cd Length: 58  Bit Score: 36.78  E-value: 2.54e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVsKTIHGCVKT 321
Cdd:cd20868   6 HNFQMYTFDKTTNCKACKMLLRGTFYQGYYCSKCGAGAHKECL-EVIPPCKIG 57
C1_DGKeta_rpt2 cd20894
second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG ...
329-374 2.75e-03

second protein kinase C conserved region 1 (C1 domain) found in diacylglycerol kinase eta (DAG kinase eta) and similar proteins; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. DAG kinase eta, also called diglyceride kinase eta (DGK-eta), plays a key role in promoting cell growth. It is classified as a type II DAG kinase (DGK), containing pleckstrin homology (PH) and sterile alpha motifs (SAM) domains, in addition to C1 and catalytic domains that are present in all DGKs. The SAM domain mediates oligomerization of type II DGKs. The diacylglycerol kinase eta gene, DGKH, is a replicated risk gene of bipolar disorder (BPD). DAG kinase eta contains two copies of the C1 domain. This model corresponds to the second one. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410444  Cd Length: 62  Bit Score: 36.80  E-value: 2.75e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*...
gi 20149724 329 GEVMQHAWVEGN--SSVKCDRCHKSIKCYQSVTARHCVWCRMTFHRKC 374
Cdd:cd20894   1 GIAMPHQWLEGNlpVSAKCSVCDKTCGSVLRLQDWRCLWCKAMVHTAC 48
C1_KSR cd20812
protein kinase C conserved region 1 (C1 domain) found in the kinase suppressor of Ras (KSR) ...
274-318 3.34e-03

protein kinase C conserved region 1 (C1 domain) found in the kinase suppressor of Ras (KSR) family; KSR is a scaffold protein that functions downstream of Ras and upstream of Raf in the Extracellular signal-Regulated Kinase (ERK) pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. KSR proteins regulate the assembly and activation of the Raf/MEK/ERK module upon Ras activation at the membrane by direct association of its components. They are widely regarded as pseudokinases, but there is some debate in this designation as a few groups have reported detecting kinase catalytic activity for KSRs, specifically KSR1. Vertebrates contain two KSR proteins, KSR1 and KSR2. KSR proteins contain a SAM-like domain, a zinc finger cysteine-rich domain (C1), and a pseudokinase domain. This model describes the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410362  Cd Length: 48  Bit Score: 36.15  E-value: 3.34e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*
gi 20149724 274 KHFKKPTYCNFCRAMLMGvgkqGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20812   7 KKLFMRQTCDYCHKQMFF----GLKCKDCKYKCHKKCAKKAPPSC 47
C1_Munc13-2-like cd20859
protein kinase C conserved region 1 (C1 domain) found in Munc13-2, Munc13-3 and similar ...
279-310 3.97e-03

protein kinase C conserved region 1 (C1 domain) found in Munc13-2, Munc13-3 and similar proteins; Munc13-2, also called protein unc-13 homolog B (Unc13B), plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. It is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-dependent refilling of readily releasable vesicle pool (RRP). Munc13-2 is essential for normal release probability at hippocampal mossy fiber synapses. Munc13-3 is almost exclusively expressed in the cerebellum. It acts as a tumor suppressor and plays a critical role in the formation of release sites with calcium channel nanodomains. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410409  Cd Length: 82  Bit Score: 36.97  E-value: 3.97e-03
                        10        20        30
                ....*....|....*....|....*....|..
gi 20149724 279 PTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRC 310
Cdd:cd20859  30 PTYCYECEGLLWGIARQGMRCSECGVKCHEKC 61
PRK13057 PRK13057
lipid kinase;
483-527 5.23e-03

lipid kinase;


Pssm-ID: 183857 [Multi-domain]  Cd Length: 287  Bit Score: 39.52  E-value: 5.23e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*
gi 20149724  483 RVLACGGDGTVGWILDCIDKANFtkhpPVAVLPLGTGNDLARCLR 527
Cdd:PRK13057  53 LVIVGGGDGTLNAAAPALVETGL----PLGILPLGTANDLARTLG 93
EFh_HEF cd15902
EF-hand, calcium binding motif, found in the hexa-EF hand proteins family; The hexa-EF hand ...
179-241 6.68e-03

EF-hand, calcium binding motif, found in the hexa-EF hand proteins family; The hexa-EF hand proteins family, also named the calbindin sub-family, contains a group of six EF-hand Ca2+-binding proteins, including calretinin (CR, also termed 29 kDa calbindin), calbindin D28K (CB, also termed vitamin D-dependent calcium-binding protein, avian-type), and secretagogin (SCGN). CR is a cytosolic hexa-EF-hand calcium-binding protein predominantly expressed in a variety of normal and tumorigenic t-specific neurons of the central and peripheral nervous system. It is a multifunctional protein implicated in many biological processes, including cell proliferation, differentiation, and cell death. CB is highly expressed in brain tissue. It is a strong calcium-binding and buffering protein responsible for preventing a neuronal death as well as maintaining and controlling calcium homeostasis. SCGN is a six EF-hand calcium-binding protein expressed in neuroendocrine, pancreatic endocrine and retinal cells. It plays a crucial role in cell apoptosis, receptor signaling and differentiation. It is also involved in vesicle secretion through binding to various proteins, including interacts with SNAP25, SNAP23, DOC2alpha, ARFGAP2, rootletin, KIF5B, beta-tubulin, DDAH-2, ATP-synthase and myeloid leukemia factor 2. SCGN functions as a Ca2+ sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Although the family members share a significant amount of secondary sequence homology, they display altered structural and biochemical characteristics, and operate in distinct fashions. CB contains six EF-hand motifs in a single globular domain, where EF-hands 1, 3, 4, 5 bind four calcium ions. CR contains six EF-hand motifs within two independent domains, CR I-II and CR III-VI. They harbor two and four EF-hand motifs, respectively. The first 5 EF-hand motifs are capable of binding calcium ions, while the EF-hand 6 is inactive. SCGN consists of the three globular domains each of which contains a pair of EF-hand motifs. Human SCGN simultaneously binds four calcium ions through its EF-hands 3, 4, 5 and 6 in one high affinity and three low affinity calcium-binding sites. In contrast, SCGNs in other lower eukaryotes, such as D. rerio, X. laevis, M. domestica, G. gallus, O. anatinus, are fully competent in terms of six calcium-binding.


Pssm-ID: 320075 [Multi-domain]  Cd Length: 254  Bit Score: 39.26  E-value: 6.68e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 20149724 179 FM--FRLYDSDENGLLDQAEMDQIVSQMLHVAQYLEWDPTELRPILKEMLQGMDYDKDGFVSLQE 241
Cdd:cd15902   1 FMevWMHFDADGNGYIEGKELDSFLRELLKALNGKDKTDDEVAEKKKEFMEKYDENEDGKIEIRE 65
C1_A_C-Raf cd20870
protein kinase C conserved region 1 (C1 domain) found in A- and C-Raf (Rapidly Accelerated ...
269-319 6.86e-03

protein kinase C conserved region 1 (C1 domain) found in A- and C-Raf (Rapidly Accelerated Fibrosarcoma) kinases, and similar proteins; This group includes A-Raf and C-Raf, both of which are serine/threonine-protein kinases. A-Raf, also called proto-oncogene A-Raf or proto-oncogene A-Raf-1, cooperates with C-Raf in regulating ERK transient phosphorylation that is associated with cyclin D expression and cell cycle progression. Mice deficient in A-Raf are born alive but show neurological and intestinal defects. A-Raf demonstrates low kinase activity to MEK, compared with B- and C-Raf, and may also have alternative functions other than in the ERK signaling cascade. It regulates the M2 type pyruvate kinase, a key glycolytic enzyme. It also plays a role in endocytic membrane trafficking. C-Raf, also known as proto-oncogene Raf-1 or c-Raf-1, is ubiquitously expressed and was the first Raf identified. It was characterized as the acquired oncogene from an acutely transforming murine sarcoma virus (3611-MSV) and the transforming agent from the avian retrovirus MH2. C-Raf-deficient mice embryos die around mid-gestation with increased apoptosis of embryonic tissues, especially in the fetal liver. One of the main functions of C-Raf is restricting caspase activation to promote survival in response to specific stimuli such as Fas stimulation, macrophage apoptosis, and erythroid differentiation. Both A- and C-Raf are mitogen-activated protein kinase kinase kinases (MAP3K, MKKK, MAPKKK), which phosphorylate and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate and activate MAPKs during signaling cascades that are important in mediating cellular responses to extracellular signals. They function in the linear Ras-Raf-MEK-ERK pathway that regulates many cellular processes including cycle regulation, proliferation, differentiation, survival, and apoptosis. Raf proteins contain a Ras binding domain, a zinc finger cysteine-rich domain (C1), and a catalytic kinase domain. This model describes the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410420  Cd Length: 52  Bit Score: 35.32  E-value: 6.86e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMgvgkQGLCCIYCKYTVHQRCVSKTIHGCV 319
Cdd:cd20870   4 HNFVRKTFLKLAFCDICQKFLL----NGFRCQTCGYKFHEHCSTKVPTMCV 50
C1_VAV3 cd20869
protein kinase C conserved region 1 (C1 domain) found in VAV3 protein; VAV3 is ubiquitously ...
269-313 6.91e-03

protein kinase C conserved region 1 (C1 domain) found in VAV3 protein; VAV3 is ubiquitously expressed and functions as a phosphorylation-dependent guanine nucleotide exchange factor (GEF) for RhoA, RhoG, and Rac1. Its function has been implicated in the hematopoietic, bone, cerebellar, and cardiovascular systems. VAV3 is essential in axon guidance in neurons that control blood pressure and respiration. It is overexpressed in prostate cancer cells and plays a role in regulating androgen receptor transcriptional activity. VAV proteins contain several domains that enable their function: N-terminal calponin homology (CH), acidic, RhoGEF (also called Dbl-homologous or DH), Pleckstrin Homology (PH), C1 (zinc finger), SH2, and two SH3 domains. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410419  Cd Length: 59  Bit Score: 35.57  E-value: 6.91e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSK 313
Cdd:cd20869   9 HDFKMHTFERVTSCKVCQMLLRGTFYQGYLCSKCGAGAHKECLGR 53
C1_alphaCHN cd20856
protein kinase C conserved region 1 (C1 domain) found in alpha-chimaerin and similar proteins; ...
269-318 7.19e-03

protein kinase C conserved region 1 (C1 domain) found in alpha-chimaerin and similar proteins; Alpha-chimaerin, also called A-chimaerin, N-chimaerin (CHN), alpha-chimerin, N-chimerin (NC), or Rho GTPase-activating protein 2 (ARHGAP2), is a GTPase-activating protein (GAP) for p21-rac and a phorbol ester receptor. It is involved in the assembly of neuronal locomotor circuits as a direct effector of EPHA4 in axon guidance. Alpha-chimaerin contains a functional SH2 domain that can bind to phosphotyrosine motifs within receptors, a GAP domain with specificity in vitro for Rac1 and a diacylglycerol (DAG)-binding C1 domain which allows them to translocate to membranes in response to DAG signaling and anchors them in close proximity to activated Rac. This model corresponds to the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410406  Cd Length: 57  Bit Score: 35.43  E-value: 7.19e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 20149724 269 HAWTLKHFKKPTYCNFCRAMLMGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20856   6 HNFKVHTFRGPHWCEYCANFMWGLIAQGVKCADCGLNVHKQCSKMVPNDC 55
C1_DGK_typeI_like_rpt2 cd20851
second protein kinase C conserved region 1 (C1 domain) found in type I diacylglycerol kinases; ...
279-318 8.04e-03

second protein kinase C conserved region 1 (C1 domain) found in type I diacylglycerol kinases; Diacylglycerol (DAG) kinase (EC 2.7.1.107) is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid. Type I DAG kinases (DGKs) contain EF-hand structures that bind Ca(2+) and recoverin homology domains, in addition to C1 and catalytic domains that are present in all DGKs. Type I DGKs, regulated by calcium binding, include three DGK isozymes (alpha, beta and gamma). DAG kinase alpha, also called 80 kDa DAG kinase, or diglyceride kinase alpha (DGK-alpha), is active upon cell stimulation, initiating the resynthesis of phosphatidylinositols and attenuating protein kinase C activity. DAG kinase beta, also called 90 kDa DAG kinase, or diglyceride kinase beta (DGK-beta), exhibits high phosphorylation activity for long-chain diacylglycerols. DAG kinase gamma, also called diglyceride kinase gamma (DGK-gamma), reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid. Members of this family contain two copies of the C1 domain. This model corresponds to the second one. DGK-alpha contains atypical C1 domains, while DGK-beta and DGK-gamma contain typical C1 domains that bind DAG and phorbol esters. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites.


Pssm-ID: 410401  Cd Length: 52  Bit Score: 35.02  E-value: 8.04e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|.
gi 20149724 279 PTYCNFCRAML-MGVGKQGLCCIYCKYTVHQRCVSKTIHGC 318
Cdd:cd20851   9 PGKCDKCHKSIkSYQGLTGLHCVWCHITLHNKCASHVKPEC 49
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH