Deoxycytidylate deaminase domain. Deoxycytidylate deaminase catalyzes the deamination of dCMP ...
29-164
5.93e-59
Deoxycytidylate deaminase domain. Deoxycytidylate deaminase catalyzes the deamination of dCMP to dUMP, providing the nucleotide substrate for thymidylate synthase. The enzyme binds Zn++, which is required for catalytic activity. The activity of the enzyme is allosterically regulated by the ratio of dCTP to dTTP not only in eukaryotic cells but also in T-even phage-infected Escherichia coli, with dCTP acting as an activator and dTTP as an inhibitor.
Pssm-ID: 238613 [Multi-domain] Cd Length: 131 Bit Score: 181.32 E-value: 5.93e-59
anti-phage dCTP deaminase; It has been shown that proteins of this family prevented bacteria ...
32-146
1.24e-17
anti-phage dCTP deaminase; It has been shown that proteins of this family prevented bacteria from phage infections by depleting deoxycytidine triphosphate (dCTP), which are important for the replication of viruses. The anti-phage dCTP deaminases have an N-terminal kinase and a C-terminal dCTP deaminase domains, however, the housekeeping dCTP deaminases usually do not have the N-terminal kinase.
Pssm-ID: 468954 [Multi-domain] Cd Length: 435 Bit Score: 79.91 E-value: 1.24e-17
Deoxycytidylate deaminase domain. Deoxycytidylate deaminase catalyzes the deamination of dCMP ...
29-164
5.93e-59
Deoxycytidylate deaminase domain. Deoxycytidylate deaminase catalyzes the deamination of dCMP to dUMP, providing the nucleotide substrate for thymidylate synthase. The enzyme binds Zn++, which is required for catalytic activity. The activity of the enzyme is allosterically regulated by the ratio of dCTP to dTTP not only in eukaryotic cells but also in T-even phage-infected Escherichia coli, with dCTP acting as an activator and dTTP as an inhibitor.
Pssm-ID: 238613 [Multi-domain] Cd Length: 131 Bit Score: 181.32 E-value: 5.93e-59
Cytidine and deoxycytidylate deaminase zinc-binding region. The family contains cytidine ...
30-148
1.69e-20
Cytidine and deoxycytidylate deaminase zinc-binding region. The family contains cytidine deaminases, nucleoside deaminases, deoxycytidylate deaminases and riboflavin deaminases. Also included are the apoBec family of mRNA editing enzymes. All members are Zn dependent. The zinc ion in the active site plays a central role in the proposed catalytic mechanism, activating a water molecule to form a hydroxide ion that performs a nucleophilic attack on the substrate.
Pssm-ID: 238406 [Multi-domain] Cd Length: 96 Bit Score: 81.83 E-value: 1.69e-20
anti-phage dCTP deaminase; It has been shown that proteins of this family prevented bacteria ...
32-146
1.24e-17
anti-phage dCTP deaminase; It has been shown that proteins of this family prevented bacteria from phage infections by depleting deoxycytidine triphosphate (dCTP), which are important for the replication of viruses. The anti-phage dCTP deaminases have an N-terminal kinase and a C-terminal dCTP deaminase domains, however, the housekeeping dCTP deaminases usually do not have the N-terminal kinase.
Pssm-ID: 468954 [Multi-domain] Cd Length: 435 Bit Score: 79.91 E-value: 1.24e-17
Riboflavin-specific deaminase. Riboflavin biosynthesis protein RibD ...
33-145
1.72e-09
Riboflavin-specific deaminase. Riboflavin biosynthesis protein RibD (Diaminohydroxyphosphoribosylaminopyrimidine deaminase) catalyzes the deamination of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate, which is an intermediate step in the biosynthesis of riboflavin.The ribG gene of Bacillus subtilis and the ribD gene of E. coli are bifunctional and contain this deaminase domain and a reductase domain which catalyzes the subsequent reduction of the ribosyl side chain.
Pssm-ID: 238611 [Multi-domain] Cd Length: 115 Bit Score: 53.39 E-value: 1.72e-09
Nucleoside deaminases include adenosine, guanine and cytosine deaminases. These enzymes are Zn ...
33-146
1.27e-08
Nucleoside deaminases include adenosine, guanine and cytosine deaminases. These enzymes are Zn dependent and catalyze the deamination of nucleosides. The zinc ion in the active site plays a central role in the proposed catalytic mechanism, activating a water molecule to form a hydroxide ion that performs a nucleophilic attack on the substrate. The functional enzyme is a homodimer. Cytosine deaminase catalyzes the deamination of cytosine to uracil and ammonia and is a member of the pyrimidine salvage pathway. Cytosine deaminase is found in bacteria and fungi but is not present in mammals; for this reason, the enzyme is currently of interest for antimicrobial drug design and gene therapy applications against tumors. Some members of this family are tRNA-specific adenosine deaminases that generate inosine at the first position of their anticodon (position 34) of specific tRNAs; this modification is thought to enlarge the codon recognition capacity during protein synthesis. Other members of the family are guanine deaminases which deaminate guanine to xanthine as part of the utilization of guanine as a nitrogen source.
Pssm-ID: 238612 [Multi-domain] Cd Length: 109 Bit Score: 50.69 E-value: 1.27e-08
MafB19-like deaminase; A member of the nucleic acid/nucleotide deaminase superfamily ...
28-173
1.66e-07
MafB19-like deaminase; A member of the nucleic acid/nucleotide deaminase superfamily prototyped by Neisseria MafB19. Members of this family are present in a wide phyletic range of bacteria and are predicted to function as toxins in bacterial polymorphic toxin systems.
Pssm-ID: 433953 [Multi-domain] Cd Length: 144 Bit Score: 48.67 E-value: 1.66e-07
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options