PLAC8 family protein [Arabidopsis thaliana]
List of domain hits
Name | Accession | Description | Interval | E-value | ||
Atrophin-1 super family | cl38111 | Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ... |
190-232 | 3.86e-04 | ||
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity. The actual alignment was detected with superfamily member pfam03154: Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 41.29 E-value: 3.86e-04
|
||||||
Name | Accession | Description | Interval | E-value | ||
Atrophin-1 | pfam03154 | Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ... |
190-232 | 3.86e-04 | ||
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity. Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 41.29 E-value: 3.86e-04
|
||||||
Amelogenin | smart00818 | Amelogenins, cell adhesion proteins, play a role in the biomineralisation of teeth; They seem ... |
183-230 | 9.73e-03 | ||
Amelogenins, cell adhesion proteins, play a role in the biomineralisation of teeth; They seem to regulate formation of crystallites during the secretory stage of tooth enamel development and are thought to play a major role in the structural organisation and mineralisation of developing enamel. The extracellular matrix of the developing enamel comprises two major classes of protein: the hydrophobic amelogenins and the acidic enamelins. Circular dichroism studies of porcine amelogenin have shown that the protein consists of 3 discrete folding units: the N-terminal region appears to contain beta-strand structures, while the C-terminal region displays characteristics of a random coil conformation. Subsequent studies on the bovine protein have indicated the amelogenin structure to contain a repetitive beta-turn segment and a "beta-spiral" between Gln112 and Leu138, which sequester a (Pro, Leu, Gln) rich region. The beta-spiral offers a probable site for interactions with Ca2+ ions. Muatations in the human amelogenin gene (AMGX) cause X-linked hypoplastic amelogenesis imperfecta, a disease characterised by defective enamel. A 9bp deletion in exon 2 of AMGX results in the loss of codons for Ile5, Leu6, Phe7 and Ala8, and replacement by a new threonine codon, disrupting the 16-residue (Met1-Ala16) amelogenin signal peptide. Pssm-ID: 197891 [Multi-domain] Cd Length: 165 Bit Score: 35.54 E-value: 9.73e-03
|
||||||
Name | Accession | Description | Interval | E-value | ||
Atrophin-1 | pfam03154 | Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ... |
190-232 | 3.86e-04 | ||
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity. Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 41.29 E-value: 3.86e-04
|
||||||
Pro-rich | pfam15240 | Proline-rich protein; This family includes several eukaryotic proline-rich proteins. |
174-231 | 1.02e-03 | ||
Proline-rich protein; This family includes several eukaryotic proline-rich proteins. Pssm-ID: 464580 [Multi-domain] Cd Length: 167 Bit Score: 38.48 E-value: 1.02e-03
|
||||||
Amelogenin | smart00818 | Amelogenins, cell adhesion proteins, play a role in the biomineralisation of teeth; They seem ... |
183-230 | 9.73e-03 | ||
Amelogenins, cell adhesion proteins, play a role in the biomineralisation of teeth; They seem to regulate formation of crystallites during the secretory stage of tooth enamel development and are thought to play a major role in the structural organisation and mineralisation of developing enamel. The extracellular matrix of the developing enamel comprises two major classes of protein: the hydrophobic amelogenins and the acidic enamelins. Circular dichroism studies of porcine amelogenin have shown that the protein consists of 3 discrete folding units: the N-terminal region appears to contain beta-strand structures, while the C-terminal region displays characteristics of a random coil conformation. Subsequent studies on the bovine protein have indicated the amelogenin structure to contain a repetitive beta-turn segment and a "beta-spiral" between Gln112 and Leu138, which sequester a (Pro, Leu, Gln) rich region. The beta-spiral offers a probable site for interactions with Ca2+ ions. Muatations in the human amelogenin gene (AMGX) cause X-linked hypoplastic amelogenesis imperfecta, a disease characterised by defective enamel. A 9bp deletion in exon 2 of AMGX results in the loss of codons for Ile5, Leu6, Phe7 and Ala8, and replacement by a new threonine codon, disrupting the 16-residue (Met1-Ala16) amelogenin signal peptide. Pssm-ID: 197891 [Multi-domain] Cd Length: 165 Bit Score: 35.54 E-value: 9.73e-03
|
||||||
Blast search parameters | ||||
|