cysteine desulfurase CsdA catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine, and transiently retains the released sulfur atom on a cysteine residue, in the form of a persulfide; can also desulfinate L-cysteine sulfinate, which is the best substrate of the enzyme
cysteine desulfurase, catalytic subunit CsdA; Members of this protein family are CsdS. This ...
3-399
0e+00
cysteine desulfurase, catalytic subunit CsdA; Members of this protein family are CsdS. This protein, found Escherichia coli, Yersinia pestis, Photorhabdus luminescens, and related species, and related to SufS, works together with and physically interacts with CsdE (a paralog of SufE). CsdA has cysteine desulfurase activity that is enhanced by CsdE, a sulfur acceptor protein. This gene pair, although involved in FeS cluster biosynthesis, is not found next to other such genes as are its paralogs from the Suf or Isc systems. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other]
Pssm-ID: 274558 [Multi-domain] Cd Length: 398 Bit Score: 608.76 E-value: 0e+00
Cysteine desulfurase (SufS)-like. This family belongs to the pyridoxal phosphate (PLP) ...
20-390
9.77e-145
Cysteine desulfurase (SufS)-like. This family belongs to the pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD correspond to cysteine desulfurase (SufS) and selenocysteine lyase. SufS catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine; and selenocysteine lyase catalyzes the decomposition of L-selenocysteine.
Pssm-ID: 99746 [Multi-domain] Cd Length: 373 Bit Score: 415.71 E-value: 9.77e-145
family 2A encapsulin nanocompartment cargo protein cysteine desulfurase; Capsid-like ...
3-392
2.23e-99
family 2A encapsulin nanocompartment cargo protein cysteine desulfurase; Capsid-like encapsulin nanocompartments are commonly found in bacteria and archaea. Encapsulin nanocompartments, which are assembled from shell proteins, encapsulate various cargo proteins, typically peroxidases or ferritin-like proteins, to protect cells from oxidative stress caused by peroxide. Proteins of this family are cysteine desulfurases with an additional N-terminal encapsulation targeting sequence (~200 aa) that is necessary and sufficient for compartmentalization.
Pssm-ID: 469077 [Multi-domain] Cd Length: 623 Bit Score: 308.32 E-value: 2.23e-99
cysteine desulfurase, catalytic subunit CsdA; Members of this protein family are CsdS. This ...
3-399
0e+00
cysteine desulfurase, catalytic subunit CsdA; Members of this protein family are CsdS. This protein, found Escherichia coli, Yersinia pestis, Photorhabdus luminescens, and related species, and related to SufS, works together with and physically interacts with CsdE (a paralog of SufE). CsdA has cysteine desulfurase activity that is enhanced by CsdE, a sulfur acceptor protein. This gene pair, although involved in FeS cluster biosynthesis, is not found next to other such genes as are its paralogs from the Suf or Isc systems. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other]
Pssm-ID: 274558 [Multi-domain] Cd Length: 398 Bit Score: 608.76 E-value: 0e+00
cysteine desulfurases, SufSfamily; This model represents a subfamily of NifS-related cysteine ...
7-390
5.34e-150
cysteine desulfurases, SufSfamily; This model represents a subfamily of NifS-related cysteine desulfurases involved in FeS cluster formation needed for nitrogen fixation among other vital functions. Many cysteine desulfurases are also active as selenocysteine lyase and/or cysteine sulfinate desulfinase. This subfamily is associated with the six-gene SUF system described in E. coli and Erwinia as an FeS cluster formation system during oxidative stress. The active site Cys is this subfamily resembles GHHC with one or both His conserved. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other]
Pssm-ID: 131034 [Multi-domain] Cd Length: 403 Bit Score: 430.54 E-value: 5.34e-150
Cysteine desulfurase (SufS)-like. This family belongs to the pyridoxal phosphate (PLP) ...
20-390
9.77e-145
Cysteine desulfurase (SufS)-like. This family belongs to the pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD correspond to cysteine desulfurase (SufS) and selenocysteine lyase. SufS catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine; and selenocysteine lyase catalyzes the decomposition of L-selenocysteine.
Pssm-ID: 99746 [Multi-domain] Cd Length: 373 Bit Score: 415.71 E-value: 9.77e-145
family 2A encapsulin nanocompartment cargo protein cysteine desulfurase; Capsid-like ...
3-392
2.23e-99
family 2A encapsulin nanocompartment cargo protein cysteine desulfurase; Capsid-like encapsulin nanocompartments are commonly found in bacteria and archaea. Encapsulin nanocompartments, which are assembled from shell proteins, encapsulate various cargo proteins, typically peroxidases or ferritin-like proteins, to protect cells from oxidative stress caused by peroxide. Proteins of this family are cysteine desulfurases with an additional N-terminal encapsulation targeting sequence (~200 aa) that is necessary and sufficient for compartmentalization.
Pssm-ID: 469077 [Multi-domain] Cd Length: 623 Bit Score: 308.32 E-value: 2.23e-99
cysteine desulfurase family protein, VC1184 subfamily; This model describes a subfamily of ...
3-390
5.40e-59
cysteine desulfurase family protein, VC1184 subfamily; This model describes a subfamily of probable pyridoxal phosphate-dependent enzymes in the aminotransferase class V family (pfam00266). The most closely related characterized proteins are active as cysteine desulfurases, selenocysteine lyases, or both; some are involved in FeS cofactor biosynthesis and are designated NifS. An active site Cys residue present in those sequences, in motifs resembling GHHC or GSAC, is not found in this family. The function of members of this family is unknown, but seems unlike to be as an aminotransferase. [Unknown function, Enzymes of unknown specificity]
Pssm-ID: 273906 [Multi-domain] Cd Length: 397 Bit Score: 196.90 E-value: 5.40e-59
Aspartate aminotransferase (AAT) superfamily (fold type I) of pyridoxal phosphate (PLP) ...
64-233
1.02e-13
Aspartate aminotransferase (AAT) superfamily (fold type I) of pyridoxal phosphate (PLP)-dependent enzymes. PLP combines with an alpha-amino acid to form a compound called a Schiff base or aldimine intermediate, which depending on the reaction, is the substrate in four kinds of reactions (1) transamination (movement of amino groups), (2) racemization (redistribution of enantiomers), (3) decarboxylation (removing COOH groups), and (4) various side-chain reactions depending on the enzyme involved. Pyridoxal phosphate (PLP) dependent enzymes were previously classified into alpha, beta and gamma classes, based on the chemical characteristics (carbon atom involved) of the reaction they catalyzed. The availability of several structures allowed a comprehensive analysis of the evolutionary classification of PLP dependent enzymes, and it was found that the functional classification did not always agree with the evolutionary history of these enzymes. Structure and sequence analysis has revealed that the PLP dependent enzymes can be classified into four major groups of different evolutionary origin: aspartate aminotransferase superfamily (fold type I), tryptophan synthase beta superfamily (fold type II), alanine racemase superfamily (fold type III), and D-amino acid superfamily (fold type IV) and Glycogen phophorylase family (fold type V).
Pssm-ID: 99742 [Multi-domain] Cd Length: 170 Bit Score: 68.56 E-value: 1.02e-13
Aspartate aminotransferase family. This family belongs to pyridoxal phosphate (PLP)-dependent ...
28-240
1.36e-07
Aspartate aminotransferase family. This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). Pyridoxal phosphate combines with an alpha-amino acid to form a compound called a Schiff base or aldimine intermediate, which depending on the reaction, is the substrate in four kinds of reactions (1) transamination (movement of amino groups), (2) racemization (redistribution of enantiomers), (3) decarboxylation (removing COOH groups), and (4) various side-chain reactions depending on the enzyme involved. Pyridoxal phosphate (PLP) dependent enzymes were previously classified into alpha, beta and gamma classes, based on the chemical characteristics (carbon atom involved) of the reaction they catalyzed. The availability of several structures allowed a comprehensive analysis of the evolutionary classification of PLP dependent enzymes, and it was found that the functional classification did not always agree with the evolutionary history of these enzymes. The major groups in this CD corresponds to Aspartate aminotransferase a, b and c, Tyrosine, Alanine, Aromatic-amino-acid, Glutamine phenylpyruvate, 1-Aminocyclopropane-1-carboxylate synthase, Histidinol-phosphate, gene products of malY and cobC, Valine-pyruvate aminotransferase and Rhizopine catabolism regulatory protein.
Pssm-ID: 99734 [Multi-domain] Cd Length: 350 Bit Score: 53.11 E-value: 1.36e-07
DNA-binding transcriptional regulator, MocR family, contains an aminotransferase domain ...
41-162
1.20e-06
DNA-binding transcriptional regulator, MocR family, contains an aminotransferase domain [Transcription, Amino acid transport and metabolism]; DNA-binding transcriptional regulator, MocR family, contains an aminotransferase domain is part of the Pathway/BioSystem: Lysine biosynthesis
Pssm-ID: 440781 [Multi-domain] Cd Length: 471 Bit Score: 50.21 E-value: 1.20e-06
Ornithine decarboxylase family. This family belongs to pyridoxal phosphate (PLP)-dependent ...
72-221
7.00e-03
Ornithine decarboxylase family. This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD corresponds to ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and lysine decarboxylase (LDC). ODC is a dodecamer composed of six homodimers and catalyzes the decarboxylation of tryptophan. ADC catalyzes the decarboxylation of arginine and LDC catalyzes the decarboxylation of lysine. Members of this family are widely found in all three forms of life.
Pssm-ID: 99739 [Multi-domain] Cd Length: 294 Bit Score: 38.00 E-value: 7.00e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options