pleckstrin homology domain-containing family H member 1 isoform X9 [Homo sapiens]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
Ubl1_cv_Nsp3_N-like super family | cl28922 | first ubiquitin-like (Ubl) domain located at the N-terminus of coronavirus SARS-CoV ... |
551-657 | 9.56e-73 | ||||
first ubiquitin-like (Ubl) domain located at the N-terminus of coronavirus SARS-CoV non-structural protein 3 (Nsp3) and related proteins; This ubiquitin-like (Ubl) domain (Ubl1) is found at the N-terminus of coronavirus Nsp3, a large multi-functional multi-domain protein which is an essential component of the replication/transcription complex (RTC). The functions of Ubl1 in CoVs are related to single-stranded RNA (ssRNA) binding and to interacting with the nucleocapsid (N) protein. SARS-CoV Ubl1 has been shown to bind ssRNA having AUA patterns, and since the 5'-UTR of the SARS-CoV genome has a number of AUA repeats, it may bind there. In mouse hepatitis virus (MHV), this Ubl1 domain binds the cognate N protein. Adjacent to Ubl1 is a Glu-rich acidic region (also referred to as hypervariable region, HVR); Ubl1 together with HVR has been called Nsp3a. Currently, the function of HVR in CoVs is unknown. This model corresponds to one of two Ubl domains in Nsp3; the other is located N-terminal to the papain-like protease (PLpro) and is not represented by this model. The actual alignment was detected with superfamily member cd17178: Pssm-ID: 475130 Cd Length: 106 Bit Score: 234.09 E-value: 9.56e-73
|
||||||||
FERM_C-lobe_PLEKHH1_PLEKHH2 | cd13206 | FERM domain C-lobe of Pleckstrin homology domain-containing family H; PLEKHH1 and PLEKHH2 ... |
781-883 | 1.18e-56 | ||||
FERM domain C-lobe of Pleckstrin homology domain-containing family H; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. : Pssm-ID: 241360 Cd Length: 100 Bit Score: 189.95 E-value: 1.18e-56
|
||||||||
PH1_PLEKHH1_PLEKHH2 | cd13282 | Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ... |
108-203 | 3.94e-55 | ||||
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 241436 Cd Length: 96 Bit Score: 185.58 E-value: 3.94e-55
|
||||||||
MyTH4 | smart00139 | Domain in Myosin and Kinesin Tails; Domain present twice in myosin-VIIa, and also present in 3 ... |
387-541 | 5.41e-55 | ||||
Domain in Myosin and Kinesin Tails; Domain present twice in myosin-VIIa, and also present in 3 other myosins. : Pssm-ID: 214535 Cd Length: 152 Bit Score: 187.18 E-value: 5.41e-55
|
||||||||
B41 | smart00295 | Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ... |
554-785 | 3.97e-27 | ||||
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs. : Pssm-ID: 214604 [Multi-domain] Cd Length: 201 Bit Score: 109.69 E-value: 3.97e-27
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
FERM_F1_PLEKHH1 | cd17178 | FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in pleckstrin ... |
551-657 | 9.56e-73 | ||||
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in pleckstrin homology domain-containing family H member 1 (PLEKHH1); PLEKHH1 is a homolog of Caenorhabditis elegans MAX-1 that has been implicated in motor neuron axon guidance. PLEKHH1 is critical in vascular patterning in vertebrate species through acting upstream of the ephrin pathway. PLEKHH1 contains a putative alpha-helical coiled-coil segment within the N-terminal half, and two Pleckstrin homology (PH) domains, a MyTH4 domain, and a FERM (Band 4.1, ezrin, radixin, moesin) domain within the C-terminal half. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Pssm-ID: 340698 Cd Length: 106 Bit Score: 234.09 E-value: 9.56e-73
|
||||||||
FERM_C-lobe_PLEKHH1_PLEKHH2 | cd13206 | FERM domain C-lobe of Pleckstrin homology domain-containing family H; PLEKHH1 and PLEKHH2 ... |
781-883 | 1.18e-56 | ||||
FERM domain C-lobe of Pleckstrin homology domain-containing family H; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. Pssm-ID: 241360 Cd Length: 100 Bit Score: 189.95 E-value: 1.18e-56
|
||||||||
PH1_PLEKHH1_PLEKHH2 | cd13282 | Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ... |
108-203 | 3.94e-55 | ||||
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241436 Cd Length: 96 Bit Score: 185.58 E-value: 3.94e-55
|
||||||||
MyTH4 | smart00139 | Domain in Myosin and Kinesin Tails; Domain present twice in myosin-VIIa, and also present in 3 ... |
387-541 | 5.41e-55 | ||||
Domain in Myosin and Kinesin Tails; Domain present twice in myosin-VIIa, and also present in 3 other myosins. Pssm-ID: 214535 Cd Length: 152 Bit Score: 187.18 E-value: 5.41e-55
|
||||||||
MyTH4 | pfam00784 | MyTH4 domain; Domain in myosin and kinesin tails, present twice in myosin-VIIa, and also ... |
435-539 | 9.39e-39 | ||||
MyTH4 domain; Domain in myosin and kinesin tails, present twice in myosin-VIIa, and also present in 3 other myosins. Pssm-ID: 459939 Cd Length: 105 Bit Score: 139.25 E-value: 9.39e-39
|
||||||||
B41 | smart00295 | Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ... |
554-785 | 3.97e-27 | ||||
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs. Pssm-ID: 214604 [Multi-domain] Cd Length: 201 Bit Score: 109.69 E-value: 3.97e-27
|
||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
106-199 | 7.07e-18 | ||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 79.90 E-value: 7.07e-18
|
||||||||
FERM_M | pfam00373 | FERM central domain; This domain is the central structural domain of the FERM domain. |
660-785 | 9.22e-18 | ||||
FERM central domain; This domain is the central structural domain of the FERM domain. Pssm-ID: 459788 [Multi-domain] Cd Length: 117 Bit Score: 80.01 E-value: 9.22e-18
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
106-199 | 3.79e-17 | ||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 77.60 E-value: 3.79e-17
|
||||||||
FERM_B-lobe | cd14473 | FERM domain B-lobe; The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C ... |
664-777 | 4.66e-14 | ||||
FERM domain B-lobe; The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases, the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains and consequently is capable of binding to both peptides and phospholipids at different sites. Pssm-ID: 271216 Cd Length: 99 Bit Score: 68.81 E-value: 4.66e-14
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
FERM_F1_PLEKHH1 | cd17178 | FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in pleckstrin ... |
551-657 | 9.56e-73 | ||||
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in pleckstrin homology domain-containing family H member 1 (PLEKHH1); PLEKHH1 is a homolog of Caenorhabditis elegans MAX-1 that has been implicated in motor neuron axon guidance. PLEKHH1 is critical in vascular patterning in vertebrate species through acting upstream of the ephrin pathway. PLEKHH1 contains a putative alpha-helical coiled-coil segment within the N-terminal half, and two Pleckstrin homology (PH) domains, a MyTH4 domain, and a FERM (Band 4.1, ezrin, radixin, moesin) domain within the C-terminal half. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Pssm-ID: 340698 Cd Length: 106 Bit Score: 234.09 E-value: 9.56e-73
|
||||||||
FERM_F1_Max1_like | cd17094 | FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Caenorhabditis ... |
551-653 | 2.24e-60 | ||||
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Caenorhabditis elegans max-1 and its homologs PLEKHH1 and PLEKHH2; Caenorhabditis elegans max-1 is expressed and functions in motor neurons. MAX-1 protein plays a possible role in netrin-induced axon repulsion by modulating the UNC-5 receptor signaling pathway. PLEKHH1 is critically required in vascular patterning in vertebrate species through acting upstream of the ephrin pathway. PLEKHH2 is highly enriched in renal glomerular podocytes, and acts as a novel, important component of the podocyte foot processes. It is involved in matrix adhesion and actin dynamics. Members in this family all contain two Pleckstrin homology (PH) domains, a MyTH4 domain, and a FERM (Band 4.1, ezrin, radixin, moesin) domain within the C-terminal half. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Pssm-ID: 340614 Cd Length: 102 Bit Score: 200.16 E-value: 2.24e-60
|
||||||||
FERM_F1_PLEKHH2 | cd17179 | FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in pleckstrin ... |
551-653 | 2.48e-59 | ||||
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in pleckstrin homology domain-containing family H member 2 (PLEKHH2); PLEKHH2 is a novel podocyte protein downregulated in human focal segmental glomerulosclerosis. It is highly enriched in renal glomerular podocytes, and acts as a novel, important component of the podocyte foot processes. PLEKHH2 contains a putative alpha-helical coiled-coil segment within the N-terminal half, and two Pleckstrin homology (PH) domains, a MyTH4 domain, and a FERM (Band 4.1, ezrin, radixin, moesin) domain within the C-terminal half. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). PLEKHH2 is involved in matrix adhesion and actin dynamics. It directly interacts through its FERM domain with the focal adhesion protein Hic-5 and actin. Pssm-ID: 340699 Cd Length: 103 Bit Score: 197.50 E-value: 2.48e-59
|
||||||||
FERM_C-lobe_PLEKHH1_PLEKHH2 | cd13206 | FERM domain C-lobe of Pleckstrin homology domain-containing family H; PLEKHH1 and PLEKHH2 ... |
781-883 | 1.18e-56 | ||||
FERM domain C-lobe of Pleckstrin homology domain-containing family H; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. Pssm-ID: 241360 Cd Length: 100 Bit Score: 189.95 E-value: 1.18e-56
|
||||||||
PH1_PLEKHH1_PLEKHH2 | cd13282 | Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ... |
108-203 | 3.94e-55 | ||||
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241436 Cd Length: 96 Bit Score: 185.58 E-value: 3.94e-55
|
||||||||
MyTH4 | smart00139 | Domain in Myosin and Kinesin Tails; Domain present twice in myosin-VIIa, and also present in 3 ... |
387-541 | 5.41e-55 | ||||
Domain in Myosin and Kinesin Tails; Domain present twice in myosin-VIIa, and also present in 3 other myosins. Pssm-ID: 214535 Cd Length: 152 Bit Score: 187.18 E-value: 5.41e-55
|
||||||||
MyTH4 | pfam00784 | MyTH4 domain; Domain in myosin and kinesin tails, present twice in myosin-VIIa, and also ... |
435-539 | 9.39e-39 | ||||
MyTH4 domain; Domain in myosin and kinesin tails, present twice in myosin-VIIa, and also present in 3 other myosins. Pssm-ID: 459939 Cd Length: 105 Bit Score: 139.25 E-value: 9.39e-39
|
||||||||
B41 | smart00295 | Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in ... |
554-785 | 3.97e-27 | ||||
Band 4.1 homologues; Also known as ezrin/radixin/moesin (ERM) protein domains. Present in myosins, ezrin, radixin, moesin, protein tyrosine phosphatases. Plasma membrane-binding domain. These proteins play structural and regulatory roles in the assembly and stabilization of specialized plasmamembrane domains. Some PDZ domain containing proteins bind one or more of this family. Now includes JAKs. Pssm-ID: 214604 [Multi-domain] Cd Length: 201 Bit Score: 109.69 E-value: 3.97e-27
|
||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
108-194 | 7.08e-21 | ||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 87.98 E-value: 7.08e-21
|
||||||||
PH_TAAP2-like | cd13255 | Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 ... |
104-194 | 1.31e-18 | ||||
Tandem PH-domain-containing protein 2 Pleckstrin homology (PH) domain; The binding of TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP2 contains two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. The members here are most sequence similar to TAPP2 proteins, but may not be actual TAPP2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270075 Cd Length: 110 Bit Score: 82.08 E-value: 1.31e-18
|
||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
106-199 | 7.07e-18 | ||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 79.90 E-value: 7.07e-18
|
||||||||
FERM_M | pfam00373 | FERM central domain; This domain is the central structural domain of the FERM domain. |
660-785 | 9.22e-18 | ||||
FERM central domain; This domain is the central structural domain of the FERM domain. Pssm-ID: 459788 [Multi-domain] Cd Length: 117 Bit Score: 80.01 E-value: 9.22e-18
|
||||||||
PH_DAPP1 | cd10573 | Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ... |
108-198 | 1.47e-17 | ||||
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269977 [Multi-domain] Cd Length: 96 Bit Score: 78.52 E-value: 1.47e-17
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
106-199 | 3.79e-17 | ||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 77.60 E-value: 3.79e-17
|
||||||||
PH2_MyoX | cd13296 | Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ... |
108-196 | 1.25e-16 | ||||
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270108 Cd Length: 103 Bit Score: 76.35 E-value: 1.25e-16
|
||||||||
FERM_F1_DdMyo7_like | cd17208 | FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Dictyostelium ... |
556-653 | 4.11e-16 | ||||
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in Dictyostelium discoideum Myosin-VIIa (DdMyo7) and similar proteins; DdMyo7, also termed Myosin-I heavy chain, or class VII unconventional myosin, or M7, plays a role in adhesion in Dictyostelium where it is a component of a complex of proteins that serve to link membrane receptors to the underlying actin cytoskeleton. It interacts with talinA, an actin-binding protein with a known role in cell-substrate adhesion. DdMyo7 is required for phagocytosis. It is also essential for the extension of filopodia, plasma membrane protrusions filled with parallel bundles of F-actin. Members in this family contain a myosin motor domain, two MyTH4 domains, two FERM (Band 4.1, ezrin, radixin, moesin) domains, and two Pleckstrin homology (PH) domains. Some family members contain an extra SH3 domain. Each FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Pssm-ID: 340728 Cd Length: 98 Bit Score: 74.59 E-value: 4.11e-16
|
||||||||
PH_SWAP-70 | cd13273 | Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called ... |
108-204 | 4.63e-16 | ||||
Switch-associated protein-70 Pleckstrin homology (PH) domain; SWAP-70 (also called Differentially expressed in FDCP 6/DEF-6 or IRF4-binding protein) functions in cellular signal transduction pathways (in conjunction with Rac), regulates cell motility through actin rearrangement, and contributes to the transformation and invasion activity of mouse embryo fibroblasts. Metazoan SWAP-70 is found in B lymphocytes, mast cells, and in a variety of organs. Metazoan SWAP-70 contains an N-terminal EF-hand motif, a centrally located PH domain, and a C-terminal coiled-coil domain. The PH domain of Metazoan SWAP-70 contains a phosphoinositide-binding site and a nuclear localization signal (NLS), which localize SWAP-70 to the plasma membrane and nucleus, respectively. The NLS is a sequence of four Lys residues located at the N-terminus of the C-terminal a-helix; this is a unique characteristic of the Metazoan SWAP-70 PH domain. The SWAP-70 PH domain binds PtdIns(3,4,5)P3 and PtdIns(4,5)P2 embedded in lipid bilayer vesicles. There are additional plant SWAP70 proteins, but these are not included in this hierarchy. Rice SWAP70 (OsSWAP70) exhibits GEF activity toward the its Rho GTPase, OsRac1, and regulates chitin-induced production of reactive oxygen species and defense gene expression in rice. Arabidopsis SWAP70 (AtSWAP70) plays a role in both PAMP- and effector-triggered immunity. Plant SWAP70 contains both DH and PH domains, but their arrangement is the reverse of that in typical DH-PH-type Rho GEFs, wherein the DH domain is flanked by a C-terminal PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270092 Cd Length: 110 Bit Score: 74.64 E-value: 4.63e-16
|
||||||||
PH_PEPP1_2_3 | cd13248 | Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ... |
108-194 | 7.27e-16 | ||||
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270068 Cd Length: 104 Bit Score: 73.85 E-value: 7.27e-16
|
||||||||
PH_ACAP | cd13250 | ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ... |
108-196 | 8.30e-16 | ||||
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270070 Cd Length: 98 Bit Score: 73.79 E-value: 8.30e-16
|
||||||||
PH-GRAM1_AGT26 | cd13215 | Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, ... |
108-201 | 1.03e-15 | ||||
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1; ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275402 Cd Length: 116 Bit Score: 74.20 E-value: 1.03e-15
|
||||||||
PH1_PH_fungal | cd13298 | Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal ... |
108-197 | 2.95e-15 | ||||
Fungal proteins Pleckstrin homology (PH) domain, repeat 1; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270110 Cd Length: 106 Bit Score: 72.27 E-value: 2.95e-15
|
||||||||
PH_RhoGap25-like | cd13263 | Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ... |
108-194 | 6.83e-15 | ||||
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270083 Cd Length: 114 Bit Score: 71.65 E-value: 6.83e-15
|
||||||||
PH_AtPH1 | cd13276 | Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ... |
108-191 | 1.88e-14 | ||||
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270095 Cd Length: 106 Bit Score: 70.04 E-value: 1.88e-14
|
||||||||
FERM_B-lobe | cd14473 | FERM domain B-lobe; The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C ... |
664-777 | 4.66e-14 | ||||
FERM domain B-lobe; The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases, the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains and consequently is capable of binding to both peptides and phospholipids at different sites. Pssm-ID: 271216 Cd Length: 99 Bit Score: 68.81 E-value: 4.66e-14
|
||||||||
PH_Sbf1_hMTMR5 | cd01235 | Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a ... |
110-199 | 8.17e-14 | ||||
Set binding factor 1 (also called Human MTMR5) Pleckstrin Homology (PH) domain; Sbf1 is a myotubularin-related pseudo-phosphatase. Both Sbf1 and myotubularin interact with the SET domains of Hrx and other epigenetic regulatory proteins, but Sbf1 lacks phosphatase activity due to several amino acid changes in its structurally preserved catalytic pocket. It contains pleckstrin (PH), GEF, and myotubularin homology domains that are thought to be responsible for signaling and growth control. Sbf1 functions as an inhibitor of cellular growth. The N-terminal GEF homology domain serves to inhibit the transforming effects of Sbf1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269941 Cd Length: 106 Bit Score: 68.13 E-value: 8.17e-14
|
||||||||
PH_Ses | cd13288 | Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 ... |
104-195 | 1.11e-13 | ||||
Sesquipedalian family Pleckstrin homology (PH) domain; The sesquipedalian family has 2 mammalian members: Ses1 and Ses2, which are also callled 7 kDa inositol polyphosphate phosphatase-interacting protein 1 and 2. They play a role in endocytic trafficking and are required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. Members of this family form homodimers and heterodimers. Sesquipedalian interacts with inositol polyphosphate 5-phosphatase OCRL-1 (INPP5F) also known as Lowe oculocerebrorenal syndrome protein, a phosphatase enzyme that is involved in actin polymerization and is found in the trans-Golgi network and INPP5B. Sesquipedalian contains a single PH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270105 [Multi-domain] Cd Length: 120 Bit Score: 68.42 E-value: 1.11e-13
|
||||||||
PH_TBC1D2A | cd01265 | TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ... |
109-196 | 2.37e-13 | ||||
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269966 Cd Length: 102 Bit Score: 66.96 E-value: 2.37e-13
|
||||||||
PH_GRP1-like | cd01252 | General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 ... |
107-196 | 4.21e-12 | ||||
General Receptor for Phosphoinositides-1-like Pleckstrin homology (PH) domain; GRP1/cytohesin3 and the related proteins ARNO (ARF nucleotide-binding site opener)/cytohesin-2 and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. The PH domains of all three proteins exhibit relatively high affinity for PtdIns(3,4,5)P3. Within the Grp1 family, diglycine (2G) and triglycine (3G) splice variants, differing only in the number of glycine residues in the PH domain, strongly influence the affinity and specificity for phosphoinositides. The 2G variants selectively bind PtdIns(3,4,5)P3 with high affinity,the 3G variants bind PtdIns(3,4,5)P3 with about 30-fold lower affinity and require the polybasic region for plasma membrane targeting. These ARF-GEFs share a common, tripartite structure consisting of an N-terminal coiled-coil domain, a central domain with homology to the yeast protein Sec7, a PH domain, and a C-terminal polybasic region. The Sec7 domain is autoinhibited by conserved elements proximal to the PH domain. GRP1 binds to the DNA binding domain of certain nuclear receptors (TRalpha, TRbeta, AR, ER, but not RXR), and can repress thyroid hormone receptor (TR)-mediated transactivation by decreasing TR-complex formation on thyroid hormone response elements. ARNO promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion. Cytohesin acts as a PI 3-kinase effector mediating biological responses including cell spreading and adhesion, chemotaxis, protein trafficking, and cytoskeletal rearrangements, only some of which appear to depend on their ability to activate ARFs. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269954 Cd Length: 119 Bit Score: 63.87 E-value: 4.21e-12
|
||||||||
PH2_TAPP1_2 | cd13271 | Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal ... |
103-206 | 1.18e-11 | ||||
Tandem PH-domain-containing proteins 1 and 2 Pleckstrin homology (PH) domain, C-terminal repeat; The binding of TAPP1 (also called PLEKHA1/pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1) and TAPP2 (also called PLEKHA2) adaptors to PtdIns(3,4)P(2), but not PI(3,4, 5)P3, function as negative regulators of insulin and PI3K signalling pathways (i.e. TAPP/utrophin/syntrophin complex). TAPP1 and TAPP2 contain two sequential PH domains in which the C-terminal PH domain specifically binds PtdIns(3,4)P2 with high affinity. The N-terminal PH domain does not interact with any phosphoinositide tested. They also contain a C-terminal PDZ-binding motif that interacts with several PDZ-binding proteins, including PTPN13 (known previously as PTPL1 or FAP-1) as well as the scaffolding proteins MUPP1 (multiple PDZ-domain-containing protein 1), syntrophin and utrophin. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270090 Cd Length: 114 Bit Score: 62.37 E-value: 1.18e-11
|
||||||||
PH_M-RIP | cd13275 | Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed ... |
108-208 | 1.13e-10 | ||||
Myosin phosphatase-RhoA Interacting Protein Pleckstrin homology (PH) domain; M-RIP is proposed to play a role in myosin phosphatase regulation by RhoA. M-RIP contains 2 PH domains followed by a Rho binding domain (Rho-BD), and a C-terminal myosin binding subunit (MBS) binding domain (MBS-BD). The amino terminus of M-RIP with its adjacent PH domains and polyproline motifs mediates binding to both actin and Galpha. M-RIP brings RhoA and MBS into close proximity where M-RIP can target RhoA to the myosin phosphatase complex to regulate the myosin phosphorylation state. M-RIP does this via its C-terminal coiled-coil domain which interacts with the MBS leucine zipper domain of myosin phosphatase, while its Rho-BD, directly binds RhoA in a nucleotide-independent manner. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270094 Cd Length: 104 Bit Score: 59.27 E-value: 1.13e-10
|
||||||||
PH_Gab-like | cd13324 | Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are ... |
109-192 | 1.27e-10 | ||||
Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270133 Cd Length: 112 Bit Score: 59.35 E-value: 1.27e-10
|
||||||||
PH3_MyoX-like | cd13297 | Myosin X-like Pleckstrin homology (PH) domain, repeat 3; MyoX, a MyTH-FERM myosin, is a ... |
92-206 | 3.02e-10 | ||||
Myosin X-like Pleckstrin homology (PH) domain, repeat 3; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the third MyoX PH repeat. PLEKHH3/Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) member 3 is also part of this CD and like MyoX contains a FERM domain, a MyTH4 domain, and a single PH domain. Not much is known about the function of PLEKHH3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270109 Cd Length: 126 Bit Score: 58.60 E-value: 3.02e-10
|
||||||||
PH2_ADAP | cd01251 | ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ... |
108-198 | 3.13e-10 | ||||
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241282 Cd Length: 105 Bit Score: 57.98 E-value: 3.13e-10
|
||||||||
PH1_ARAP | cd13253 | ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ... |
107-201 | 4.05e-10 | ||||
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270073 Cd Length: 94 Bit Score: 57.40 E-value: 4.05e-10
|
||||||||
PH_RASA1 | cd13260 | RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 ... |
105-195 | 7.80e-10 | ||||
RAS p21 protein activator (GTPase activating protein) 1 Pleckstrin homology (PH) domain; RASA1 (also called RasGap1 or p120) is a member of the RasGAP family of GTPase-activating proteins. RASA1 contains N-terminal SH2-SH3-SH2 domains, followed by two C2 domains, a PH domain, a RasGAP domain, and a BTK domain. Splice variants lack the N-terminal domains. It is a cytosolic vertebrate protein that acts as a suppressor of RAS via its C-terminal GAP domain function, enhancing the weak intrinsic GTPase activity of RAS proteins resulting in the inactive GDP-bound form of RAS, allowing control of cellular proliferation and differentiation. Additionally, it is involved in mitogenic signal transmission towards downstream interacting partners through its N-terminal SH2-SH3-SH2 domains. RASA1 interacts with a number of proteins including: G3BP1, SOCS3, ANXA6, Huntingtin, KHDRBS1, Src, EPHB3, EPH receptor B2, Insulin-like growth factor 1 receptor, PTK2B, DOK1, PDGFRB, HCK, Caveolin 2, DNAJA3, HRAS, GNB2L1 and NCK1. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270080 Cd Length: 103 Bit Score: 56.97 E-value: 7.80e-10
|
||||||||
PH1_Pleckstrin_2 | cd13301 | Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in ... |
108-192 | 8.05e-10 | ||||
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 1; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270113 Cd Length: 108 Bit Score: 57.00 E-value: 8.05e-10
|
||||||||
PH_OSBP_ORP4 | cd13284 | Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; ... |
108-202 | 5.68e-09 | ||||
Human Oxysterol binding protein and OSBP-related protein 4 Pleckstrin homology (PH) domain; Human OSBP is proposed to function is sterol-dependent regulation of ERK dephosphorylation and sphingomyelin synthesis as well as modulation of insulin signaling and hepatic lipogenesis. It contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBPs and Osh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. ORP4 is proposed to function in Vimentin-dependent sterol transport and/or signaling. Human ORP4 has 2 forms, a long (ORP4L) and a short (ORP4S). ORP4L contains a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP4S is truncated and contains only an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270101 Cd Length: 99 Bit Score: 54.31 E-value: 5.68e-09
|
||||||||
PH_3BP2 | cd13308 | SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ... |
108-194 | 5.93e-09 | ||||
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270118 Cd Length: 113 Bit Score: 54.72 E-value: 5.93e-09
|
||||||||
PH_anillin | cd01263 | Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin ... |
107-200 | 6.25e-09 | ||||
Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin homology domain-containing family K) is an actin binding protein involved in cytokinesis. It interacts with GTP-bound Rho proteins and results in the inhibition of their GTPase activity. Dysregulation of the Rho signal transduction pathway has been implicated in many forms of cancer. Anillin proteins have a N-terminal HRI domain/ACC (anti-parallel coiled-coil) finger domain or Rho-binding domain binds small GTPases from the Rho family. The C-terminal PH domain helps target anillin to ectopic septin containing foci. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269964 Cd Length: 121 Bit Score: 54.98 E-value: 6.25e-09
|
||||||||
PH_Gab1_Gab2 | cd01266 | Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain; The Gab subfamily ... |
102-192 | 6.43e-09 | ||||
Grb2-associated binding proteins 1 and 2 pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1 and Gab2 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241297 Cd Length: 123 Bit Score: 54.95 E-value: 6.43e-09
|
||||||||
PH_RhoGAP2 | cd13378 | Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ... |
104-198 | 7.41e-09 | ||||
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241529 Cd Length: 116 Bit Score: 54.57 E-value: 7.41e-09
|
||||||||
PH_Boi | cd13316 | Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally ... |
109-194 | 1.29e-08 | ||||
Boi family Pleckstrin homology domain; Yeast Boi proteins Boi1 and Boi2 are functionally redundant and important for cell growth with Boi mutants displaying defects in bud formation and in the maintenance of cell polarity.They appear to be linked to Rho-type GTPase, Cdc42 and Rho3. Boi1 and Boi2 display two-hybrid interactions with the GTP-bound ("active") form of Cdc42, while Rho3 can suppress of the lethality caused by deletion of Boi1 and Boi2. These findings suggest that Boi1 and Boi2 are targets of Cdc42 that promote cell growth in a manner that is regulated by Rho3. Boi proteins contain a N-terminal SH3 domain, followed by a SAM (sterile alpha motif) domain, a proline-rich region, which mediates binding to the second SH3 domain of Bem1, and C-terminal PH domain. The PH domain is essential for its function in cell growth and is important for localization to the bud, while the SH3 domain is needed for localization to the neck. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270126 Cd Length: 97 Bit Score: 53.15 E-value: 1.29e-08
|
||||||||
PH_ASAP | cd13251 | ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs ... |
100-195 | 1.91e-08 | ||||
ArfGAP with SH3 domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain; ASAPs (ASAP1, ASAP2, and ASAP3) function as an Arf-specific GAPs, participates in rhodopsin trafficking, is associated with tumor cell metastasis, modulates phagocytosis, promotes cell proliferation, facilitates vesicle budding, Golgi exocytosis, and regulates vesicle coat assembly via a Bin/Amphiphysin/Rvs domain. ASAPs contain an NH2-terminal BAR domain, a tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 (SH3) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270071 Cd Length: 108 Bit Score: 53.13 E-value: 1.91e-08
|
||||||||
PH_Osh1p_Osh2p_yeast | cd13292 | Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p ... |
109-196 | 2.44e-08 | ||||
Yeast oxysterol binding protein homologs 1 and 2 Pleckstrin homology (PH) domain; Yeast Osh1p is proposed to function in postsynthetic sterol regulation, piecemeal microautophagy of the nucleus, and cell polarity establishment. Yeast Osh2p is proposed to function in sterol metabolism and cell polarity establishment. Both Osh1p and Osh2p contain 3 N-terminal ankyrin repeats, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. OSBP andOsh1p PH domains specifically localize to the Golgi apparatus in a PtdIns4P-dependent manner. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241446 Cd Length: 103 Bit Score: 52.70 E-value: 2.44e-08
|
||||||||
PH_RhoGap24 | cd13379 | Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ... |
108-198 | 2.73e-08 | ||||
Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ARHGAP24, p73RhoGAp, and Filamin-A-associated RhoGAP) like other RhoGAPs are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241530 Cd Length: 114 Bit Score: 52.67 E-value: 2.73e-08
|
||||||||
PH2_Pleckstrin_2 | cd13302 | Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 2; Pleckstrin is a protein found in ... |
108-197 | 3.77e-08 | ||||
Pleckstrin 2 Pleckstrin homology (PH) domain, repeat 2; Pleckstrin is a protein found in platelets. This name is derived from platelet and leukocyte C kinase substrate and the KSTR string of amino acids. Pleckstrin 2 contains two PH domains and a DEP (dishvelled, egl-10, and pleckstrin) domain. Unlike pleckstrin 1, pleckstrin 2 does not contain obvious sites of PKC phosphorylation. Pleckstrin 2 plays a role in actin rearrangement, large lamellipodia and peripheral ruffle formation, and may help orchestrate cytoskeletal arrangement. The PH domains of pleckstrin 2 are thought to contribute to lamellipodia formation. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270114 Cd Length: 109 Bit Score: 52.13 E-value: 3.77e-08
|
||||||||
PH_Gab2_2 | cd13384 | Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily ... |
122-191 | 3.80e-08 | ||||
Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. Members here include insect, nematodes, and crustacean Gab2s. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241535 Cd Length: 115 Bit Score: 52.44 E-value: 3.80e-08
|
||||||||
PH_Btk | cd01238 | Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of ... |
108-195 | 1.06e-07 | ||||
Bruton's tyrosine kinase pleckstrin homology (PH) domain; Btk is a member of the Tec family of cytoplasmic protein tyrosine kinases that includes BMX, IL2-inducible T-cell kinase (Itk) and Tec. Btk plays a role in the maturation of B cells. Tec proteins general have an N-terminal PH domain, followed by a Tek homology (TH) domain, a SH3 domain, a SH2 domain and a kinase domain. The Btk PH domain binds phosphatidylinositol 3,4,5-trisphosphate and responds to signalling via phosphatidylinositol 3-kinase. The PH domain is also involved in membrane anchoring which is confirmed by the discovery of a mutation of a critical arginine residue in the BTK PH domain. This results in severe human immunodeficiency known as X-linked agammaglobulinemia (XLA) in humans and a related disorder is mice.PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269944 [Multi-domain] Cd Length: 140 Bit Score: 51.85 E-value: 1.06e-07
|
||||||||
PH_DGK_type2 | cd13274 | Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ... |
108-196 | 1.76e-07 | ||||
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270093 Cd Length: 97 Bit Score: 50.09 E-value: 1.76e-07
|
||||||||
PH_evt | cd13265 | Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also ... |
108-195 | 1.99e-07 | ||||
Evectin Pleckstrin homology (PH) domain; There are 2 members of the evectin family (also called pleckstrin homology domain containing, family B): evt-1 (also called PLEKHB1) and evt-2 (also called PLEKHB2). evt-1 is specific to the nervous system, where it is expressed in photoreceptors and myelinating glia. evt-2 is widely expressed in both neural and nonneural tissues. Evectins possess a single N-terminal PH domain and a C-terminal hydrophobic region. evt-1 is thought to function as a mediator of post-Golgi trafficking in cells that produce large membrane-rich organelles. It is a candidate gene for the inherited human retinopathy autosomal dominant familial exudative vitreoretinopathy and a susceptibility gene for multiple sclerosis. evt-2 is essential for retrograde endosomal membrane transport from the plasma membrane (PM) to the Golgi. Two membrane trafficking pathways pass through recycling endosomes: a recycling pathway and a retrograde pathway that links the PM to the Golgi/ER. Its PH domain that is unique in that it specifically recognizes phosphatidylserine (PS), but not polyphosphoinositides. PS is an anionic phospholipid class in eukaryotic biomembranes, is highly enriched in the PM, and plays key roles in various physiological processes such as the coagulation cascade, recruitment and activation of signaling molecules, and clearance of apoptotic cells. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270085 Cd Length: 108 Bit Score: 49.99 E-value: 1.99e-07
|
||||||||
PH_FAPP1_FAPP2 | cd01247 | Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also ... |
110-196 | 2.73e-07 | ||||
Four phosphate adaptor protein 1 and 2 Pleckstrin homology (PH) domain; Human FAPP1 (also called PLEKHA3/Pleckstrin homology domain-containing, family A member 3) regulates secretory transport from the trans-Golgi network to the plasma membrane. It is recruited through binding of PH domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). These two binding sites have little overlap the FAPP1 PH domain to associate with both ligands simultaneously and independently. FAPP1 has a N-terminal PH domain followed by a short proline-rich region. FAPP1 is a member of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), and Goodpasture antigen binding protein (GPBP). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. FAPP2 (also called PLEKHA8/Pleckstrin homology domain-containing, family A member 8), a member of the Glycolipid lipid transfer protein(GLTP) family has an N-terminal PH domain that targets the TGN and C-terminal GLTP domain. FAPP2 functions to traffic glucosylceramide (GlcCer) which is made in the Golgi. It's interaction with vesicle-associated membrane protein-associated protein (VAP) could be a means of regulation. Some FAPP2s share the FFAT-like motifs found in GLTP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269951 Cd Length: 100 Bit Score: 49.33 E-value: 2.73e-07
|
||||||||
PH_11 | pfam15413 | Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species. |
108-195 | 2.81e-07 | ||||
Pleckstrin homology domain; This Pleckstrin homology domain is found in some fungal species. Pssm-ID: 405988 Cd Length: 105 Bit Score: 49.51 E-value: 2.81e-07
|
||||||||
PH_DOCK-D | cd13267 | Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also ... |
102-199 | 3.01e-07 | ||||
Dedicator of cytokinesis-D subfamily Pleckstrin homology (PH) domain; DOCK-D subfamily (also called Zizimin subfamily) consists of Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2. DOCK-D has a N-terminal DUF3398 domain, a PH-like domain, a Dock Homology Region 1, DHR1 (also called CZH1), a C2 domain, and a C-terminal DHR2 domain (also called CZH2). Zizimin1 is enriched in the brain, lung, and kidney; zizimin2 is found in B and T lymphocytes, and zizimin3 is enriched in brain, lung, spleen and thymus. Zizimin1 functions in autoinhibition and membrane targeting. Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. No function has been determined for Zizimin3 to date. The N-terminal half of zizimin1 binds to the GEF domain through three distinct areas, including CZH1, to inhibit the interaction with Cdc42. In addition its PH domain binds phosphoinositides and mediates zizimin1 membrane targeting. DOCK is a family of proteins involved in intracellular signalling networks. They act as guanine nucleotide exchange factors for small G proteins of the Rho family, such as Rac and Cdc42. There are 4 subfamilies of DOCK family proteins based on their sequence homology: A-D. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270087 Cd Length: 126 Bit Score: 50.02 E-value: 3.01e-07
|
||||||||
PH_ORP3_ORP6_ORP7 | cd13287 | Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain; ... |
104-195 | 4.23e-07 | ||||
Human Oxysterol binding protein related proteins 3, 6, and 7 Pleckstrin homology (PH) domain; Human ORP3 is proposed to function in regulating the cell-matrix and cell-cell adhesion. A proposed specific function for Human ORP6 was not found at present. Human ORP7is proposed to function in negatively regulating the Golgi soluble NSF attachment protein receptor (SNARE) of 28kDa (GS28) protein stability via sequestration of Golgi-associated ATPase enhancer of 16 kDa (GATE-16). ORP3 has 2 isoforms: the longer ORP3(1) and the shorter ORP3(2). ORP3(1), ORP6, and ORP7 all contain a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. The shorter ORP3(2) is missing the C-terminal portion of its OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270104 Cd Length: 123 Bit Score: 49.63 E-value: 4.23e-07
|
||||||||
PH_GPBP | cd13283 | Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called ... |
108-196 | 4.78e-07 | ||||
Goodpasture antigen binding protein Pleckstrin homology (PH) domain; The GPBP (also called Collagen type IV alpha-3-binding protein/hCERT; START domain-containing protein 11/StARD11; StAR-related lipid transfer protein 11) is a kinase that phosphorylates an N-terminal region of the alpha 3 chain of type IV collagen, which is commonly known as the goodpasture antigen. Its splice variant the ceramide transporter (CERT) mediates the cytosolic transport of ceramide. There have been additional splice variants identified, but all of them function as ceramide transport proteins. GPBP and CERT both contain an N-terminal PH domain, followed by a serine rich domain, and a C-terminal START domain. However, GPBP has an additional serine rich domain just upstream of its START domain. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270100 [Multi-domain] Cd Length: 100 Bit Score: 48.82 E-value: 4.78e-07
|
||||||||
FERM1_F1_Myosin-VII | cd17092 | FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, ... |
551-654 | 1.52e-06 | ||||
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain 1, F1 sub-domain, found in Myosin-VIIa, Myosin-VIIb, and similar proteins; This family includes two nontraditional members of the myosin superfamily, myosin-VIIa and myosin-VIIb. Myosin-VIIa, also termed myosin-7a (Myo7a), has been implicated in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations in the MYO7A gene may be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Myosin-VIIb, also termed myosin-7b (Myo7b), is a high duty ratio motor adapted for generating and maintaining tension. It associates with harmonin and ANKS4B to form a stable ternary complex for anchoring microvilli tip-link cadherins. Like other unconventional myosins, myosin-VII is composed of a conserved motor head, a neck region and a tail region containing two MyTH4 domains, a SH3 domain, and two FERM domains. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain of the first FERM domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Pssm-ID: 340612 Cd Length: 99 Bit Score: 47.25 E-value: 1.52e-06
|
||||||||
PH_IRS | cd01257 | Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate ... |
108-204 | 1.61e-06 | ||||
Insulin receptor substrate (IRS) pleckstrin homology (PH) domain; Insulin receptor substrate (IRS) molecules are mediators in insulin signaling and play a role in maintaining basic cellular functions such as growth and metabolism. They act as docking proteins between the insulin receptor and a complex network of intracellular signaling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified that differ as to tissue distribution, subcellular localization, developmental expression, binding to the insulin receptor, and interaction with SH2 domain-containing proteins. IRS molecules have an N-terminal PH domain, followed by an IRS-like PTB domain which has a PH-like fold. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.cytoskeletal associated molecules, and in lipid associated enzymes. Pssm-ID: 269959 Cd Length: 106 Bit Score: 47.28 E-value: 1.61e-06
|
||||||||
PH_Skap_family | cd13266 | Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor ... |
108-200 | 1.73e-06 | ||||
Src kinase-associated phosphoprotein family Pleckstrin homology (PH) domain; Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270086 Cd Length: 106 Bit Score: 47.52 E-value: 1.73e-06
|
||||||||
PH_KIFIA_KIFIB | cd01233 | KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ... |
108-198 | 1.77e-06 | ||||
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269939 Cd Length: 103 Bit Score: 47.20 E-value: 1.77e-06
|
||||||||
PH2_FGD4_insect-like | cd13238 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) ... |
109-194 | 2.39e-06 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia protein 4 pleckstrin homology (PH) domain, C-terminus, in insect and related arthropods; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. This cd contains insects, crustaceans, and chelicerates. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270058 Cd Length: 97 Bit Score: 46.87 E-value: 2.39e-06
|
||||||||
FERM_F0_F1 | cd01765 | FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain and F1 sub-domain, found ... |
552-633 | 3.01e-06 | ||||
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F0 sub-domain and F1 sub-domain, found in FERM (Four.1/Ezrin/Radixin/Moesin) family proteins; FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain is present at the N-terminus of a large and diverse group of proteins that mediate linkage of the cytoskeleton to the plasma membrane. FERM-containing proteins are ubiquitous components of the cytocortex and are involved in cell transport, cell structure and signaling functions. The FERM domain is made up of three sub-domains, F1, F2, and F3. The family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N), which is structurally similar to ubiquitin. Pssm-ID: 340464 Cd Length: 80 Bit Score: 46.04 E-value: 3.01e-06
|
||||||||
PH_PHLDB1_2 | cd14673 | Pleckstrin homology-like domain-containing family B member 2 pleckstrin homology (PH) domain; ... |
110-194 | 3.19e-06 | ||||
Pleckstrin homology-like domain-containing family B member 2 pleckstrin homology (PH) domain; PHLDB2 (also called LL5beta) and PHLDB1 (also called LL5alpha) are cytoskeleton- and membrane-associated proteins. PHLDB2 has been identified as a key component of the synaptic podosomes that play an important role in in postsynaptic maturation. Both are large proteins containing an N-terminal pleckstrin (PH) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270192 Cd Length: 105 Bit Score: 46.80 E-value: 3.19e-06
|
||||||||
PH_ORP9 | cd13290 | Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain; Human ORP9 ... |
110-195 | 3.52e-06 | ||||
Human Oxysterol binding protein related protein 9 Pleckstrin homology (PH) domain; Human ORP9 is proposed to function in regulation of Akt phosphorylation. ORP9 has 2 forms, a long (ORP9L) and a short (ORP9S). ORP9L contains an N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. ORP1S is truncated and contains a FFAT motif and an OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241444 Cd Length: 102 Bit Score: 46.28 E-value: 3.52e-06
|
||||||||
PH_PKB | cd01241 | Protein Kinase B-like pleckstrin homology (PH) domain; PKB (also called Akt), a member of the ... |
108-196 | 4.45e-06 | ||||
Protein Kinase B-like pleckstrin homology (PH) domain; PKB (also called Akt), a member of the AGC kinase family, is a phosphatidylinositol 3'-kinase (PI3K)-dependent Ser/Thr kinase which alters the activity of the targeted protein. The name AGC is based on the three proteins that it is most similar to cAMP-dependent protein kinase 1 (PKA; also known as PKAC), cGMP-dependent protein kinase (PKG; also known as CGK1) and protein kinase C (PKC). Human Akt has three isoforms derived for distinct genes: Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma. All Akts have an N-terminal PH domain with an activating Thr phosphorylation site, a kinase domain, and a short C-terminal regulatory tail with an activating Ser phosphorylation site. The PH domain recruits Akt to the plasma membrane by binding to phosphoinositides (PtdIns-3,4-P2) and is required for activation. The phosphorylation of Akt at its Thr and Ser phosphorylation sites leads to increased Akt activity toward forkhead transcription factors, the mammalian target of rapamycin (mTOR), and the Bcl-xL/Bcl-2-associated death promoter (BAD), all of which possess a consensus motif R-X-R-XX-ST-B (X = amino acid, B = bulky hydrophobic residue) for Akt phosphorylation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269947 Cd Length: 107 Bit Score: 46.09 E-value: 4.45e-06
|
||||||||
PH2_FGD5_FGD6 | cd13237 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin ... |
109-194 | 4.56e-06 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins 5 and 6 pleckstrin homology (PH) domain, C-terminus; FGD5 regulates promotes angiogenesis of vascular endothelial growth factor (VEGF) in vascular endothelial cells, including network formation, permeability, directional movement, and proliferation. The specific function of FGD6 is unknown. In general, FGDs have a RhoGEF (DH) domain, followed by a PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activate the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the PH domain is involved in intracellular targeting of the DH domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270057 Cd Length: 91 Bit Score: 45.87 E-value: 4.56e-06
|
||||||||
PH_Skap-hom_Skap2 | cd13381 | Src kinase-associated phosphoprotein homolog and Skap 2 Pleckstrin homology (PH) domain; ... |
108-199 | 1.30e-05 | ||||
Src kinase-associated phosphoprotein homolog and Skap 2 Pleckstrin homology (PH) domain; Adaptor protein Skap-hom, a homolog of Skap55, which interacts with actin and with ADAP (adhesion and degranulation promoting adapter protein) undergoes tyrosine phosphorylation in response to plating of bone marrow-derived macrophages on fibronectin. Skap-hom has an N-terminal coiled-coil conformation that is involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap-hom PH domain regulates intracellular targeting; its interaction with the DM domain inhibits Skap-hom actin-based ruffles in macrophages and its binding to 3'-phosphoinositides reverses this autoinhibition. The Skap-hom PH domain binds PI[3,4]P2 and PI[3,4,5]P3, but not to PI[3]P, PI[5]P, or PI[4,5]P2. Skap2 is a downstream target of Heat shock transcription factor 4 (HSF4) and functions in the regulation of actin reorganization during lens differentiation. It is thought that SKAP2 anchors the complex of tyrosine kinase adaptor protein 2 (NCK20/focal adhesion to fibroblast growth factor receptors at the lamellipodium in lens epithelial cells. Skap2 has an N-terminal coiled-coil conformation which interacts with the SH2 domain of NCK2, a central PH domain and a C-terminal SH3 domain that associates with ADAP (adhesion and degranulation promoting adapter protein)/FYB (the Fyn binding protein). Skap2 PH domain binds to membrane lipids. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Src kinase-associated phosphoprotein of 55 kDa (Skap55)/Src kinase-associated phosphoprotein 1 (Skap1), Skap2, and Skap-hom have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270181 Cd Length: 106 Bit Score: 44.95 E-value: 1.30e-05
|
||||||||
PH_ORP_plant | cd13294 | Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs ... |
110-196 | 1.52e-05 | ||||
Plant Oxysterol binding protein related protein Pleckstrin homology (PH) domain; Plant ORPs contain a N-terminal PH domain and a C-terminal OSBP-related domain. Not much is known about its specific function in plants to date. Members here include: Arabidopsis, spruce, and petunia. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241448 Cd Length: 100 Bit Score: 44.41 E-value: 1.52e-05
|
||||||||
FERM_F1_Myo10_like | cd17110 | FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in unconventional ... |
551-653 | 1.61e-05 | ||||
FERM (Four.1 protein, Ezrin, Radixin, Moesin) domain, F1 sub-domain, found in unconventional myosin-X and similar proteins; Myosin-X, also termed myosin-10 (Myo10), is an untraditional member of myosin superfamily. It is an actin-based motor protein that plays a critical role in diverse cellular motile events, such as filopodia formation/extension, phagocytosis, cell migration, and mitotic spindle maintenance, as well as a number of disease states including cancer metastasis and pathogen infection. Myosin-X functions as an important regulator of cytoskeleton that modulates cell motilities in many different cellular contexts. It regulates neuronal radial migration through interacting with N-cadherin. Like other unconventional myosins, Myosin-X is composed of a conserved motor head, a neck region and a variable tail. The neck region consists of three IQ motifs (light chain-binding sites), and a predicted stalk of coiled coil. The tail contains three PEST regions, three PH domains, a MyTH4 domain, and a FERM domain. The FERM domain is made up of three sub-domains, F1, F2, and F3. This family corresponds to the F1 sub-domain, which is also called the N-terminal ubiquitin-like structural domain of the FERM domain (FERM_N). Amoebozoan Dictyostelium discoideum myosin VII (DdMyo7) and uncharacterized pleckstrin homology domain-containing family H member 3 (PLEKHH3) are also included in this family. Like metazoan Myo10, DdMyo7 is essential for the extension of filopodia, plasma membrane protrusions filled with parallel bundles of F-actin. Pssm-ID: 340630 Cd Length: 97 Bit Score: 44.30 E-value: 1.61e-05
|
||||||||
PH2_PH_fungal | cd13299 | Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal ... |
104-198 | 1.69e-05 | ||||
Fungal proteins Pleckstrin homology (PH) domain, repeat 2; The functions of these fungal proteins are unknown, but they all contain 2 PH domains. This cd represents the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270111 Cd Length: 102 Bit Score: 44.54 E-value: 1.69e-05
|
||||||||
FERM_C-lobe | cd00836 | FERM domain C-lobe; The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N ... |
781-862 | 2.51e-05 | ||||
FERM domain C-lobe; The FERM domain has a cloverleaf tripart structure composed of: (1) FERM_N (A-lobe or F1); (2) FERM_M (B-lobe, or F2); and (3) FERM_C (C-lobe or F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. The FERM domain is found in the cytoskeletal-associated proteins such as ezrin, moesin, radixin, 4.1R, and merlin. These proteins provide a link between the membrane and cytoskeleton and are involved in signal transduction pathways. The FERM domain is also found in protein tyrosine phosphatases (PTPs), the tyrosine kinases FAK and JAK, in addition to other proteins involved in signaling. This domain is structurally similar to the PH and PTB domains and consequently is capable of binding to both peptides and phospholipids at different sites. Pssm-ID: 275389 Cd Length: 93 Bit Score: 43.52 E-value: 2.51e-05
|
||||||||
PH_SKIP | cd13309 | SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called ... |
108-204 | 2.97e-05 | ||||
SifA and kinesin-interacting protein Pleckstrin homology (PH) domain; SKIP (also called PLEKHM2/Pleckstrin homology domain-containing family M member 2) is a soluble cytosolic protein that contains a RUN domain and a PH domain separated by a unstructured linker region. SKIP is a target of the Salmonella effector protein SifA and the SifA-SKIP complex regulates kinesin-1 on the bacterial vacuole. The PH domain of SKIP binds to the N-terminal region of SifA while the N-terminus of SKIP is proposed to bind the TPR domain of the kinesin light chain. The opposite side of the SKIP PH domain is proposed to bind phosphoinositides. TSifA, SKIP, SseJ, and RhoA family GTPases are also thought to promote host membrane tubulation. Recently, it was shown that the lysosomal GTPase Arl8 binds to the kinesin-1 linker SKIP and that both are required for the normal intracellular distribution of lysosomes. Interestingly, two kinesin light chain binding motifs (WD) in SKIP have now been identified to match a consensus sequence for a kinesin light chain binding site found in several proteins including calsyntenin-1/alcadein, caytaxin, and vaccinia virus A36. SKIP has also been shown to interact with Rab1A. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270119 Cd Length: 103 Bit Score: 43.91 E-value: 2.97e-05
|
||||||||
PH_ORP10_ORP11 | cd13291 | Human Oxysterol binding protein (OSBP) related proteins 10 and 11 (ORP10 and ORP11) Pleckstrin ... |
110-168 | 3.22e-05 | ||||
Human Oxysterol binding protein (OSBP) related proteins 10 and 11 (ORP10 and ORP11) Pleckstrin homology (PH) domain; Human ORP10 is involvedt in intracellular transport or organelle positioning and is proposed to function as a regulator of cellular lipid metabolism. Human ORP11 localizes at the Golgi-late endosome interface and is thought to form a dimer with ORP9 functioning as an intracellular lipid sensor or transporter. Both ORP10 and ORP11 contain a N-terminal PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270106 Cd Length: 107 Bit Score: 43.82 E-value: 3.22e-05
|
||||||||
PH_Skap1 | cd13380 | Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 ... |
108-199 | 3.86e-05 | ||||
Src kinase-associated phosphoprotein 1 Pleckstrin homology (PH) domain; Adaptor protein Skap1 (also called Skap55/Src kinase-associated phosphoprotein of 55 kDa) and its partner, ADAP (adhesion and degranulation promoting adapter protein) help reorganize the cytoskeleton and/or promote integrin-mediated adhesion upon immunoreceptor activation. Skap1 is also involved in T Cell Receptor (TCR)-induced RapL-Rap1 complex formation and LFA-1 activation. Skap1 has an N-terminal coiled-coil conformation which is proposed to be involved in homodimer formation, a central PH domain and a C-terminal SH3 domain that associates with ADAP. The Skap1 PH domain plays a role in controlling integrin function via recruitment of ADAP-SKAP complexes to integrins as well as in controlling the ability of ADAP to interact with the CBM signalosome and regulate NF-kappaB. SKAP1 is necessary for RapL binding to membranes in a PH domain-dependent manner and the PI3K pathway. Skap adaptor proteins couple receptors to cytoskeletal rearrangements. Skap55/Skap1, Skap2, and Skap-homology (Skap-hom) have an N-terminal coiled-coil conformation, a central PH domain and a C-terminal SH3 domain. Their PH domains bind 3'-phosphoinositides as well as directly affecting targets such as in Skap55 where it directly affecting integrin regulation by ADAP and NF-kappaB activation or in Skap-hom where the dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch that controls ruffle formation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270180 Cd Length: 106 Bit Score: 43.69 E-value: 3.86e-05
|
||||||||
PH_Bem3 | cd13277 | Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain; Bud emergence in Saccharomyces ... |
108-198 | 6.87e-05 | ||||
Bud emergence protein 3 (Bem3) Pleckstrin homology (PH) domain; Bud emergence in Saccharomyces cerevisiae involves cell cycle-regulated reorganizations of cortical cytoskeletal elements and requires the action of the Rho-type GTPase Cdc42. Bem3 contains a RhoGAP domain and a PH domain. Though Bem3 and Bem2 both contain a RhoGAP, but only Bem3 is able to stimulate the hydrolysis of GTP on Cdc42. Bem3 is thought to be the GAP for Cdc42. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270096 Cd Length: 111 Bit Score: 43.04 E-value: 6.87e-05
|
||||||||
PH_Bud4 | cd13278 | Bud4 Pleckstrin homology (PH) domain; Bud4 is an anillin-like yeast protein involved in the ... |
104-206 | 1.21e-04 | ||||
Bud4 Pleckstrin homology (PH) domain; Bud4 is an anillin-like yeast protein involved in the formation and the disassembly of the double ring structure formed by the septins during cytokinesis. Bud4 acts with Bud3 and and in parallel with septin phosphorylation by the p21-activated kinase Cla4 and the septin-dependent kinase Gin4. Bud4 is regulated by the cyclin-dependent protein kinase Cdk1, the master regulator of cell cycle progression. Bud4 contains an anillin-like domain followed by a PH domain. In addition there are two consensus Cdk phosphorylation sites: one at the N-terminus and one right before the C-terminal PH domain. Anillins also have C-terminal PH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241432 Cd Length: 139 Bit Score: 42.96 E-value: 1.21e-04
|
||||||||
PH_Gab3 | cd13385 | Grb2-associated binding protein 3 pleckstrin homology (PH) domain; The Gab subfamily includes ... |
122-192 | 1.48e-04 | ||||
Grb2-associated binding protein 3 pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. The members in this cd include the Gab1, Gab2, and Gab3 proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270184 Cd Length: 125 Bit Score: 42.26 E-value: 1.48e-04
|
||||||||
PH_rhotekin2 | cd13249 | Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin ... |
109-194 | 1.60e-04 | ||||
Anillin Pleckstrin homology (PH) domain; Anillin (Rhotekin/RTKN; also called PLEKHK/Pleckstrin homology domain-containing family K) is an actin binding protein involved in cytokinesis. It interacts with GTP-bound Rho proteins and results in the inhibition of their GTPase activity. Dysregulation of the Rho signal transduction pathway has been implicated in many forms of cancer. Anillin proteins have a N-terminal HRI domain/ACC (anti-parallel coiled-coil) finger domain or Rho-binding domain binds small GTPases from the Rho family. The C-terminal PH domain helps target anillin to ectopic septin containing foci. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270069 Cd Length: 111 Bit Score: 41.98 E-value: 1.60e-04
|
||||||||
PH2_FGD1-4 | cd13236 | FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) ... |
109-194 | 7.92e-04 | ||||
FYVE, RhoGEF and PH domain containing/faciogenital dysplasia proteins pleckstrin homology (PH) domain, C-terminus; In general, FGDs have a RhoGEF (DH) domain, followed by an N-terminal PH domain, a FYVE domain and a C-terminal PH domain. All FGDs are guanine nucleotide exchange factors that activates the Rho GTPase Cdc42, an important regulator of membrane trafficking. The RhoGEF domain is responsible for GEF catalytic activity, while the N-terminal PH domain is involved in intracellular targeting of the DH domain. Not much is known about FGD2. FGD1 is the best characterized member of the group with mutations here leading to the X-linked disorder known as faciogenital dysplasia (FGDY). Both FGD1 and FGD3 are targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. However, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells and while FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. They also reciprocally regulated cell motility in inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration while FGD3 inhibited it. FGD1 and FGD3 therefore play different roles to regulate cellular functions, even though their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP). FGD4 is one of the genes associated with Charcot-Marie-Tooth neuropathy type 4 (CMT4), a group of progressive motor and sensory axonal and demyelinating neuropathies that are distinguished from other forms of CMT by autosomal recessive inheritance. Those affected have distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270056 Cd Length: 105 Bit Score: 39.64 E-value: 7.92e-04
|
||||||||
PH_CpORP2-like | cd13293 | Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) ... |
110-195 | 1.35e-03 | ||||
Cryptosporidium-like Oxysterol binding protein related protein 2 Pleckstrin homology (PH) domain; There are 2 types of ORPs found in Cryptosporidium: CpORP1 and CpORP2. Cryptosporium differs from other apicomplexans like Plasmodium, Toxoplasma, and Eimeria which possess only a single long-type ORP consisting of an N-terminal PH domain followed by a C-terminal ligand binding (LB) domain. CpORP2 is like this, but CpORP1 differs and has a truncated N-terminus resulting in only having a LB domain present. The exact functions of these proteins are largely unknown though CpORP1 is thought to be involved in lipid transport across the parasitophorous vacuole membrane. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241447 Cd Length: 88 Bit Score: 38.46 E-value: 1.35e-03
|
||||||||
PH_CNK_mammalian-like | cd01260 | Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; ... |
122-202 | 2.00e-03 | ||||
Connector enhancer of KSR (Kinase suppressor of ras) (CNK) pleckstrin homology (PH) domain; CNK family members function as protein scaffolds, regulating the activity and the subcellular localization of RAS activated RAF. There is a single CNK protein present in Drosophila and Caenorhabditis elegans in contrast to mammals which have 3 CNK proteins (CNK1, CNK2, and CNK3). All of the CNK members contain a sterile a motif (SAM), a conserved region in CNK (CRIC) domain, and a PSD-95/DLG-1/ZO-1 (PDZ) domain, and, with the exception of CNK3, a PH domain. A CNK2 splice variant CNK2A also has a PDZ domain-binding motif at its C terminus and Drosophila CNK (D-CNK) also has a domain known as the Raf-interacting region (RIR) that mediates binding of the Drosophila Raf kinase. This cd contains CNKs from mammals, chickens, amphibians, fish, and crustacea. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269962 Cd Length: 114 Bit Score: 38.93 E-value: 2.00e-03
|
||||||||
PH_RIP | cd01236 | Rho-Interacting Protein Pleckstrin homology (PH) domain; RIP1-RhoGDI2 was obtained in a screen ... |
118-195 | 3.84e-03 | ||||
Rho-Interacting Protein Pleckstrin homology (PH) domain; RIP1-RhoGDI2 was obtained in a screen for proteins that bind to wild-type RhoA. RIP2, RIP3, and RIP4 were isolated from cDNA libraries with constitutively active V14RhoA (containing the C190R mutation). RIP2 represents a novel GDP/GTP exchange factor (RhoGEF), while RIP3 (p116Rip) and RIP4 are thought to be structural proteins. RhoGEF contains a Dbl(DH)/PH region, a a zinc finger motif, a leucine-rich domain, and a coiled-coil region. The last 2 domains are thought to be involved in mediating protein-protein interactions. RIP3 is a negative regulator of RhoA signaling that inhibits, either directly or indirectly, RhoA-stimulated actomyosin contractility. In plants RIP3 is localized at microtubules and interacts with the kinesin-13 family member AtKinesin-13A, suggesting a role for RIP3 in microtubule reorganization and a possible function in Rho proteins of plants (ROP)-regulated polar growth. It has a PH domain, two proline-rich regions which are putative binding sites for SH3 domains, and a COOH-terminal coiled-coil region which overlaps with the RhoA-binding region. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269942 Cd Length: 136 Bit Score: 38.57 E-value: 3.84e-03
|
||||||||
PH_PLEKHD1 | cd13281 | Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH ... |
107-200 | 5.39e-03 | ||||
Pleckstrin homology (PH) domain containing, family D (with coiled-coil domains) member 1 PH domain; Human PLEKHD1 (also called UPF0639, pleckstrin homology domain containing, family D (with M protein repeats) member 1) is a single transcript and contains a single PH domain. PLEKHD1 is conserved in human, chimpanzee, , dog, cow, mouse, chicken, zebrafish, and Caenorhabditis elegans. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270099 Cd Length: 139 Bit Score: 38.07 E-value: 5.39e-03
|
||||||||
Blast search parameters | ||||
|