hypothetical protein SODALDRAFT_362931 [Sodiomyces alkalinus F11]
Qc-SNARE protein( domain architecture ID 10160890)
Qc-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein similar to yeast vacuolar morphogenesis protein 7 (Vam7p) which functions with Vam3p in vacuolar protein trafficking; has an an N-terminal PX which binds phosphoinositide
List of domain hits
Name | Accession | Description | Interval | E-value | |||
PX_SNARE | cd06897 | The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi; The PX domain ... |
87-196 | 1.20e-51 | |||
The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. This subfamily is composed of fungal proteins similar to Saccharomyces cerevisiae Vam7p. They contain an N-terminal PX domain and a C-terminal SNARE domain. The SNARE (Soluble NSF attachment protein receptor) family of proteins are integral membrane proteins that serve as key factors for vesicular trafficking. Vam7p is anchored at the vacuolar membrane through the specific interaction of its PX domain with phosphatidylinositol-3-phosphate (PI3P) present in bilayers. It plays an essential role in vacuole fusion. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. : Pssm-ID: 132807 Cd Length: 108 Bit Score: 174.00 E-value: 1.20e-51
|
|||||||
SNARE_VAM7 | cd15858 | SNARE motif of VAM7; Fungal VAM7 (vacuolar morphogenesis protein 7) is a member of the Qc ... |
411-456 | 1.82e-21 | |||
SNARE motif of VAM7; Fungal VAM7 (vacuolar morphogenesis protein 7) is a member of the Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein family involved in vacuolar protein transport and membrane fusion. SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. : Pssm-ID: 277211 [Multi-domain] Cd Length: 59 Bit Score: 87.94 E-value: 1.82e-21
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PX_SNARE | cd06897 | The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi; The PX domain ... |
87-196 | 1.20e-51 | |||
The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. This subfamily is composed of fungal proteins similar to Saccharomyces cerevisiae Vam7p. They contain an N-terminal PX domain and a C-terminal SNARE domain. The SNARE (Soluble NSF attachment protein receptor) family of proteins are integral membrane proteins that serve as key factors for vesicular trafficking. Vam7p is anchored at the vacuolar membrane through the specific interaction of its PX domain with phosphatidylinositol-3-phosphate (PI3P) present in bilayers. It plays an essential role in vacuole fusion. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. Pssm-ID: 132807 Cd Length: 108 Bit Score: 174.00 E-value: 1.20e-51
|
|||||||
SNARE_VAM7 | cd15858 | SNARE motif of VAM7; Fungal VAM7 (vacuolar morphogenesis protein 7) is a member of the Qc ... |
411-456 | 1.82e-21 | |||
SNARE motif of VAM7; Fungal VAM7 (vacuolar morphogenesis protein 7) is a member of the Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein family involved in vacuolar protein transport and membrane fusion. SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Pssm-ID: 277211 [Multi-domain] Cd Length: 59 Bit Score: 87.94 E-value: 1.82e-21
|
|||||||
PX | smart00312 | PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function ... |
103-194 | 4.45e-15 | |||
PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function present in phox proteins, PLD isoforms, a PI3K isoform. Pssm-ID: 214610 Cd Length: 105 Bit Score: 71.22 E-value: 4.45e-15
|
|||||||
PX | pfam00787 | PX domain; PX domains bind to phosphoinositides. |
114-179 | 2.16e-13 | |||
PX domain; PX domains bind to phosphoinositides. Pssm-ID: 459940 Cd Length: 84 Bit Score: 65.73 E-value: 2.16e-13
|
|||||||
COG5391 | COG5391 | Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function ... |
65-195 | 4.36e-11 | |||
Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function prediction only]; Pssm-ID: 227680 [Multi-domain] Cd Length: 524 Bit Score: 65.59 E-value: 4.36e-11
|
|||||||
t_SNARE | smart00397 | Helical region found in SNAREs; All alpha-helical motifs that form twisted and parallel ... |
407-455 | 1.61e-07 | |||
Helical region found in SNAREs; All alpha-helical motifs that form twisted and parallel four-helix bundles in target soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor proteins. This motif found in "Q-SNAREs". Pssm-ID: 197699 [Multi-domain] Cd Length: 66 Bit Score: 48.73 E-value: 1.61e-07
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PX_SNARE | cd06897 | The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi; The PX domain ... |
87-196 | 1.20e-51 | |||
The phosphoinositide binding Phox Homology domain of SNARE proteins from fungi; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. This subfamily is composed of fungal proteins similar to Saccharomyces cerevisiae Vam7p. They contain an N-terminal PX domain and a C-terminal SNARE domain. The SNARE (Soluble NSF attachment protein receptor) family of proteins are integral membrane proteins that serve as key factors for vesicular trafficking. Vam7p is anchored at the vacuolar membrane through the specific interaction of its PX domain with phosphatidylinositol-3-phosphate (PI3P) present in bilayers. It plays an essential role in vacuole fusion. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. Pssm-ID: 132807 Cd Length: 108 Bit Score: 174.00 E-value: 1.20e-51
|
|||||||
SNARE_VAM7 | cd15858 | SNARE motif of VAM7; Fungal VAM7 (vacuolar morphogenesis protein 7) is a member of the Qc ... |
411-456 | 1.82e-21 | |||
SNARE motif of VAM7; Fungal VAM7 (vacuolar morphogenesis protein 7) is a member of the Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein family involved in vacuolar protein transport and membrane fusion. SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Pssm-ID: 277211 [Multi-domain] Cd Length: 59 Bit Score: 87.94 E-value: 1.82e-21
|
|||||||
PX_domain | cd06093 | The Phox Homology domain, a phosphoinositide binding module; The PX domain is a ... |
87-180 | 1.95e-17 | |||
The Phox Homology domain, a phosphoinositide binding module; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to membranes. Proteins containing PX domains interact with PIs and have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. Many members of this superfamily bind phosphatidylinositol-3-phosphate (PI3P) but in some cases, other PIs such as PI4P or PI(3,4)P2, among others, are the preferred substrates. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction, as in the cases of p40phox, p47phox, and some sorting nexins (SNXs). The PX domain is conserved from yeast to humans and is found in more than 100 proteins. The majority of PX domain-containing proteins are SNXs, which play important roles in endosomal sorting. Pssm-ID: 132768 [Multi-domain] Cd Length: 106 Bit Score: 78.17 E-value: 1.95e-17
|
|||||||
PX | smart00312 | PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function ... |
103-194 | 4.45e-15 | |||
PhoX homologous domain, present in p47phox and p40phox; Eukaryotic domain of unknown function present in phox proteins, PLD isoforms, a PI3K isoform. Pssm-ID: 214610 Cd Length: 105 Bit Score: 71.22 E-value: 4.45e-15
|
|||||||
SNARE_Qc | cd15841 | SNARE motif, subgroup Qc; SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein ... |
411-456 | 8.88e-15 | |||
SNARE motif, subgroup Qc; SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Examples for members of the Qc SNAREs are C-terminal domains of SNAP23 and SNAP25, syntaxin 8, syntaxin 6, and Bet1. Pssm-ID: 277194 [Multi-domain] Cd Length: 59 Bit Score: 69.12 E-value: 8.88e-15
|
|||||||
SNARE_SYN8 | cd15859 | SNARE motif of SYN8; Fungal SYN8 is a member of the Qc subfamily of SNARE (soluble ... |
411-455 | 1.44e-13 | |||
SNARE motif of SYN8; Fungal SYN8 is a member of the Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein family presetn in the endosomes. SNARE proteins consist of coiled-coil helices (called SNARE motifs) which mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qc-, as well as Qa- and Qb-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Pssm-ID: 277212 Cd Length: 68 Bit Score: 66.02 E-value: 1.44e-13
|
|||||||
PX | pfam00787 | PX domain; PX domains bind to phosphoinositides. |
114-179 | 2.16e-13 | |||
PX domain; PX domains bind to phosphoinositides. Pssm-ID: 459940 Cd Length: 84 Bit Score: 65.73 E-value: 2.16e-13
|
|||||||
PX_SNX1_2_like | cd06859 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 1 and 2; The PX domain is ... |
101-193 | 2.38e-12 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 1 and 2; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX1, SNX2, and similar proteins. They harbor a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. Both domains have been shown to determine the specific membrane-targeting of SNX1. SNX1 and SNX2 are components of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures effcient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. Pssm-ID: 132769 [Multi-domain] Cd Length: 114 Bit Score: 63.75 E-value: 2.38e-12
|
|||||||
PX_SNX22 | cd06880 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 22; The PX domain is a ... |
87-175 | 1.42e-11 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 22; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX22 may be involved in recruiting other proteins to the membrane via protein-protein and protein-ligand interaction. The biological function of SNX22 is not yet known. Pssm-ID: 132790 Cd Length: 110 Bit Score: 61.52 E-value: 1.42e-11
|
|||||||
COG5391 | COG5391 | Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function ... |
65-195 | 4.36e-11 | |||
Phox homology (PX) domain protein [Intracellular trafficking and secretion / General function prediction only]; Pssm-ID: 227680 [Multi-domain] Cd Length: 524 Bit Score: 65.59 E-value: 4.36e-11
|
|||||||
SNARE_Syntaxin8 | cd15852 | SNARE motif of syntaxin 8; Syntaxin 8 forms a complex with syntaxin 7 (Qa), Vti1b (Qb) and ... |
411-456 | 1.09e-10 | |||
SNARE motif of syntaxin 8; Syntaxin 8 forms a complex with syntaxin 7 (Qa), Vti1b (Qb) and either VAMP7 or VAMP8 (R-SNARE) and is involved in the transport from early endosomes to the lysosome. Syntaxin 8 is a member of the Qc subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Pssm-ID: 277205 [Multi-domain] Cd Length: 59 Bit Score: 57.24 E-value: 1.09e-10
|
|||||||
PX_Vps5p | cd06861 | The phosphoinositide binding Phox Homology domain of yeast sorting nexin Vps5p; The PX domain ... |
101-193 | 6.43e-09 | |||
The phosphoinositide binding Phox Homology domain of yeast sorting nexin Vps5p; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Vsp5p is the yeast counterpart of human SNX1 and is part of the retromer complex, which functions in the endosome-to-Golgi retrieval of vacuolar protein sorting receptor Vps10p, the Golgi-resident membrane protein A-ALP, and endopeptidase Kex2. The PX domain of Vps5p binds phosphatidylinositol-3-phosphate (PI3P). Similar to SNX1, Vps5p contains a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. Both domains have been shown to determine the specific membrane-targeting of SNX1. Pssm-ID: 132771 Cd Length: 112 Bit Score: 53.90 E-value: 6.43e-09
|
|||||||
PX_SNX10 | cd06898 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 10; The PX domain is a ... |
87-180 | 9.31e-09 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 10; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX10 may be involved in the regulation of endosome homeostasis. Its expression induces the formation of giant vacuoles in mammalian cells. Pssm-ID: 132808 Cd Length: 113 Bit Score: 53.49 E-value: 9.31e-09
|
|||||||
PX_SNX27 | cd06886 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 27; The PX domain is a ... |
85-178 | 1.85e-08 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 27; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX27 contains an N-terminal PDZ domain followed by a PX domain and a Ras-Associated (RA) domain. It binds G protein-gated potassium (Kir3) channels, which play a role in neuronal excitability control, through its PDZ domain. SNX27 downregulates Kir3 channels by promoting their movement in the endosome, reducing surface expression and increasing degradation. SNX27 also associates with 5-hydroxytryptamine type 4 receptor (5-HT4R), cytohesin associated scaffolding protein (CASP), and diacylglycerol kinase zeta, and may play a role in their intracellular trafficking and endocytic recycling. The SNX27 PX domain preferentially binds to phosphatidylinositol-3-phosphate (PI3P) and is important for targeting to the early endosome. Pssm-ID: 132796 Cd Length: 106 Bit Score: 52.41 E-value: 1.85e-08
|
|||||||
PX_IRAS | cd06875 | The phosphoinositide binding Phox Homology domain of the Imidazoline Receptor ... |
84-172 | 1.91e-08 | |||
The phosphoinositide binding Phox Homology domain of the Imidazoline Receptor Antisera-Selected; The PX domain is a phosphoinositide binding (PI) module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Imidazoline Receptor Antisera-Selected (IRAS), also called nischarin, contains an N-terminal PX domain, leucine rich repeats, and a predicted coiled coil domain. The PX domain of IRAS binds to phosphatidylinositol-3-phosphate in membranes. Together with the coiled coil domain, it is essential for the localization of IRAS to endosomes. IRAS has been shown to interact with integrin and inhibit cell migration. Its interaction with alpha5 integrin causes a redistribution of the receptor from the cell surface to endosomal structures, suggesting that IRAS may function as a sorting nexin (SNX) which regulates the endosomal trafficking of integrin. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Pssm-ID: 132785 Cd Length: 116 Bit Score: 52.67 E-value: 1.91e-08
|
|||||||
PX_YPT35 | cd07280 | The phosphoinositide binding Phox Homology domain of the fungal protein YPT35; The PX domain ... |
86-193 | 3.60e-08 | |||
The phosphoinositide binding Phox Homology domain of the fungal protein YPT35; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. This subfamily is composed of YPT35 proteins from the fungal subkingdom Dikarya. The PX domain is involved in targeting of proteins to PI-enriched membranes, and may also be involved in protein-protein interaction. The PX domain of YPT35 binds to phosphatidylinositol 3-phosphate (PI3P). It also serves as a protein interaction domain, binding to members of the Yip1p protein family, which localize to the ER and Golgi. YPT35 is mainly associated with endosomes and together with Yip1p proteins, may be involved in a specific function in the endocytic pathway. Pssm-ID: 132813 Cd Length: 120 Bit Score: 52.33 E-value: 3.60e-08
|
|||||||
PX_SNX4 | cd06864 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 4; The PX domain is a ... |
86-179 | 4.05e-08 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 4; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX4 is involved in recycling traffic from the sorting endosome (post-Golgi endosome) back to the late Golgi. It shows a similar domain architecture as SNX1-2, among others, containing a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. SNX4 is implicated in the regulation of plasma membrane receptor trafficking and interacts with receptors for EGF, insulin, platelet-derived growth factor and the long form of the leptin receptor. Pssm-ID: 132774 Cd Length: 129 Bit Score: 52.37 E-value: 4.05e-08
|
|||||||
PX_RUN | cd07277 | The phosphoinositide binding Phox Homology domain of uncharacterized proteins containing PX ... |
88-175 | 9.83e-08 | |||
The phosphoinositide binding Phox Homology domain of uncharacterized proteins containing PX and RUN domains; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to PI-enriched membranes. Members in this subfamily are uncharacterized proteins containing an N-terminal RUN domain and a C-terminal PX domain. PX domain harboring proteins have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction. The RUN domain is found in GTPases in the Rap and Rab families and may play a role in Ras-like signaling pathways. Pssm-ID: 132810 Cd Length: 118 Bit Score: 50.81 E-value: 9.83e-08
|
|||||||
PX_SNX16 | cd07276 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 16; The PX domain is a ... |
99-180 | 1.06e-07 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 16; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX16 contains a central PX domain followed by a coiled-coil region. SNX16 is localized in early and recycling endosomes through the binding of its PX domain to phosphatidylinositol-3-phosphate (PI3P). It plays a role in epidermal growth factor (EGF) signaling by regulating EGF receptor membrane trafficking. Pssm-ID: 132809 Cd Length: 110 Bit Score: 50.49 E-value: 1.06e-07
|
|||||||
SNARE_Syntaxin6 | cd15851 | SNARE motif of syntaxin 6; Syntaxin 6 forms a complex with syntaxin 16 (Qa), Vti1a (Qb) and ... |
411-456 | 1.56e-07 | |||
SNARE motif of syntaxin 6; Syntaxin 6 forms a complex with syntaxin 16 (Qa), Vti1a (Qb) and VAMP4 (R-SNARE) and is involved in the regulation of recycling of early endosomes to the trans-Golgi network (TGN). Syntaxin 6 and its yeast homolog TLG1 are members of the Qc subgroup of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which consist of coiled-coil helices (called SNARE motifs) that mediate the interactions between SNARE proteins, and a transmembrane domain. The SNARE complexes mediate membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Pssm-ID: 277204 Cd Length: 66 Bit Score: 48.64 E-value: 1.56e-07
|
|||||||
t_SNARE | smart00397 | Helical region found in SNAREs; All alpha-helical motifs that form twisted and parallel ... |
407-455 | 1.61e-07 | |||
Helical region found in SNAREs; All alpha-helical motifs that form twisted and parallel four-helix bundles in target soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor proteins. This motif found in "Q-SNAREs". Pssm-ID: 197699 [Multi-domain] Cd Length: 66 Bit Score: 48.73 E-value: 1.61e-07
|
|||||||
PX_CISK | cd06870 | The phosphoinositide binding Phox Homology Domain of Cytokine-Independent Survival Kinase; The ... |
84-195 | 3.95e-07 | |||
The phosphoinositide binding Phox Homology Domain of Cytokine-Independent Survival Kinase; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Cytokine-independent survival kinase (CISK), also called Serum- and Glucocorticoid-induced Kinase 3 (SGK3), plays a role in cell growth and survival. It is expressed in most tissues and is most abundant in the embryo and adult heart and spleen. It was originally discovered in a screen for antiapoptotic genes. It phosphorylates and inhibits the proapoptotic proteins, Bad and FKHRL1. CISK/SGK3 also regulates many transporters, ion channels, and receptors. It plays a critical role in hair follicle morphogenesis and hair cycling. N-terminal to a catalytic kinase domain, CISK contains a PX domain which binds highly phosphorylated PIs, directs membrane localization, and regulates the enzyme's activity. Pssm-ID: 132780 Cd Length: 109 Bit Score: 48.94 E-value: 3.95e-07
|
|||||||
PX_SNX17_31 | cd06885 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 17 and 31; The PX domain ... |
88-180 | 4.54e-07 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 17 and 31; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Members of this subfamily include sorting nexin 17 (SNX17), SNX31, and similar proteins. They contain an N-terminal PX domain followed by a truncated FERM (4.1, ezrin, radixin, and moesin) domain and a unique C-terminal region. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX17 is known to regulate the trafficking and processing of a number of proteins. It binds some members of the low-density lipoprotein receptor (LDLR) family such as LDLR, VLDLR, ApoER2, and others, regulating their endocytosis. It also binds P-selectin and may regulate its lysosomal degradation. SNX17 is highly expressed in neurons. It binds amyloid precursor protein (APP) and may be involved in its intracellular trafficking and processing to amyloid beta peptide, which plays a central role in the pathogenesis of Alzheimer's disease. The biological function of SNX31 is unknown. Pssm-ID: 132795 Cd Length: 104 Bit Score: 48.48 E-value: 4.54e-07
|
|||||||
PX_SNX15_like | cd06881 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 15-like proteins; The PX ... |
99-179 | 4.67e-07 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 15-like proteins; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Members of this subfamily have similarity to sorting nexin 15 (SNX15), which contains an N-terminal PX domain and a C-terminal Microtubule Interacting and Trafficking (MIT) domain. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNX15 plays a role in protein trafficking processes in the endocytic pathway and the trans-Golgi network. The PX domain of SNX15 interacts with the PDGF receptor and is responsible for the membrane association of the protein. Other members of this subfamily contain an additional C-terminal kinase domain, similar to human RPK118, which binds sphingosine kinase and the antioxidant peroxiredoxin-3 (PRDX3). RPK118 may be involved in the transport of proteins such as PRDX3 from the cytoplasm to its site of function in the mitochondria. Pssm-ID: 132791 Cd Length: 117 Bit Score: 48.86 E-value: 4.67e-07
|
|||||||
PX_MDM1p | cd06876 | The phosphoinositide binding Phox Homology domain of yeast MDM1p; The PX domain is a ... |
86-193 | 8.00e-07 | |||
The phosphoinositide binding Phox Homology domain of yeast MDM1p; The PX domain is a phosphoinositide binding (PI) module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Yeast MDM1p is a filament-like protein localized in punctate structures distributed throughout the cytoplasm. It plays an important role in nuclear and mitochondrial transmission to daughter buds. Members of this subfamily show similar domain architectures as some sorting nexins (SNXs). Some members are similar to SNX19 in that they contain an N-terminal PXA domain, a central PX domain, and a C-terminal domain that is conserved in some SNXs. Others are similar to SNX13 and SNX14, which also harbor these three domains as well as a regulator of G protein signaling (RGS) domain in between the PXA and PX domains. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Pssm-ID: 132786 Cd Length: 133 Bit Score: 48.85 E-value: 8.00e-07
|
|||||||
PX_Grd19 | cd07295 | The phosphoinositide binding Phox Homology domain of fungal Grd19; The PX domain is a ... |
103-179 | 1.18e-06 | |||
The phosphoinositide binding Phox Homology domain of fungal Grd19; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Grd19 is involved in the localization of late Golgi membrane proteins in yeast. Grp19 associates with the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, and functions as a cargo-specific adaptor for the retromer. Pssm-ID: 132828 Cd Length: 116 Bit Score: 47.88 E-value: 1.18e-06
|
|||||||
SNARE_SEC9C | cd15857 | C-terminal SNARE motif of SEC9; C-terminal SNARE motif of fungal SEC9, a member of the Qb/Qc ... |
413-456 | 1.40e-06 | |||
C-terminal SNARE motif of SEC9; C-terminal SNARE motif of fungal SEC9, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SEC9 interacts with Sso1(Qa) and the lysosomal R-SNARE Snc1. The complex plays a role in post-Golgi transport. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP25, SNAP47 and SNAP29. Pssm-ID: 277210 Cd Length: 59 Bit Score: 45.64 E-value: 1.40e-06
|
|||||||
PX_Atg24p | cd06863 | The phosphoinositide binding Phox Homology domain of yeast Atg24p, an autophagic degradation ... |
98-180 | 1.46e-06 | |||
The phosphoinositide binding Phox Homology domain of yeast Atg24p, an autophagic degradation protein; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. The yeast Atg24p is a sorting nexin (SNX) which is involved in membrane fusion events at the vacuolar surface during pexophagy. This is facilitated via binding of Atg24p to phosphatidylinositol 3-phosphate (PI3P) through its PX domain. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Pssm-ID: 132773 Cd Length: 118 Bit Score: 47.67 E-value: 1.46e-06
|
|||||||
PX_SNX7_30_like | cd06860 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 7 and 30; The PX domain is ... |
117-179 | 1.93e-06 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 7 and 30; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. This subfamily consists of SNX7, SNX30, and similar proteins. They harbor a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to the sorting nexins SNX1-2, SNX4-6, SNX8, and SNX32. Both domains have been shown to determine the specific membrane-targeting of SNX1. The specific function of the sorting nexins in this subfamily has yet to be elucidated. Pssm-ID: 132770 Cd Length: 116 Bit Score: 46.95 E-value: 1.93e-06
|
|||||||
PX_KIF16B_SNX23 | cd06874 | The phosphoinositide binding Phox Homology domain of KIF16B kinesin or Sorting Nexin 23; The ... |
88-173 | 2.29e-06 | |||
The phosphoinositide binding Phox Homology domain of KIF16B kinesin or Sorting Nexin 23; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. KIF16B, also called sorting nexin 23 (SNX23), is a family-3 kinesin which harbors an N-terminal kinesin motor domain containing ATP and microtubule binding sites, a ForkHead Associated (FHA) domain, and a C-terminal PX domain. The PX domain of KIF16B binds to phosphatidylinositol-3-phosphate (PI3P) in early endosomes and plays a role in the transport of early endosomes to the plus end of microtubules. By regulating early endosome plus end motility, KIF16B modulates the balance between recycling and degradation of receptors. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Pssm-ID: 132784 Cd Length: 127 Bit Score: 47.38 E-value: 2.29e-06
|
|||||||
PX_SNX2 | cd07282 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 2; The PX domain is a ... |
103-179 | 3.24e-06 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 2; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX2 is a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures efficient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. Similar to SNX1, SNX2 contains a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. The PX domain of SNX2 preferentially binds phosphatidylinositol-3-phosphate (PI3P), but not PI(3,4,5)P3. Studies on mice deficient with SNX1 and/or SNX2 suggest that they provide an essential function in embryogenesis and are functionally redundant. Pssm-ID: 132815 Cd Length: 124 Bit Score: 46.59 E-value: 3.24e-06
|
|||||||
PX_SNX19 | cd06893 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 19; The PX domain is a ... |
88-180 | 3.30e-06 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 19; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX19 contains an N-terminal PXA domain, a central PX domain, and a C-terminal domain that is conserved in some SNXs. These domains are also found in SNX13 and SNX14, which also contain a regulator of G protein signaling (RGS) domain in between the PXA and PX domains. SNX19 interacts with IA-2, a major autoantigen found in type-1 diabetes. It inhibits the conversion of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to PI(3,4,5)P3, which leads in the decrease of protein phosphorylation in the Akt signaling pathway, resulting in apoptosis. SNX19 may also be implicated in coronary heart disease and thyroid oncocytic tumors. Pssm-ID: 132803 [Multi-domain] Cd Length: 132 Bit Score: 46.77 E-value: 3.30e-06
|
|||||||
PX_SNX_like | cd06865 | The phosphoinositide binding Phox Homology domain of SNX-like proteins; The PX domain is a ... |
90-196 | 6.94e-06 | |||
The phosphoinositide binding Phox Homology domain of SNX-like proteins; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. This subfamily is composed of uncharacterized proteins, predominantly from plants, with similarity to sorting nexins. A few members show a similar domain architecture as a subfamily of sorting nexins, containing a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain. The PX-BAR structural unit is known to determine specific membrane localization. Pssm-ID: 132775 Cd Length: 120 Bit Score: 45.49 E-value: 6.94e-06
|
|||||||
PX_SNX41_42 | cd06867 | The phosphoinositide binding Phox Homology domain of fungal Sorting Nexins 41 and 42; The PX ... |
87-194 | 8.43e-06 | |||
The phosphoinositide binding Phox Homology domain of fungal Sorting Nexins 41 and 42; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX41 and SNX42 (also called Atg20p) form dimers with SNX4, and are required in protein recycling from the sorting endosome (post-Golgi endosome) back to the late Golgi in yeast. Pssm-ID: 132777 Cd Length: 112 Bit Score: 45.32 E-value: 8.43e-06
|
|||||||
PX_SNX14 | cd06877 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 14; The PX domain is a ... |
115-179 | 1.34e-05 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 14; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX14 may be involved in recruiting other proteins to the membrane via protein-protein and protein-ligand interaction. It is expressed in the embryonic nervous system of mice, and is co-expressed in the motoneurons and the anterior pituary with Islet-1. SNX14 shows a similar domain architecture as SNX13, containing an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. Pssm-ID: 132787 Cd Length: 119 Bit Score: 44.67 E-value: 1.34e-05
|
|||||||
PX_SNX20_21_like | cd07279 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 20 and 21; The PX domain ... |
94-196 | 1.35e-05 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 20 and 21; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX20, SNX21, and similar proteins. SNX20 interacts with P-Selectin glycoprotein ligand-1 (PSGL-1), a surface-expressed mucin that acts as a ligand for the selectin family of adhesion proteins. It may function in the sorting and cycling of PSGL-1 into endosomes. SNX21, also called SNX-L, is distinctly and highly-expressed in fetal liver and may be involved in protein sorting and degradation during embryonic liver development. Pssm-ID: 132812 Cd Length: 112 Bit Score: 44.63 E-value: 1.35e-05
|
|||||||
PX_SNX3_like | cd06894 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 3 and related proteins; The ... |
87-179 | 1.36e-05 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 3 and related proteins; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily is composed of SNX3, SNX12, and fungal Grd19. Grd19 is involved in the localization of late Golgi membrane proteins in yeast. SNX3/Grp19 associates with the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, and functions as a cargo-specific adaptor for the retromer. Pssm-ID: 132804 Cd Length: 123 Bit Score: 44.76 E-value: 1.36e-05
|
|||||||
PX_SNX3 | cd07293 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 3; The PX domain is a ... |
87-179 | 1.47e-05 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 3; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX3 associates with early endosomes through a PX domain-mediated interaction with phosphatidylinositol-3-phosphate (PI3P). It associates with the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi, and functions as a cargo-specific adaptor for the retromer. SNX3 is required for the formation of multivesicular bodies, which function as transport intermediates to late endosomes. It also promotes cell surface expression of the amiloride-sensitive epithelial Na+ channel (ENaC), which is critical in sodium homeostasis and maintenance of extracellular fluid volume. Pssm-ID: 132826 Cd Length: 123 Bit Score: 44.98 E-value: 1.47e-05
|
|||||||
PX_SNX13 | cd06873 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 13; The PX domain is a ... |
79-175 | 4.57e-05 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 13; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX13, also called RGS-PX1, contains an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. It specifically binds to the stimulatory subunit of the heterotrimeric G protein G(alpha)s, serving as its GTPase activating protein, through the RGS domain. It preferentially binds phosphatidylinositol-3-phosphate (PI3P) through the PX domain and is localized in early endosomes. SNX13 is involved in endosomal sorting of EGFR into multivesicular bodies (MVB) for delivery to the lysosome. Pssm-ID: 132783 Cd Length: 120 Bit Score: 43.41 E-value: 4.57e-05
|
|||||||
PX_SNX1 | cd07281 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 1; The PX domain is a ... |
103-179 | 5.37e-05 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 1; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX1 is both membrane associated and a cytosolic protein that exists as a tetramer in protein complexes. It can associate reversibly with membranes of the endosomal compartment, thereby coating these vesicles. SNX1 is a component of the retromer complex, a membrane coat multimeric complex required for endosomal retrieval of lysosomal hydrolase receptors to the Golgi. The retromer consists of a cargo-recognition subcomplex and a subcomplex formed by a dimer of sorting nexins (SNX1 and/or SNX2), which ensures efficient cargo sorting by facilitating proper membrane localization of the cargo-recognition subcomplex. SNX1 contains a Bin/Amphiphysin/Rvs (BAR) domain C-terminal to the PX domain. The PX domain of SNX1 specifically binds phosphatidylinositol-3-phosphate (PI3P) and PI(3,5)P2, while the BAR domain detects membrane curvature. Both domains help determine the specific membrane-targeting of SNX1, which is localized to a microdomain in early endosomes where it regulates cation-independent mannose-6-phosphate receptor retrieval to the trans Golgi network. Pssm-ID: 132814 Cd Length: 124 Bit Score: 43.12 E-value: 5.37e-05
|
|||||||
PX_HS1BP3 | cd06868 | The phosphoinositide binding Phox Homology domain of HS1BP3; The PX domain is a ... |
117-180 | 1.19e-04 | |||
The phosphoinositide binding Phox Homology domain of HS1BP3; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. Hematopoietic lineage cell-specific protein-1 (HS1) binding protein 3 (HS1BP3) associates with HS1 proteins through their SH3 domains, suggesting a role in mediating signaling. It has been reported that HS1BP3 might affect the IL-2 signaling pathway in hematopoietic lineage cells. Mutations in HS1BP3 may also be associated with familial Parkinson disease and essential tremor. HS1BP3 contains a PX domain, a leucine zipper, motifs similar to immunoreceptor tyrosine-based inhibitory motif and proline-rich regions. The PX domain interacts with PIs and plays a role in targeting proteins to PI-enriched membranes. Pssm-ID: 132778 Cd Length: 120 Bit Score: 42.01 E-value: 1.19e-04
|
|||||||
PX_MONaKA | cd06871 | The phosphoinositide binding Phox Homology domain of Modulator of Na,K-ATPase; The PX domain ... |
112-179 | 1.57e-04 | |||
The phosphoinositide binding Phox Homology domain of Modulator of Na,K-ATPase; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions such as cell signaling, vesicular trafficking, protein sorting, and lipid modification, among others. MONaKA (Modulator of Na,K-ATPase) binds the plasma membrane ion transporter, Na,K-ATPase, and modulates its enzymatic and ion pump activities. It modulates brain Na,K-ATPase and may be involved in regulating electrical excitability and synaptic transmission. MONaKA contains an N-terminal PX domain and a C-terminal catalytic kinase domain. The PX domain interacts with PIs and plays a role in targeting proteins to PI-enriched membranes. Pssm-ID: 132781 Cd Length: 120 Bit Score: 41.58 E-value: 1.57e-04
|
|||||||
PX_SNX7 | cd07284 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 7; The PX domain is a ... |
117-179 | 2.43e-04 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 7; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX7 harbors a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to the sorting nexins SNX1-2, SNX4-6, SNX8, SNX30, and SNX32. Both domains have been shown to determine the specific membrane-targeting of SNX1. The specific function of SNX7 has yet to be elucidated. Pssm-ID: 132817 Cd Length: 116 Bit Score: 41.12 E-value: 2.43e-04
|
|||||||
PX_SNX30 | cd07283 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 30; The PX domain is a ... |
91-179 | 4.52e-04 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 30; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX30 harbors a Bin/Amphiphysin/Rvs (BAR) domain, which detects membrane curvature, C-terminal to the PX domain, similar to the sorting nexins SNX1-2, SNX4-8, and SNX32. Both domains have been shown to determine the specific membrane-targeting of SNX1. The specific function of SNX30 has yet to be elucidated. Pssm-ID: 132816 Cd Length: 116 Bit Score: 40.45 E-value: 4.52e-04
|
|||||||
PX_SNX12 | cd07294 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 12; The PX domain is a ... |
87-179 | 4.96e-04 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 12; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. The specific function of SNX12 has yet to be elucidated. Pssm-ID: 132827 Cd Length: 132 Bit Score: 40.79 E-value: 4.96e-04
|
|||||||
PX_SNX19_like_plant | cd06872 | The phosphoinositide binding Phox Homology domain of uncharacterized SNX19-like plant proteins; ... |
98-179 | 7.16e-04 | |||
The phosphoinositide binding Phox Homology domain of uncharacterized SNX19-like plant proteins; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to PI-enriched membranes. Members in this subfamily are uncharacterized plant proteins containing an N-terminal PXA domain, a central PX domain, and a C-terminal domain that is conserved in some sorting nexins (SNXs). This is the same domain architecture found in SNX19. SNX13 and SNX14 also contain these three domains but also contain a regulator of G protein signaling (RGS) domain in between the PXA and PX domains. SNXs make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction. Pssm-ID: 132782 Cd Length: 107 Bit Score: 39.43 E-value: 7.16e-04
|
|||||||
PX_SNX8_Mvp1p_like | cd06866 | The phosphoinositide binding Phox Homology domain of Sorting Nexin 8 and yeast Mvp1p; The PX ... |
119-179 | 8.74e-04 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexin 8 and yeast Mvp1p; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX8 and the yeast counterpart Mvp1p are involved in sorting and delivery of late-Golgi proteins, such as carboxypeptidase Y, to vacuoles. Pssm-ID: 132776 Cd Length: 105 Bit Score: 39.13 E-value: 8.74e-04
|
|||||||
PX_SNX9_18_like | cd06862 | The phosphoinositide binding Phox Homology domain of Sorting Nexins 9 and 18; The PX domain is ... |
100-196 | 1.17e-03 | |||
The phosphoinositide binding Phox Homology domain of Sorting Nexins 9 and 18; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX9, SNX18, and similar proteins. They contain an N-terminal Src Homology 3 (SH3) domain, a PX domain, and a C-terminal Bin/Amphiphysin/Rvs (BAR) domain. SNX9 is localized to plasma membrane endocytic sites and acts primarily in clathrin-mediated endocytosis, while SNX18 is localized to peripheral endosomal structures, and acts in a trafficking pathway that is clathrin-independent but relies on AP-1 and PACS1. Pssm-ID: 132772 Cd Length: 125 Bit Score: 39.22 E-value: 1.17e-03
|
|||||||
SNARE_SNAP29C | cd15856 | C-terminal SNARE motif of SNAP29; C-terminal SNARE motif of SNAP29, a member of the Qb/Qc ... |
415-456 | 4.74e-03 | |||
C-terminal SNARE motif of SNAP29; C-terminal SNARE motif of SNAP29, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. SNAP29 interacts with STX17 (Qa) and the lysosomal R-SNARE VAMP8. The complex plays a role in autophagosome-lysosome fusion. Autophagosome transports cytoplasmic materials including cytoplasmic proteins, glycogen, lipids, organelles, and invading bacteria to the lysosome for degradation. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP25, SNAP47 and SEC9. Pssm-ID: 277209 Cd Length: 59 Bit Score: 35.61 E-value: 4.74e-03
|
|||||||
SNARE_SNAP47C | cd15854 | C-terminal SNARE motif of SNAP47; C-terminal SNARE motif of SNAP47, a member of the Qb/Qc ... |
415-455 | 5.51e-03 | |||
C-terminal SNARE motif of SNAP47; C-terminal SNARE motif of SNAP47, a member of the Qb/Qc subfamily of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. The exact funtion of SNAP47 is unknown. Qb/Qc SNAREs consist of 2 coiled-coil helices (called SNARE motifs, one belonging to the Qb subgroup and one belonging to the Qc subgroup), which mediate the interactions with other SNARE proteins, and a transmembrane domain. In general, the SNARE complex mediates membrane fusion, important for trafficking of newly synthesized proteins, recycling of pre-existing proteins and organelle formation. SNARE proteins are classified into four groups, Qa-, Qb-, Qc- and R-SNAREs, depending on whether the residue in the hydrophilic center layer of the four-helical bundle is a glutamine (Q) or arginine (R). Qa-, as well as Qb- and Qc-SNAREs, are localized to target organelle membranes, while R-SNARE is localized to vesicle membranes. They form unique complexes consisting of one member of each subgroup, that mediate fusion between a specific type of vesicles and their target organelle. Their SNARE motifs form twisted and parallel heterotetrameric helix bundles. Other members of the Qb/Qc SNAREs are SNAP23, SNAP25, SNAP29 and SEC9. Pssm-ID: 277207 Cd Length: 59 Bit Score: 35.61 E-value: 5.51e-03
|
|||||||
Blast search parameters | ||||
|