SIR2 family NAD-dependent protein deacylase such as NAD-dependent deacetylase, which catalyzes NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine epsilon-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose
SIRT1: Eukaryotic group (class1) which includes human sirtuins SIRT1-3 and yeast Hst1-4; and ...
40-294
8.76e-152
SIRT1: Eukaryotic group (class1) which includes human sirtuins SIRT1-3 and yeast Hst1-4; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, and life span. The most-studied function, gene silencing, involves the inactivation of chromosome domains containing key regulatory genes by packaging them into a specialized chromatin structure that is inaccessible to DNA-binding proteins. The nuclear SIRT1 has been shown to target the p53 tumor suppressor protein for deacetylation to suppress DNA damage, and the cytoplasmic SIRT2 homolog has been shown to target alpha-tubulin for deacetylation for the maintenance of cell integrity.
:
Pssm-ID: 238699 Cd Length: 235 Bit Score: 426.28 E-value: 8.76e-152
SIRT1: Eukaryotic group (class1) which includes human sirtuins SIRT1-3 and yeast Hst1-4; and ...
40-294
8.76e-152
SIRT1: Eukaryotic group (class1) which includes human sirtuins SIRT1-3 and yeast Hst1-4; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, and life span. The most-studied function, gene silencing, involves the inactivation of chromosome domains containing key regulatory genes by packaging them into a specialized chromatin structure that is inaccessible to DNA-binding proteins. The nuclear SIRT1 has been shown to target the p53 tumor suppressor protein for deacetylation to suppress DNA damage, and the cytoplasmic SIRT2 homolog has been shown to target alpha-tubulin for deacetylation for the maintenance of cell integrity.
Pssm-ID: 238699 Cd Length: 235 Bit Score: 426.28 E-value: 8.76e-152
Sir2 family; This region is characteriztic of Silent information regulator 2 (Sir2) proteins, ...
47-231
4.37e-78
Sir2 family; This region is characteriztic of Silent information regulator 2 (Sir2) proteins, or sirtuins. These are protein deacetylases that depend on nicotine adenine dinucleotide (NAD). They are found in many subcellular locations, including the nucleus, cytoplasm and mitochondria. Eukaryotic forms play in important role in the regulation of transcriptional repression. Moreover, they are involved in microtubule organization and DNA damage repair processes.i
Pssm-ID: 426621 Cd Length: 179 Bit Score: 237.15 E-value: 4.37e-78
SIRT1: Eukaryotic group (class1) which includes human sirtuins SIRT1-3 and yeast Hst1-4; and ...
40-294
8.76e-152
SIRT1: Eukaryotic group (class1) which includes human sirtuins SIRT1-3 and yeast Hst1-4; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, and life span. The most-studied function, gene silencing, involves the inactivation of chromosome domains containing key regulatory genes by packaging them into a specialized chromatin structure that is inaccessible to DNA-binding proteins. The nuclear SIRT1 has been shown to target the p53 tumor suppressor protein for deacetylation to suppress DNA damage, and the cytoplasmic SIRT2 homolog has been shown to target alpha-tubulin for deacetylation for the maintenance of cell integrity.
Pssm-ID: 238699 Cd Length: 235 Bit Score: 426.28 E-value: 8.76e-152
SIR2 family of proteins includes silent information regulator 2 (Sir2) enzymes which catalyze ...
40-259
3.63e-96
SIR2 family of proteins includes silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine epsilon-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins, also known as sirtuins, are found in all eukaryotes and many archaea and prokaryotes and have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. The most-studied function, gene silencing, involves the inactivation of chromosome domains containing key regulatory genes by packaging them into a specialized chromatin structure that is inaccessible to DNA-binding proteins. The oligomerization state of Sir2 appears to be organism-dependent, sometimes occurring as a monomer and sometimes as a multimer.
Pssm-ID: 238698 Cd Length: 218 Bit Score: 284.46 E-value: 3.63e-96
SIR2 superfamily of proteins includes silent information regulator 2 (Sir2) enzymes which ...
40-258
1.74e-82
SIR2 superfamily of proteins includes silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine epsilon-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins, also known as sirtuins, are found in all eukaryotes and many archaea and prokaryotes and have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. The most-studied function, gene silencing, involves the inactivation of chromosome domains containing key regulatory genes by packaging them into a specialized chromatin structure that is inaccessible to DNA-binding proteins. The oligomerization state of Sir2 appears to be organism-dependent, sometimes occurring as a monomer and sometimes as a multimer. Also included in this superfamily is a group of uncharacterized Sir2-like proteins which lack certain key catalytic residues and conserved zinc binding cysteines.
Pssm-ID: 238184 [Multi-domain] Cd Length: 222 Bit Score: 249.95 E-value: 1.74e-82
Sir2 family; This region is characteriztic of Silent information regulator 2 (Sir2) proteins, ...
47-231
4.37e-78
Sir2 family; This region is characteriztic of Silent information regulator 2 (Sir2) proteins, or sirtuins. These are protein deacetylases that depend on nicotine adenine dinucleotide (NAD). They are found in many subcellular locations, including the nucleus, cytoplasm and mitochondria. Eukaryotic forms play in important role in the regulation of transcriptional repression. Moreover, they are involved in microtubule organization and DNA damage repair processes.i
Pssm-ID: 426621 Cd Length: 179 Bit Score: 237.15 E-value: 4.37e-78
SIR2_Af2: Archaeal and prokaryotic group which includes Archaeoglobus fulgidus Sir2-Af2, ...
37-259
1.27e-53
SIR2_Af2: Archaeal and prokaryotic group which includes Archaeoglobus fulgidus Sir2-Af2, Sulfolobus solfataricus ssSir2, and several bacterial homologs; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. The Sir2 homolog from the archaea Sulfolobus solftaricus deacetylates the non-specific DNA protein Alba to mediate transcription repression.
Pssm-ID: 238704 Cd Length: 222 Bit Score: 176.02 E-value: 1.27e-53
SIR2H: Uncharacterized prokaryotic Sir2 homologs from several gram positive bacterial species ...
41-259
5.74e-44
SIR2H: Uncharacterized prokaryotic Sir2 homologs from several gram positive bacterial species and Fusobacteria; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span.
Pssm-ID: 238702 Cd Length: 225 Bit Score: 150.98 E-value: 5.74e-44
SIRT7: Eukaryotic and prokaryotic group (class4) which includes human sirtuin SIRT6, SIRT7, ...
41-253
7.09e-39
SIRT7: Eukaryotic and prokaryotic group (class4) which includes human sirtuin SIRT6, SIRT7, and several bacterial homologs; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span.
Pssm-ID: 238701 Cd Length: 206 Bit Score: 137.05 E-value: 7.09e-39
SIRT5_Af1_CobB: Eukaryotic, archaeal and prokaryotic group (class3) which includes human ...
40-259
3.02e-34
SIRT5_Af1_CobB: Eukaryotic, archaeal and prokaryotic group (class3) which includes human sirtuin SIRT5, Archaeoglobus fulgidus Sir2-Af1, and E. coli CobB; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span. CobB is a bacterial sirtuin that deacetylates acetyl-CoA synthetase at an active site lysine to stimulate its enzymatic activity.
Pssm-ID: 238703 Cd Length: 224 Bit Score: 125.39 E-value: 3.02e-34
SIRT4: Eukaryotic and prokaryotic group (class2) which includes human sirtuin SIRT4 and ...
36-229
1.25e-24
SIRT4: Eukaryotic and prokaryotic group (class2) which includes human sirtuin SIRT4 and several bacterial homologs; and are members of the SIR2 family of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation. Sir2 proteins have been shown to regulate gene silencing, DNA repair, metabolic enzymes, and life span.
Pssm-ID: 238700 Cd Length: 260 Bit Score: 100.83 E-value: 1.25e-24
Sir2-like: Prokaryotic group of uncharacterized Sir2-like proteins which lack certain key ...
41-135
3.32e-03
Sir2-like: Prokaryotic group of uncharacterized Sir2-like proteins which lack certain key catalytic residues and conserved zinc binding cysteines; and are members of the SIR2 superfamily of proteins, silent information regulator 2 (Sir2) enzymes which catalyze NAD+-dependent protein/histone deacetylation.
Pssm-ID: 238697 [Multi-domain] Cd Length: 242 Bit Score: 38.54 E-value: 3.32e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options