NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1907135249|ref|XP_036014169|]
View 

engulfment and cell motility protein 2 isoform X3 [Mus musculus]

Protein Classification

engulfment and cell motility protein( domain architecture ID 10570670)

engulfment and cell motility protein acts in association with DOCK1 and CRK, and is involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH_ELMO1_CED-12 cd13359
Engulfment and cell motility protein 1 pleckstrin homology (PH) domain; DOCK2 (Dedicator of ...
522-651 1.41e-72

Engulfment and cell motility protein 1 pleckstrin homology (PH) domain; DOCK2 (Dedicator of cytokinesis 2), a hematopoietic cell-specific, atypical GEF, controls lymphocyte migration through Rac activation. A DOCK2-ELMO1 complex s necessary for DOCK2-mediated Rac signaling. DOCK2 contains a SH3 domain at its N-terminus, followed by a lipid binding DHR1 domain, and a Rac-binding DHR2 domain at its C-terminus. ELMO1, a mammalian homolog of C. elegans CED-12, contains the N-terminal RhoG-binding region, the ELMO domain, the PH domain, and the C-terminal sequence with three PxxP motifs. The C-terminal region of ELMO1, including the Pro-rich sequence, binds the SH3-containing region of DOCK2 forming a intermolecular five-helix bundle along with the PH domain of ELMO1. Autoinhibition of ELMO1 and DOCK2 is accomplished by the interactions of the EID and EAD domains and SH3 and DHR2 domains, respectively. The interaction of DOCK2 and ELMO1 mutually relieve their autoinhibition and results in the activation of Rac1. The PH domain of ELMO1 does not bind phosphoinositides due to the absence of key binding residues. It more closely resembles the FERM domain rather than other PH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270166 [Multi-domain]  Cd Length: 126  Bit Score: 231.04  E-value: 1.41e-72
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 522 ELIKQQRLNRLCEGSSFRKIGNRRRQERFWHCRLALNHKVLHYGDLDDNPQGEvTFESLQEKIPVADIKAIVTGKDCPHM 601
Cdd:cd13359     1 ELIKQQRLNFLVEGTLFPKYNARGRKDKFWYCRLSPNHKVLHYGDCEESAQPA-PLEELPEKLPVADIKALVTGKDCPHM 79
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|
gi 1907135249 602 KEKSAlkqNKEVLELAFSILYDPDETLNFIAPNKYEYCIWIDGLSALLGK 651
Cdd:cd13359    80 KELKK---NKSVASLAFSILYDSDESLDFVAPNETVFDIWTDGLNALLGK 126
ELMO_ARM pfam11841
ELMO, armadillo-like helical domain; This domain is found in eukaryotes and predominantly in ...
115-252 1.98e-65

ELMO, armadillo-like helical domain; This domain is found in eukaryotes and predominantly in ELMO (Elongation and Cell motility) proteins and corresponds to the armadillo repeats domain (ARR). It may play an important role in defining the functions of the ELMO family members and may be functionally linked to the ELMO domain in these proteins, being involved in protein-protein interactions.


:

Pssm-ID: 463369  Cd Length: 154  Bit Score: 212.82  E-value: 1.98e-65
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 115 TFATEFINMDGIIVLTRLVESGTKllshYSEMLAFTLTAFLELMDHGIVSWDMVSVTFIKQIAGYVSQPMVDVSILQRSL 194
Cdd:pfam11841   1 TFALEFISRNGLKLLISMVEGGTE----SGEILAYALTAFVELMDHGIVSWDTLSPSFIKKIASYVNKSAQDASILQRSL 76
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1907135249 195 AILESMVLNSQSLYQKIAEEITVGQLISHLQVSNQEIQTYAIALINALFLKAPEDKRQ 252
Cdd:pfam11841  77 AILESIVLNSSALYQLVEQEVTLESLITHLQSSNQEIQTNAIALINALFLKADDSKRK 134
ELMO_CED12 pfam04727
ELMO/CED-12 family; This family represents a conserved domain which is found in a number of ...
278-457 1.72e-53

ELMO/CED-12 family; This family represents a conserved domain which is found in a number of eukaryotic proteins including CED-12, ELMO I and ELMO II. ELMO1 is a component of signalling pathways that regulate phagocytosis and cell migration and is the mammalian orthologue of the C. elegans gene, ced-12. CED-12 is required for the engulfment of dying cells and cell migration. In mammalian cells, ELMO1 interacts with Dock180 as part of the CrkII/Dock180/Rac pathway responsible for phagocytosis and cell migration. ELMO1 is ubiquitously expressed, although its expression is highest in the spleen, an organ rich in immune cells. ELMO1 has a PH domain and a polyproline sequence motif at its C terminus which are not present in this alignment.


:

Pssm-ID: 461411  Cd Length: 161  Bit Score: 181.27  E-value: 1.72e-53
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 278 NLLEERMMTKMDPNDQAQRDIIFELRRIAFDAESDPSNVPgsgtekrkamytKDYKMLGFTNHiNPALDFTqtPPGMLAL 357
Cdd:pfam04727   1 NLLRKRRKTPFDSENPEHERLLKELWKALFPDEPLESRIS------------EKWKRLGFQGE-DPATDFR--GMGLLGL 65
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 358 DNMLYLAKVHQDTYIRIVLENSSREDkhECPFGRSAIELTKMLCEILQVGELPNEGRNDYhpMFFTHDRAFEELFGICIQ 437
Cdd:pfam04727  66 ENLLYFARNHPDSFQKILLEQSHRPQ--RYPFAVASINLTSLLYELLKIGKLDPEENKSY--LFFPLLLAFEELYCAAFQ 141
                         170       180
                  ....*....|....*....|
gi 1907135249 438 LLNKTWKEMRATAEDFNKVM 457
Cdd:pfam04727 142 LFDRTWKEMGATIMDFNKVL 161
 
Name Accession Description Interval E-value
PH_ELMO1_CED-12 cd13359
Engulfment and cell motility protein 1 pleckstrin homology (PH) domain; DOCK2 (Dedicator of ...
522-651 1.41e-72

Engulfment and cell motility protein 1 pleckstrin homology (PH) domain; DOCK2 (Dedicator of cytokinesis 2), a hematopoietic cell-specific, atypical GEF, controls lymphocyte migration through Rac activation. A DOCK2-ELMO1 complex s necessary for DOCK2-mediated Rac signaling. DOCK2 contains a SH3 domain at its N-terminus, followed by a lipid binding DHR1 domain, and a Rac-binding DHR2 domain at its C-terminus. ELMO1, a mammalian homolog of C. elegans CED-12, contains the N-terminal RhoG-binding region, the ELMO domain, the PH domain, and the C-terminal sequence with three PxxP motifs. The C-terminal region of ELMO1, including the Pro-rich sequence, binds the SH3-containing region of DOCK2 forming a intermolecular five-helix bundle along with the PH domain of ELMO1. Autoinhibition of ELMO1 and DOCK2 is accomplished by the interactions of the EID and EAD domains and SH3 and DHR2 domains, respectively. The interaction of DOCK2 and ELMO1 mutually relieve their autoinhibition and results in the activation of Rac1. The PH domain of ELMO1 does not bind phosphoinositides due to the absence of key binding residues. It more closely resembles the FERM domain rather than other PH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270166 [Multi-domain]  Cd Length: 126  Bit Score: 231.04  E-value: 1.41e-72
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 522 ELIKQQRLNRLCEGSSFRKIGNRRRQERFWHCRLALNHKVLHYGDLDDNPQGEvTFESLQEKIPVADIKAIVTGKDCPHM 601
Cdd:cd13359     1 ELIKQQRLNFLVEGTLFPKYNARGRKDKFWYCRLSPNHKVLHYGDCEESAQPA-PLEELPEKLPVADIKALVTGKDCPHM 79
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|
gi 1907135249 602 KEKSAlkqNKEVLELAFSILYDPDETLNFIAPNKYEYCIWIDGLSALLGK 651
Cdd:cd13359    80 KELKK---NKSVASLAFSILYDSDESLDFVAPNETVFDIWTDGLNALLGK 126
ELMO_ARM pfam11841
ELMO, armadillo-like helical domain; This domain is found in eukaryotes and predominantly in ...
115-252 1.98e-65

ELMO, armadillo-like helical domain; This domain is found in eukaryotes and predominantly in ELMO (Elongation and Cell motility) proteins and corresponds to the armadillo repeats domain (ARR). It may play an important role in defining the functions of the ELMO family members and may be functionally linked to the ELMO domain in these proteins, being involved in protein-protein interactions.


Pssm-ID: 463369  Cd Length: 154  Bit Score: 212.82  E-value: 1.98e-65
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 115 TFATEFINMDGIIVLTRLVESGTKllshYSEMLAFTLTAFLELMDHGIVSWDMVSVTFIKQIAGYVSQPMVDVSILQRSL 194
Cdd:pfam11841   1 TFALEFISRNGLKLLISMVEGGTE----SGEILAYALTAFVELMDHGIVSWDTLSPSFIKKIASYVNKSAQDASILQRSL 76
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1907135249 195 AILESMVLNSQSLYQKIAEEITVGQLISHLQVSNQEIQTYAIALINALFLKAPEDKRQ 252
Cdd:pfam11841  77 AILESIVLNSSALYQLVEQEVTLESLITHLQSSNQEIQTNAIALINALFLKADDSKRK 134
ELMO_CED12 pfam04727
ELMO/CED-12 family; This family represents a conserved domain which is found in a number of ...
278-457 1.72e-53

ELMO/CED-12 family; This family represents a conserved domain which is found in a number of eukaryotic proteins including CED-12, ELMO I and ELMO II. ELMO1 is a component of signalling pathways that regulate phagocytosis and cell migration and is the mammalian orthologue of the C. elegans gene, ced-12. CED-12 is required for the engulfment of dying cells and cell migration. In mammalian cells, ELMO1 interacts with Dock180 as part of the CrkII/Dock180/Rac pathway responsible for phagocytosis and cell migration. ELMO1 is ubiquitously expressed, although its expression is highest in the spleen, an organ rich in immune cells. ELMO1 has a PH domain and a polyproline sequence motif at its C terminus which are not present in this alignment.


Pssm-ID: 461411  Cd Length: 161  Bit Score: 181.27  E-value: 1.72e-53
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 278 NLLEERMMTKMDPNDQAQRDIIFELRRIAFDAESDPSNVPgsgtekrkamytKDYKMLGFTNHiNPALDFTqtPPGMLAL 357
Cdd:pfam04727   1 NLLRKRRKTPFDSENPEHERLLKELWKALFPDEPLESRIS------------EKWKRLGFQGE-DPATDFR--GMGLLGL 65
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 358 DNMLYLAKVHQDTYIRIVLENSSREDkhECPFGRSAIELTKMLCEILQVGELPNEGRNDYhpMFFTHDRAFEELFGICIQ 437
Cdd:pfam04727  66 ENLLYFARNHPDSFQKILLEQSHRPQ--RYPFAVASINLTSLLYELLKIGKLDPEENKSY--LFFPLLLAFEELYCAAFQ 141
                         170       180
                  ....*....|....*....|
gi 1907135249 438 LLNKTWKEMRATAEDFNKVM 457
Cdd:pfam04727 142 LFDRTWKEMGATIMDFNKVL 161
PH_12 pfam16457
Pleckstrin homology domain;
524-650 5.05e-52

Pleckstrin homology domain;


Pssm-ID: 465123 [Multi-domain]  Cd Length: 128  Bit Score: 175.91  E-value: 5.05e-52
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 524 IKQQRLNRLCEGSSFRKIGNRRRQERFWHCRLALNHKVLHYGDLDDNPQGEVTFESLQEKIPVADIKAIVTGKDCPHMKE 603
Cdd:pfam16457   1 VKEQRLNCLLEGAWFPKVRGRRRKKKYRFCRLSPNRKVLHYGDFEEKPTVDPSLESLPEKIDLSDIKEVVTGKECPHVRE 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*....
gi 1907135249 604 KSaLKQNKEVLELAFSILY--DPDETLNFIAPNKYEYCIWIDGLSALLG 650
Cdd:pfam16457  81 SG-KKSKKTSSTLAFSLIYgaDEYELLDFVAPSESVAAIWLDGLNMLLG 128
 
Name Accession Description Interval E-value
PH_ELMO1_CED-12 cd13359
Engulfment and cell motility protein 1 pleckstrin homology (PH) domain; DOCK2 (Dedicator of ...
522-651 1.41e-72

Engulfment and cell motility protein 1 pleckstrin homology (PH) domain; DOCK2 (Dedicator of cytokinesis 2), a hematopoietic cell-specific, atypical GEF, controls lymphocyte migration through Rac activation. A DOCK2-ELMO1 complex s necessary for DOCK2-mediated Rac signaling. DOCK2 contains a SH3 domain at its N-terminus, followed by a lipid binding DHR1 domain, and a Rac-binding DHR2 domain at its C-terminus. ELMO1, a mammalian homolog of C. elegans CED-12, contains the N-terminal RhoG-binding region, the ELMO domain, the PH domain, and the C-terminal sequence with three PxxP motifs. The C-terminal region of ELMO1, including the Pro-rich sequence, binds the SH3-containing region of DOCK2 forming a intermolecular five-helix bundle along with the PH domain of ELMO1. Autoinhibition of ELMO1 and DOCK2 is accomplished by the interactions of the EID and EAD domains and SH3 and DHR2 domains, respectively. The interaction of DOCK2 and ELMO1 mutually relieve their autoinhibition and results in the activation of Rac1. The PH domain of ELMO1 does not bind phosphoinositides due to the absence of key binding residues. It more closely resembles the FERM domain rather than other PH domains. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270166 [Multi-domain]  Cd Length: 126  Bit Score: 231.04  E-value: 1.41e-72
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 522 ELIKQQRLNRLCEGSSFRKIGNRRRQERFWHCRLALNHKVLHYGDLDDNPQGEvTFESLQEKIPVADIKAIVTGKDCPHM 601
Cdd:cd13359     1 ELIKQQRLNFLVEGTLFPKYNARGRKDKFWYCRLSPNHKVLHYGDCEESAQPA-PLEELPEKLPVADIKALVTGKDCPHM 79
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|
gi 1907135249 602 KEKSAlkqNKEVLELAFSILYDPDETLNFIAPNKYEYCIWIDGLSALLGK 651
Cdd:cd13359    80 KELKK---NKSVASLAFSILYDSDESLDFVAPNETVFDIWTDGLNALLGK 126
ELMO_ARM pfam11841
ELMO, armadillo-like helical domain; This domain is found in eukaryotes and predominantly in ...
115-252 1.98e-65

ELMO, armadillo-like helical domain; This domain is found in eukaryotes and predominantly in ELMO (Elongation and Cell motility) proteins and corresponds to the armadillo repeats domain (ARR). It may play an important role in defining the functions of the ELMO family members and may be functionally linked to the ELMO domain in these proteins, being involved in protein-protein interactions.


Pssm-ID: 463369  Cd Length: 154  Bit Score: 212.82  E-value: 1.98e-65
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 115 TFATEFINMDGIIVLTRLVESGTKllshYSEMLAFTLTAFLELMDHGIVSWDMVSVTFIKQIAGYVSQPMVDVSILQRSL 194
Cdd:pfam11841   1 TFALEFISRNGLKLLISMVEGGTE----SGEILAYALTAFVELMDHGIVSWDTLSPSFIKKIASYVNKSAQDASILQRSL 76
                          90       100       110       120       130
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 1907135249 195 AILESMVLNSQSLYQKIAEEITVGQLISHLQVSNQEIQTYAIALINALFLKAPEDKRQ 252
Cdd:pfam11841  77 AILESIVLNSSALYQLVEQEVTLESLITHLQSSNQEIQTNAIALINALFLKADDSKRK 134
ELMO_CED12 pfam04727
ELMO/CED-12 family; This family represents a conserved domain which is found in a number of ...
278-457 1.72e-53

ELMO/CED-12 family; This family represents a conserved domain which is found in a number of eukaryotic proteins including CED-12, ELMO I and ELMO II. ELMO1 is a component of signalling pathways that regulate phagocytosis and cell migration and is the mammalian orthologue of the C. elegans gene, ced-12. CED-12 is required for the engulfment of dying cells and cell migration. In mammalian cells, ELMO1 interacts with Dock180 as part of the CrkII/Dock180/Rac pathway responsible for phagocytosis and cell migration. ELMO1 is ubiquitously expressed, although its expression is highest in the spleen, an organ rich in immune cells. ELMO1 has a PH domain and a polyproline sequence motif at its C terminus which are not present in this alignment.


Pssm-ID: 461411  Cd Length: 161  Bit Score: 181.27  E-value: 1.72e-53
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 278 NLLEERMMTKMDPNDQAQRDIIFELRRIAFDAESDPSNVPgsgtekrkamytKDYKMLGFTNHiNPALDFTqtPPGMLAL 357
Cdd:pfam04727   1 NLLRKRRKTPFDSENPEHERLLKELWKALFPDEPLESRIS------------EKWKRLGFQGE-DPATDFR--GMGLLGL 65
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 358 DNMLYLAKVHQDTYIRIVLENSSREDkhECPFGRSAIELTKMLCEILQVGELPNEGRNDYhpMFFTHDRAFEELFGICIQ 437
Cdd:pfam04727  66 ENLLYFARNHPDSFQKILLEQSHRPQ--RYPFAVASINLTSLLYELLKIGKLDPEENKSY--LFFPLLLAFEELYCAAFQ 141
                         170       180
                  ....*....|....*....|
gi 1907135249 438 LLNKTWKEMRATAEDFNKVM 457
Cdd:pfam04727 142 LFDRTWKEMGATIMDFNKVL 161
PH_12 pfam16457
Pleckstrin homology domain;
524-650 5.05e-52

Pleckstrin homology domain;


Pssm-ID: 465123 [Multi-domain]  Cd Length: 128  Bit Score: 175.91  E-value: 5.05e-52
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 524 IKQQRLNRLCEGSSFRKIGNRRRQERFWHCRLALNHKVLHYGDLDDNPQGEVTFESLQEKIPVADIKAIVTGKDCPHMKE 603
Cdd:pfam16457   1 VKEQRLNCLLEGAWFPKVRGRRRKKKYRFCRLSPNRKVLHYGDFEEKPTVDPSLESLPEKIDLSDIKEVVTGKECPHVRE 80
                          90       100       110       120
                  ....*....|....*....|....*....|....*....|....*....
gi 1907135249 604 KSaLKQNKEVLELAFSILY--DPDETLNFIAPNKYEYCIWIDGLSALLG 650
Cdd:pfam16457  81 SG-KKSKKTSSTLAFSLIYgaDEYELLDFVAPSESVAAIWLDGLNMLLG 128
PH_PLC_ELMO1 cd01248
Phospholipase C and Engulfment and cell motility protein 1 pleckstrin homology domain; The ...
532-649 1.55e-21

Phospholipase C and Engulfment and cell motility protein 1 pleckstrin homology domain; The C-terminal region of ELMO1, the PH domain and Pro-rich sequences, binds the SH3-containing region of DOCK2 forming a intermolecular five-helix bundle allowing for DOCK mediated Rac1 activation. ELMO1, a mammalian homolog of C. elegans CED-12, contains an N-terminal RhoG-binding region, a ELMO domain, a PH domain, and a C-terminal sequence with three PxxP motifs. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). All PLCs, except for PLCzeta, have a PH domain which is for most part N-terminally located, though lipid binding specificity is not conserved between them. In addition PLC gamma contains a split PH domain within its catalytic domain that is separated by 2 SH2 domains and a single SH3 domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269952  Cd Length: 108  Bit Score: 90.07  E-value: 1.55e-21
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 532 LCEGSSFRKIGNRRRQeRFWHCRLALNHKVLHYGDLDDnpqgevtfESLQEKIPVADIKAIVTGKDCPHMKEKSalKQNK 611
Cdd:cd01248     1 LQQGTLLLKYREGSKP-KERTFYLDPDGTRITWESSKK--------KSEKKSIDISDIKEIRPGKDTDGFKRKK--KSNK 69
                          90       100       110
                  ....*....|....*....|....*....|....*....
gi 1907135249 612 EVLELAFSILY-DPDETLNFIAPNKYEYCIWIDGLSALL 649
Cdd:cd01248    70 PKEERCFSIIYgSNNKTLDLVAPSEDEANLWVEGLRALL 108
PH_PLC_plant-like cd13365
Plant-like Phospholipase C (PLC) pleckstrin homology (PH) domain; PLC-gamma (PLCgamma) was the ...
518-649 3.50e-04

Plant-like Phospholipase C (PLC) pleckstrin homology (PH) domain; PLC-gamma (PLCgamma) was the second class of PLC discovered. PLC-gamma consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves internal to which is a PH domain split by two SH2 domains and a single SH3 domain, and a C-terminal C2 domain. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). This cd contains PLC members from fungi and plants. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270171  Cd Length: 115  Bit Score: 40.73  E-value: 3.50e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907135249 518 PEILELIKQqrlnrLCEGSSFRKIGNR-RRQER-FWhcrlalnhkvLHYGDL-----DDNPQGEvtfeslqEKIPVADIK 590
Cdd:cd13365     1 RDVIEAITQ-----LKIGSYLLKYGRRgKPHFRyFW----------LSPDELtlywsSPKKGSE-------KRVRLSSVS 58
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 1907135249 591 AIVTGkdcphmkEKSALKQNK---EVLELAFSILY-DPDETLNFIAPNKYEYCIWIDGLSALL 649
Cdd:cd13365    59 RIIPG-------QRTVVFKRPpppGLEEHSFSIIYaDGERSLDLTCKDRQEFDTWFTGLRYLL 114
PH_PLC_eta cd13364
Phospholipase C-eta (PLC-eta) pleckstrin homology (PH) domain; PLC-eta (PLCeta) consists of ...
583-649 1.21e-03

Phospholipase C-eta (PLC-eta) pleckstrin homology (PH) domain; PLC-eta (PLCeta) consists of two enzymes, PLCeta1 and PLCeta2. They hydrolyze phosphatidylinositol 4,5-bisphosphate, are more sensitive to Ca2+ than other PLC isozymes, and involved in PKC activation in the brain and neuroendocrine systems. PLC-eta consists of an N-terminal PH domain, a EF hand domain, a catalytic domain split into X and Y halves by a variable linker, a C2 domain, and a C-terminal PDZ domain. PLCs (EC 3.1.4.3) play a role in the initiation of cellular activation, proliferation, differentiation and apoptosis. They are central to inositol lipid signalling pathways, facilitating intracellular Ca2+ release and protein kinase C (PKC) activation. Specificaly, PLCs catalyze the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) and result in the release of 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). These products trigger the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular stores. There are fourteen kinds of mammalian phospholipase C proteins which are are classified into six isotypes (beta, gamma, delta, epsilon, zeta, eta). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.involved in targeting proteins to the plasma membrane, but only a few (less than 10%) display strong specificity in binding inositol phosphates. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinases, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, cytoskeletal associated molecules, and in lipid associated enzymes.


Pssm-ID: 270170  Cd Length: 109  Bit Score: 38.80  E-value: 1.21e-03
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 1907135249 583 KIPVADIKAIVTGKDCPHMKEKSALKQNKEvlELAFSILY-DPDETLNFIAPNKYEYCIWIDGLSALL 649
Cdd:cd13364    43 KIPISSIREVREGKTTDIFRSCDISGDFPE--ECCFSIIYgEEYETLDLVASSPDEANIWITGLRYLM 108
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH