NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|1907165235|ref|XP_036021253|]
View 

signal-transducing adaptor protein 1 isoform X2 [Mus musculus]

Protein Classification

PH domain-containing protein( domain architecture ID 106840)

Pleckstrin homology (PH) domain-containing protein may be involved in targeting a protein to the appropriate cellular location or interacting with a binding partner

CATH:  2.30.29.30
Gene Ontology:  GO:0005515

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PH-like super family cl17171
Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like ...
15-121 9.11e-56

Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like and IRS-like PTB domains, the ran-binding domain, the EVH1 domain, a domain in neurobeachin and the third domain of FERM. All of these domains have a PH fold, but lack significant sequence similarity. They are generally involved in targeting to protein to the appropriate cellular location or interacting with a binding partner. This domain family possesses multiple functions including the ability to bind inositol phosphates and to other proteins.


The actual alignment was detected with superfamily member cd13268:

Pssm-ID: 473070  Cd Length: 127  Bit Score: 169.95  E-value: 9.11e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907165235  15 FQERLKITALPLYFEGFLLVKRSDHQEYKHYWTELRGTTLFFYTDKKSTIYVGKLDIIDLVCLTGQHSTEKN--CAKFTL 92
Cdd:cd13268     1 RQERPKIQLPPCYYEGFLEKKRPKDREYRKLWTELCGTTLFFYNDKKDTQYVEKLDLSALESLTDEISRGRNldAARFTL 80
                          90       100
                  ....*....|....*....|....*....
gi 1907165235  93 VLPKEEVHVKTENTESGEEWRGFILTVTE 121
Cdd:cd13268    81 VLKDEEVKFKAENLESREEWKGFILTVTE 109
 
Name Accession Description Interval E-value
PH_Brdg1 cd13268
BCR downstream signaling 1 Pleckstrin homology (PH) domain; Brdg1 is thought to function as a ...
15-121 9.11e-56

BCR downstream signaling 1 Pleckstrin homology (PH) domain; Brdg1 is thought to function as a docking protein acting downstream of Tec, a protein tyrosine kinases (PTK), in B-cell antigen receptor (BCR) signaling. BRDG1 contains a proline-rich (PR) motif which is thought to bind SH3 or WW domains, a PH domain, and multiple tyrosine residues which are potential target sites for SH2 domains. Since PH domains bind phospholipids it is thought to be involved in the tethering of Tec and BRDG1 to the cell membrane.Tec and Pyk2, but not Btk, Bmx, Lyn, Syk, or c-Abl, induces phosphorylation of BRDG1 on tyrosine residues. Efficient phosphorylation requires both the PH and SH2 domains of BRDG1 and the kinase domain of Tec. The overexpression of BRDG1 increases theBCR-mediated activation of cAMP-response element binding protein (CREB). Phosphorylated BRDG1 is hypothesized to recruit CREB either directly or through its recruitment of downstream effectors which then recruit CREB. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270088  Cd Length: 127  Bit Score: 169.95  E-value: 9.11e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907165235  15 FQERLKITALPLYFEGFLLVKRSDHQEYKHYWTELRGTTLFFYTDKKSTIYVGKLDIIDLVCLTGQHSTEKN--CAKFTL 92
Cdd:cd13268     1 RQERPKIQLPPCYYEGFLEKKRPKDREYRKLWTELCGTTLFFYNDKKDTQYVEKLDLSALESLTDEISRGRNldAARFTL 80
                          90       100
                  ....*....|....*....|....*....
gi 1907165235  93 VLPKEEVHVKTENTESGEEWRGFILTVTE 121
Cdd:cd13268    81 VLKDEEVKFKAENLESREEWKGFILTVTE 109
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
29-112 1.89e-04

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 37.91  E-value: 1.89e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907165235   29 EGFLLVKRSDH-QEYKHYWTELRGTTLFFYTDKKSTIYVGKLDIIDLVCLTGQHSTEKNCAK----FTLVLPKEEVHV-K 102
Cdd:smart00233   4 EGWLYKKSGGGkKSWKKRYFVLFNSTLLYYKSKKDKKSYKPKGSIDLSGCTVREAPDPDSSKkphcFEIKTSDRKTLLlQ 83
                           90
                   ....*....|
gi 1907165235  103 TENTESGEEW 112
Cdd:smart00233  84 AESEEEREKW 93
 
Name Accession Description Interval E-value
PH_Brdg1 cd13268
BCR downstream signaling 1 Pleckstrin homology (PH) domain; Brdg1 is thought to function as a ...
15-121 9.11e-56

BCR downstream signaling 1 Pleckstrin homology (PH) domain; Brdg1 is thought to function as a docking protein acting downstream of Tec, a protein tyrosine kinases (PTK), in B-cell antigen receptor (BCR) signaling. BRDG1 contains a proline-rich (PR) motif which is thought to bind SH3 or WW domains, a PH domain, and multiple tyrosine residues which are potential target sites for SH2 domains. Since PH domains bind phospholipids it is thought to be involved in the tethering of Tec and BRDG1 to the cell membrane.Tec and Pyk2, but not Btk, Bmx, Lyn, Syk, or c-Abl, induces phosphorylation of BRDG1 on tyrosine residues. Efficient phosphorylation requires both the PH and SH2 domains of BRDG1 and the kinase domain of Tec. The overexpression of BRDG1 increases theBCR-mediated activation of cAMP-response element binding protein (CREB). Phosphorylated BRDG1 is hypothesized to recruit CREB either directly or through its recruitment of downstream effectors which then recruit CREB. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270088  Cd Length: 127  Bit Score: 169.95  E-value: 9.11e-56
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907165235  15 FQERLKITALPLYFEGFLLVKRSDHQEYKHYWTELRGTTLFFYTDKKSTIYVGKLDIIDLVCLTGQHSTEKN--CAKFTL 92
Cdd:cd13268     1 RQERPKIQLPPCYYEGFLEKKRPKDREYRKLWTELCGTTLFFYNDKKDTQYVEKLDLSALESLTDEISRGRNldAARFTL 80
                          90       100
                  ....*....|....*....|....*....
gi 1907165235  93 VLPKEEVHVKTENTESGEEWRGFILTVTE 121
Cdd:cd13268    81 VLKDEEVKFKAENLESREEWKGFILTVTE 109
PH_DGK_type2 cd13274
Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes ...
29-120 3.54e-07

Type 2 Diacylglycerol kinase Pleckstrin homology (PH) domain; DGK (also called DAGK) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) utilizing ATP as a source of the phosphate. In non-stimulated cells, DGK activity is low and DAG is used for glycerophospholipid biosynthesis. Upon receptor activation of the phosphoinositide pathway, DGK activity increases which drives the conversion of DAG to PA. DGK acts as a switch by terminating the signalling of one lipid while simultaneously activating signalling by another. There are 9 mammalian DGK isoforms all with conserved catalytic domains and two cysteine rich domains. These are further classified into 5 groups according to the presence of additional functional domains and substrate specificity: Type 1 - DGK-alpha, DGK-beta, DGK-gamma - contain EF-hand motifs and a recoverin homology domain; Type 2 - DGK-delta, DGK-eta, and DGK-kappa- contain a pleckstrin homology domain, two cysteine-rich zinc finger-like structures, and a separated catalytic region; Type 3 - DGK-epsilon - has specificity for arachidonate-containing DAG; Type 4 - DGK-zeta, DGK-iota- contain a MARCKS homology domain, ankyrin repeats, a C-terminal nuclear localization signal, and a PDZ-binding motif; Type 5 - DGK-theta - contains a third cysteine-rich domain, a pleckstrin homology domain and a proline rich region. The type 2 DGKs are present as part of this Metazoan DGK hierarchy. They have a N-terminal PH domain, two cysteine rich domains, followed by bipartite catalytic domains, and a C-terminal SAM domain. Their catalytic domains and perhaps other DGK catalytic domains may function as two independent units in a coordinated fashion. They may also require other motifs for maximal activity because several DGK catalytic domains have very little DAG kinase activity when expressed as isolated subunits. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270093  Cd Length: 97  Bit Score: 45.08  E-value: 3.54e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907165235  29 EGFLLVKRSDHQEYKHYWTELRGTTLFFYTDKKSTIYvgklDIIDLVCLTGQHSTEKN-CAKFTLVLPKEEVHVKTENTE 107
Cdd:cd13274     3 EGPLLKQTSSFQRWKRRYFKLKGRKLYYAKDSKSLIF----EEIDLSDASVAECSTKNvNNSFTVITPFRKLILCAESRK 78
                          90
                  ....*....|...
gi 1907165235 108 SGEEWRGFILTVT 120
Cdd:cd13274    79 EMEEWISALKTVQ 91
PH3_ARAP cd13256
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
25-112 1.41e-05

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 3; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the third PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270076  Cd Length: 110  Bit Score: 41.29  E-value: 1.41e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907165235  25 PLYFEGFL---------LVKRSDHQEYKHYWTELRGTTLFFYTDKKSTIYVGKLDIIDLVCL----TGQHSTEKNCAKFT 91
Cdd:cd13256     1 SVFHSGFLykspsaakpTLERRAREEFSRRWCVLEDGFLSYYESERSPEPNGEIDVSEIVCLavspPDTHPGDGFPFTFE 80
                          90       100
                  ....*....|....*....|..
gi 1907165235  92 LVLPKEEV-HVKTENTESGEEW 112
Cdd:cd13256    81 LYLESERLyLFGLETAEALHEW 102
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
29-112 1.42e-04

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 38.29  E-value: 1.42e-04
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907165235  29 EGFLLVKRSD-HQEYKHYWTELRGTTLFFYTDKKSTIYV--GKLDIIDLVCLTGQHSTEKNCAkFTLVLPKEEVHV-KTE 104
Cdd:cd00821     2 EGYLLKRGGGgLKSWKKRWFVLFEGVLLYYKSKKDSSYKpkGSIPLSGILEVEEVSPKERPHC-FELVTPDGRTYYlQAD 80

                  ....*...
gi 1907165235 105 NTESGEEW 112
Cdd:cd00821    81 SEEERQEW 88
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
29-112 1.89e-04

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 37.91  E-value: 1.89e-04
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 1907165235   29 EGFLLVKRSDH-QEYKHYWTELRGTTLFFYTDKKSTIYVGKLDIIDLVCLTGQHSTEKNCAK----FTLVLPKEEVHV-K 102
Cdd:smart00233   4 EGWLYKKSGGGkKSWKKRYFVLFNSTLLYYKSKKDKKSYKPKGSIDLSGCTVREAPDPDSSKkphcFEIKTSDRKTLLlQ 83
                           90
                   ....*....|
gi 1907165235  103 TENTESGEEW 112
Cdd:smart00233  84 AESEEEREKW 93
PH1_Tiam1_2 cd01230
T-lymphoma invasion and metastasis 1 and 2 Pleckstrin Homology (PH) domain, N-terminal domain; ...
26-64 1.32e-03

T-lymphoma invasion and metastasis 1 and 2 Pleckstrin Homology (PH) domain, N-terminal domain; Tiam1 activates Rac GTPases to induce membrane ruffling and cell motility while Tiam2 (also called STEF (SIF (still life) and Tiam1 like-exchange factor) contributes to neurite growth. Tiam1/2 are Dbl-family of GEFs that possess a Dbl(DH) domain with a PH domain in tandem. DH-PH domain catalyzes the GDP/GTP exchange reaction in the GTPase cycle and facillitating the switch between inactive GDP-bound and active GTP-bound states. Tiam1/2 possess two PH domains, which are often referred to as PHn and PHc domains. The DH-PH tandem domain is made up of the PHc domain while the PHn is part of a novel N-terminal PHCCEx domain which is made up of the PHn domain, a coiled coil region(CC), and an extra region (Ex). PHCCEx mediates binding to plasma membranes and signalling proteins in the activation of Rac GTPases. The PH domain resembles the beta-spectrin PH domain, suggesting non-canonical phosphatidylinositol binding. CC and Ex form a positively charged surface for protein binding. There are 2 motifs in Tiam1/2-interacting proteins that bind to the PHCCEx domain: Motif-I in CD44, ephrinBs, and the NMDA receptor and Motif-II in Par3 and JIP2.Neither of these fall in the PHn domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269937  Cd Length: 127  Bit Score: 36.28  E-value: 1.32e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*.
gi 1907165235  26 LYFEGFLLVKRSDHQE------YKHYWTELRGTTLFFY-TDKKSTI 64
Cdd:cd01230     9 LSVKNFLVHKKNKKVElatrrkWKKYWVCLKGCTLLFYeCDERSGI 54
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH