uncharacterized protein LOC122756531 [Drosophila santomea]
ribonuclease H family protein( domain architecture ID 10174525)
ribonuclease H (RNaseH) family protein containing a reverse transcriptase (RT)-like domain, may be an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner
List of domain hits
Name | Accession | Description | Interval | E-value | |||
Rnase_HI_RT_non_LTR | cd09276 | non-LTR RNase HI domain of reverse transcriptases; Ribonuclease H (RNase H) is classified into ... |
249-350 | 1.01e-26 | |||
non-LTR RNase HI domain of reverse transcriptases; Ribonuclease H (RNase H) is classified into two families, type 1 (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type 2 (prokaryotic RNase HII and HIII, and eukaryotic RNase H2). Ribonuclease HI (RNase HI) is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner. RNase H is widely present in various organisms, including bacteria, archaea and eukaryotes. RNase HI has also been observed as an adjunct domain to the reverse transcriptase gene in retroviruses, long-term repeat (LTR)-bearing retrotransposons and non-LTR retrotransposons. RNase HI in LTR retrotransposons perform degradation of the original RNA template, generation of a polypurine tract (the primer for plus-strand DNA synthesis), and final removal of RNA primers from newly synthesized minus and plus strands. The catalytic residues for RNase H enzymatic activity, three aspartatic acids and one glutamic acid residue (DEDD), are unvaried across all RNase H domains. The position of the RNase domain of non-LTR and LTR transposons is at the carboxyl terminal of the reverse transcriptase (RT) domain and their RNase domains group together, indicating a common evolutionary origin. Many non-LTR transposons have lost the RNase domain because their activity is at the nucleus and cellular RNase may suffice; however LTR retrotransposons always encode their own RNase domain because it requires RNase activity in RNA-protein particles in the cytoplasm. RNase H inhibitors have been explored as an anti-HIV drug target because RNase H inactivation inhibits reverse transcription. : Pssm-ID: 260008 [Multi-domain] Cd Length: 131 Bit Score: 104.61 E-value: 1.01e-26
|
|||||||
Name | Accession | Description | Interval | E-value | |||
Rnase_HI_RT_non_LTR | cd09276 | non-LTR RNase HI domain of reverse transcriptases; Ribonuclease H (RNase H) is classified into ... |
249-350 | 1.01e-26 | |||
non-LTR RNase HI domain of reverse transcriptases; Ribonuclease H (RNase H) is classified into two families, type 1 (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type 2 (prokaryotic RNase HII and HIII, and eukaryotic RNase H2). Ribonuclease HI (RNase HI) is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner. RNase H is widely present in various organisms, including bacteria, archaea and eukaryotes. RNase HI has also been observed as an adjunct domain to the reverse transcriptase gene in retroviruses, long-term repeat (LTR)-bearing retrotransposons and non-LTR retrotransposons. RNase HI in LTR retrotransposons perform degradation of the original RNA template, generation of a polypurine tract (the primer for plus-strand DNA synthesis), and final removal of RNA primers from newly synthesized minus and plus strands. The catalytic residues for RNase H enzymatic activity, three aspartatic acids and one glutamic acid residue (DEDD), are unvaried across all RNase H domains. The position of the RNase domain of non-LTR and LTR transposons is at the carboxyl terminal of the reverse transcriptase (RT) domain and their RNase domains group together, indicating a common evolutionary origin. Many non-LTR transposons have lost the RNase domain because their activity is at the nucleus and cellular RNase may suffice; however LTR retrotransposons always encode their own RNase domain because it requires RNase activity in RNA-protein particles in the cytoplasm. RNase H inhibitors have been explored as an anti-HIV drug target because RNase H inactivation inhibits reverse transcription. Pssm-ID: 260008 [Multi-domain] Cd Length: 131 Bit Score: 104.61 E-value: 1.01e-26
|
|||||||
RnhA | COG0328 | Ribonuclease HI [Replication, recombination and repair]; |
247-350 | 2.36e-03 | |||
Ribonuclease HI [Replication, recombination and repair]; Pssm-ID: 440097 [Multi-domain] Cd Length: 136 Bit Score: 38.29 E-value: 2.36e-03
|
|||||||
Name | Accession | Description | Interval | E-value | |||
Rnase_HI_RT_non_LTR | cd09276 | non-LTR RNase HI domain of reverse transcriptases; Ribonuclease H (RNase H) is classified into ... |
249-350 | 1.01e-26 | |||
non-LTR RNase HI domain of reverse transcriptases; Ribonuclease H (RNase H) is classified into two families, type 1 (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type 2 (prokaryotic RNase HII and HIII, and eukaryotic RNase H2). Ribonuclease HI (RNase HI) is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner. RNase H is widely present in various organisms, including bacteria, archaea and eukaryotes. RNase HI has also been observed as an adjunct domain to the reverse transcriptase gene in retroviruses, long-term repeat (LTR)-bearing retrotransposons and non-LTR retrotransposons. RNase HI in LTR retrotransposons perform degradation of the original RNA template, generation of a polypurine tract (the primer for plus-strand DNA synthesis), and final removal of RNA primers from newly synthesized minus and plus strands. The catalytic residues for RNase H enzymatic activity, three aspartatic acids and one glutamic acid residue (DEDD), are unvaried across all RNase H domains. The position of the RNase domain of non-LTR and LTR transposons is at the carboxyl terminal of the reverse transcriptase (RT) domain and their RNase domains group together, indicating a common evolutionary origin. Many non-LTR transposons have lost the RNase domain because their activity is at the nucleus and cellular RNase may suffice; however LTR retrotransposons always encode their own RNase domain because it requires RNase activity in RNA-protein particles in the cytoplasm. RNase H inhibitors have been explored as an anti-HIV drug target because RNase H inactivation inhibits reverse transcription. Pssm-ID: 260008 [Multi-domain] Cd Length: 131 Bit Score: 104.61 E-value: 1.01e-26
|
|||||||
RNase_HI_eukaryote_like | cd09280 | Eukaryotic RNase H is essential and is longer and more complex than their prokaryotic ... |
324-349 | 1.99e-04 | |||
Eukaryotic RNase H is essential and is longer and more complex than their prokaryotic counterparts; Ribonuclease H (RNase H) is classified into two families, type 1 (prokaryotic RNase HI, eukaryotic RNase H1 and viral RNase H) and type 2 (prokaryotic RNase HII and HIII, and eukaryotic RNase H2). RNase H is an endonuclease that cleaves the RNA strand of an RNA/DNA hybrid in a sequence non-specific manner. RNase H is involved in DNA replication, repair and transcription. One of the important functions of RNase H is to remove Okazaki fragments during DNA replication. RNase H is widely present in various organisms, including bacteria, archaea and eukaryote and most prokaryotic and eukaryotic genomes contain multiple RNase H genes. Despite the lack of amino acid sequence homology, type 1 and type 2 RNase H share a main-chain fold and steric configurations of the four acidic active-site (DEDD) residues and have the same catalytic mechanism and functions in cells. Eukaryotic RNase H is longer and more complex than in prokaryotes. Almost all eukaryotic RNase HI have highly conserved regions at their N-termini called hybrid binding domain (HBD). It is speculated that the HBD contributes to binding the RNA/DNA hybrid. Prokaryotes and some single-cell eukaryotes do not require RNase H for viability, but RNase H is essential in higher eukaryotes. RNase H knockout mice lack mitochondrial DNA replication and die as embryos. Pssm-ID: 260012 [Multi-domain] Cd Length: 145 Bit Score: 41.40 E-value: 1.99e-04
|
|||||||
RnhA | COG0328 | Ribonuclease HI [Replication, recombination and repair]; |
247-350 | 2.36e-03 | |||
Ribonuclease HI [Replication, recombination and repair]; Pssm-ID: 440097 [Multi-domain] Cd Length: 136 Bit Score: 38.29 E-value: 2.36e-03
|
|||||||
Blast search parameters | ||||
|