U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Molecular mechanisms underlying reprogramming of mouse fibroblasts into pluripotent stem cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array
Platforms:
GPL1261 GPL6246
9 Samples
Download data: CEL
Series
Accession:
GSE21067
ID:
200021067
2.

DNA microarrays of SKOM transduced MEFs with added Tgfb1 or co-expressing Snail

(Submitter supplied) The Tgf-b signaling pathway plays an important role in both embryonic development and epithelial to mesenchymal transition (EMT), but the influence of this pathway and its relationship with EMT in fibroblast reprogramming is not defined. Using Affymetrix mouse genome array and mouse embryonic fibroblast cells (MEFs), we analyzed the expression profiles of Tgf-b1 and one of its important mediators in EMT, Snail, regulated genes at Day 10 during the process of reprogramming. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
3 Samples
Download data: CEL
Series
Accession:
GSE21064
ID:
200021064
3.

DNA microarrays of three shRNA control iPS clones (Ctrl 2,3,4) and shECAD iPS clones (shECAD 4,8,9)

(Submitter supplied) E-cadherin upregulation is an early event of reprogramming of fibroblasts to induce pluripotent stem cells (iPS). Knocking down of E-cadherin by shRNA impairs iPS generation, though some colonies with great morphorlogical difference to shRNA control colonies remain. To illustrate the molecular and functional difference between shECAD iPS clones and shRNA control iPS clones, three respective iPS clones (shECAD 4,8,9 and Ctrl 2,3,4) were derived and DNA microarrays were run to analyze the transcriptional profile of these clones.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6246
6 Samples
Download data: CEL
Series
Accession:
GSE21062
ID:
200021062
4.

Expression data throughout reprogramming of MEF to iPS using a Dox-inducible promoter

(Submitter supplied) 6C secondary MEFs were treated with Dox in mES media to turn on the Oct4, Klf4, cMyc, Sox2. Total RNA was extracted at day 0 (no Dox), day2, 5, 8, 11, 16 and 21 (with Dox) and day 30 (Dox-independent secondary iPS). RNA from Parental MEFs and Primary-iPS cells were also extracted for reference. 1B secondary MEFs were Dox treated for 5-days followed by RNA extraction. Subsequently, a culture removed of Dox treatment for an additional 5days was also analyzed.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6096
13 Samples
Download data: CEL, CHP
Series
Accession:
GSE21757
ID:
200021757
5.

Gene expression analysis during reprogramming with sequential infecion of Oct4/Klf4/cMyc/Sox2

(Submitter supplied) To further understand the mechanism of reprogramming, the mouse embryonic fibroblast cells were infected with Oct4, Klf4, c-Myc and Sox2 with special sequence. 1) Oct4 and Klf4 containing retrovirus was delivered on day 0. 2) Oct4, Klf4 and c-Myc were delivered on Day 1.5. 3) c-Myc and Sox-2 were deivered on Day 3. 4) Sox2 were delivered on Day 4.5. 5) Vitamin C containging medium were used from Day 6. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL7202
5 Samples
Download data: TXT
Series
Accession:
GSE39260
ID:
200039260
6.

Global gene expression analyses of paused iPSCs

(Submitter supplied) Low Klf4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of Klf4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path towards pluripotency. Paused iPSCs with different Klf4 expression levels remain at distinct intermediate stages of reprogramming.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
24 Samples
Download data: TXT
Series
Accession:
GSE56406
ID:
200056406
7.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
32 Samples
Download data: TXT
Series
Accession:
GSE103536
ID:
200103536
8.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [ATAC-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
7 Samples
Download data: BED
Series
Accession:
GSE103535
ID:
200103535
9.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [RNA-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Mus musculus; Homo sapiens
Type:
Expression profiling by high throughput sequencing
4 related Platforms
25 Samples
Download data: TXT
Series
Accession:
GSE103509
ID:
200103509
10.

Global transcriptome profiling of Oct4/Klf4/Sox2 (3Factor, 3F) + IL6 iPS clones derived from mouse embryonic fibroblasts.

(Submitter supplied) We used heterokaryon cell fusion based reprogramming and identified the cytokine IL6 as a potential regulator of reprogramming to pluripotency. We generated iPS clones using the four reprogramming factors (4F) Oct4, Klf4, Sox2, and c-Myc. In addition, iPS clones were generated using only three factors (3F: Oct4, Klf4, amd Sox2) with the addition of the cytokine IL6 to reprogramming culture conditions. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
8 Samples
Download data: TXT
Series
Accession:
GSE46104
ID:
200046104
11.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL16791 GPL10558
95 Samples
Download data
Series
Accession:
GSE81900
ID:
200081900
12.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
84 Samples
Download data: PDF, TXT
Series
Accession:
GSE81899
ID:
200081899
13.

OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts

(Submitter supplied) SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
11 Samples
Download data: TXT
Series
Accession:
GSE81891
ID:
200081891
14.

Excluding Oct4 from Yamanaka cocktail unleashes the developmental potential of iPSCs

(Submitter supplied) Oct4 is widely considered the most important among the four Yamanaka reprogramming factors. Here we show that the combination of Sox2, Klf4, and cMyc (SKM) suffices for reprogramming mouse somatic cells to induced pluripotent stem cells (iPSCs). Simultaneous induction of Sox2 and cMyc in fibroblasts triggers immediate retroviral silencing, which explains the discrepancy with previous studies that attempted but failed to generate iPSCs without Oct4 using retroviral vectors. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21103 GPL21493
86 Samples
Download data: XLSX
Series
Accession:
GSE137001
ID:
200137001
15.

C/EBPα poises B cells for rapid reprogramming into iPS cells

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL13112 GPL13912
48 Samples
Download data: BED, TSV, TXT
Series
Accession:
GSE52397
ID:
200052397
16.

C/EBPα poises B cells for rapid reprogramming into iPS cells [RNA-Seq]

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: TSV
Series
Accession:
GSE52396
ID:
200052396
17.

C/EBPα poises B cells for rapid reprogramming into iPS cells [ChIP-Seq]

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BED
Series
Accession:
GSE52373
ID:
200052373
18.

C/EBPα poises B cells for rapid reprogramming into iPS cells [array]

(Submitter supplied) Somatic cell reprogramming into pluripotent stem cells induced by Oct4, Sox2, Klf4 and Myc (OSKM) occurs at low frequencies and with a considerable delay involving a stochastic phase. In contrast, transdifferentiation of B cells into macrophages induced by C/EBPα is fully efficient and initiated almost immediately. We now discovered that a pulse of C/EBPα in B cell precursors followed by OSKM expression dramatically enhances reprogramming to pluripotency, overcoming the stochastic phase. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL13912
44 Samples
Download data: TXT
Series
Accession:
GSE46321
ID:
200046321
19.

OSKM induce extraembryonic endoderm stem (iXEN) cells in parallel to iPS cells

(Submitter supplied) While the reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, they also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established alongside the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
17 Samples
Download data: TXT
Series
Accession:
GSE77550
ID:
200077550
20.

An integrated systems biology approach identifies positive cofactor 4 as a pluripotency regulatory factor

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
Platforms:
GPL17021 GPL1261
8 Samples
Download data: CEL
Series
Accession:
GSE74156
ID:
200074156
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_675b1c35b80ed315f11a19cd|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center