U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 8

1.

Mutant Huntingtin promotes neuronal death through cell autonomous microglial activation via myeloid lineage- determining factors

(Submitter supplied) Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by an extended polyglutamine repeat in the N-terminus of the huntingtin (Htt) protein. Reactive microglia and elevated cytokine levels are observed in the brains of HD patients, but the extent to which neuroinflammation results from extrinsic or cell-autonomous mechanisms is unknown. Furthermore, the impact of microglia activation on the pathogenesis of HD remains to be established. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL11002 GPL13112
22 Samples
Download data: BED, TXT
Series
Accession:
GSE54443
ID:
200054443
2.

In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons

(Submitter supplied) Huntington’s disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to neuronal dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
7 Samples
Download data: TXT
Series
Accession:
GSE25232
ID:
200025232
3.

N17 Modifies Mutant Huntingtin Nuclear Pathogenesis and Severity of Disease in HD BAC Transgenic Mice

(Submitter supplied) Longitudinal microarray data from BACHD-ΔN17 mice with wildtype littermate controls
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
48 Samples
Download data: TXT
Series
Accession:
GSE64386
ID:
200064386
4.

Next Generation Sequencing Investigation of altered transcripts in presence of dominant-negative transcription factor

(Submitter supplied) Purpose:The goals of this study was to determine alterations in expression levels of transcripts downstream of a dominant-negative transcription factor. Quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods was used to confirm the altered expression of targets. Methods: Striatal mRNA profiles of 11-month-old wild-type (WT) and Nestin-Cre X PPAR delta E411P mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
6 Samples
Download data: TXT
Series
Accession:
GSE74583
ID:
200074583
5.

Mitochondrial complex I activity in microglia sustains neuroinflammation [scRNA-seq III]

(Submitter supplied) Sustained smouldering, or low grade, activation of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis (MS). Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells. However, how these metabolic features act to perpetuate neuroinflammation is currently unknown. Using a multiomics approach, we identified a new molecular signature that perpetuates the activation of myeloid cells through mitochondrial complex I (CI) activity driving reverse electron transport (RET) and the production of reactive oxygen species (ROS). more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
8 Samples
Download data: CSV
Series
Accession:
GSE248174
ID:
200248174
6.

Mitochondrial complex I activity in microglia sustains neuroinflammation [scRNA-seq II]

(Submitter supplied) Sustained smouldering, or low grade, activation of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis (MS). Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells. However, how these metabolic features act to perpetuate neuroinflammation is currently unknown. Using a multiomics approach, we identified a new molecular signature that perpetuates the activation of myeloid cells through mitochondrial complex I (CI) activity driving reverse electron transport (RET) and the production of reactive oxygen species (ROS). more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
6 Samples
Download data: CSV
Series
Accession:
GSE248173
ID:
200248173
7.

Mitochondrial complex I activity in microglia sustains neuroinflammation [scRNA-seq]

(Submitter supplied) Sustained smouldering, or low grade, activation of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis (MS). Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells. However, how these metabolic features act to perpetuate neuroinflammation is currently unknown. Using a multiomics approach, we identified a new molecular signature that perpetuates the activation of myeloid cells through mitochondrial complex I (CI) activity driving reverse electron transport (RET) and the production of reactive oxygen species (ROS). more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
13 Samples
Download data: CSV
Series
Accession:
GSE248172
ID:
200248172
8.

Mitochondrial complex I activity in microglia sustains neuroinflammation [bulk]

(Submitter supplied) Sustained smouldering, or low grade, activation of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis (MS). Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells. However, how these metabolic features act to perpetuate neuroinflammation is currently unknown. Using a multiomics approach, we identified a new molecular signature that perpetuates the activation of myeloid cells through mitochondrial complex I (CI) activity driving reverse electron transport (RET) and the production of reactive oxygen species (ROS). more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24676
12 Samples
Download data: TXT
Series
Accession:
GSE248170
ID:
200248170
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_674928dc86d4ad4f7f58377b|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center