U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

The SAGA complex maintains the oncogenic gene expression program in MYCN-amplified neuroblastoma [RNA-Seq]

(Submitter supplied) Pediatric cancers are frequently driven by fusion or amplification events that result in aberrant transcription factor activity. As transcription factors themselves remain challenging to target, an emerging therapeutic approach for these cancers is to target epigenetic complexes that help maintain oncogenic transcriptional programs. It is therefore critical to identify the complete set of epigenetic modulators maintaining the oncogenic epigenetic landscape of pediatric cancers. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL24676 GPL21290
54 Samples
Download data: TXT
Series
Accession:
GSE211354
ID:
200211354
2.

The SAGA complex maintains the oncogenic gene expression program in MYCN-amplified neuroblastoma [ATAC-Seq]

(Submitter supplied) Pediatric cancers are frequently driven by fusion or amplification events that result in aberrant transcription factor activity. As transcription factors themselves remain challenging to target, an emerging therapeutic approach for these cancers is to target epigenetic complexes that help maintain oncogenic transcriptional programs. It is therefore critical to identify the complete set of epigenetic modulators maintaining the oncogenic epigenetic landscape of pediatric cancers. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24676
3 Samples
Download data: BW
Series
Accession:
GSE211954
ID:
200211954
3.

The SAGA complex maintains the oncogenic gene expression program in MYCN-amplified neuroblastoma [ChIP-Seq]

(Submitter supplied) Pediatric cancers are frequently driven by fusion or amplification events that result in aberrant transcription factor activity. As transcription factors themselves remain challenging to target, an emerging therapeutic approach for these cancers is to target epigenetic complexes that help maintain oncogenic transcriptional programs. It is therefore critical to identify the complete set of epigenetic modulators maintaining the oncogenic epigenetic landscape of pediatric cancers. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL24676
35 Samples
Download data: BW
Series
Accession:
GSE211953
ID:
200211953
4.

The SAGA complex maintains the oncogenic gene expression program in MYCN-amplified neuroblastoma

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21290 GPL24676
92 Samples
Download data
Series
Accession:
GSE211355
ID:
200211355
5.

Enhancer invasion shapes MYCN dependent transcriptional amplification in neuroblastoma [ChIP-seq Th-MYCN]

(Submitter supplied) In neuroblastoma, amplification of the oncogenic basic helix-loop-helix (bHLH) transcription factor (TF) MYCN is the defining prognosticator of high-risk disease, occurs in one-third of neuroblastoma, and drastically reduces overall survival rates. As a proto-oncogene, targeted MYCN overexpression in peripheral neural crest is sufficient to initiate disease in mouse models. In MYCN amplified neuroblastoma, elevated expression of the factor is crucial to maintain tumor stemness and is associated with increased proliferation and aberrant cell cycle progression, as these tumors lack the ability to arrest in G1 in response to irradiation. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
14 Samples
Download data: WIG
Series
Accession:
GSE100538
ID:
200100538
6.

Enhancer invasion shapes MYCN dependent transcriptional amplification in neuroblastoma

(Submitter supplied) Amplification of the locus encoding the oncogenic transcription factor MYCN is a defining feature of high-risk neuroblastoma. Here we present the first dynamic chromatin and transcriptional landscape of MYCN perturbation in neuroblastoma. At oncogenic levels, MYCN associates with E-box binding motifs in an affinity-dependent manner, binding to strong canonical E-boxes at promoters and invading abundant weaker non-canonical E-boxes clustered at enhancers. more...
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Other; Expression profiling by high throughput sequencing
4 related Platforms
144 Samples
Download data: BEDGRAPH, CEL, WIG
Series
Accession:
GSE80154
ID:
200080154
7.

Enhancer invasion shapes MYCN dependent transcriptional amplification in neuroblastoma [RNA-seq]

(Submitter supplied) In neuroblastoma, amplification of the oncogenic basic helix-loop-helix (bHLH) transcription factor (TF) MYCN is the defining prognosticator of high-risk disease, occurs in one-third of neuroblastoma, and drastically reduces overall survival rates1,2. As a proto-oncogene, targeted MYCN overexpression in peripheral neural crest is sufficient to initiate disease in mouse models3. In MYCN amplified neuroblastoma, elevated expression of the factor is crucial to maintain tumor stemness4,5 and is associated with increased proliferation and aberrant cell cycle progression, as these tumors lack the ability to arrest in G1 in response to irradiation6-9. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
49 Samples
Download data: TXT
8.

Enhancer invasion shapes MYCN dependent transcriptional amplification in neuroblastoma [ATAC-seq]

(Submitter supplied) In neuroblastoma, amplification of the oncogenic basic helix-loop-helix (bHLH) transcription factor (TF) MYCN is the defining prognosticator of high-risk disease, occurs in one-third of neuroblastoma, and drastically reduces overall survival rates1,2. As a proto-oncogene, targeted MYCN overexpression in peripheral neural crest is sufficient to initiate disease in mouse models3. In MYCN amplified neuroblastoma, elevated expression of the factor is crucial to maintain tumor stemness4,5 and is associated with increased proliferation and aberrant cell cycle progression, as these tumors lack the ability to arrest in G1 in response to irradiation6-9. more...
Organism:
Homo sapiens
Type:
Other
Platform:
GPL18573
5 Samples
Download data: WIG
Series
Accession:
GSE80152
ID:
200080152
9.

Enhancer invasion shapes MYCN dependent transcriptional amplification in neuroblastoma [ChIP-seq]

(Submitter supplied) In neuroblastoma, amplification of the oncogenic basic helix-loop-helix (bHLH) transcription factor (TF) MYCN is the defining prognosticator of high-risk disease, occurs in one-third of neuroblastoma, and drastically reduces overall survival rates. As a proto-oncogene, targeted MYCN overexpression in peripheral neural crest is sufficient to initiate disease in mouse models. In MYCN amplified neuroblastoma, elevated expression of the factor is crucial to maintain tumor stemness and is associated with increased proliferation and aberrant cell cycle progression, as these tumors lack the ability to arrest in G1 in response to irradiation. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL18573 GPL11154
40 Samples
Download data: WIG, XLS
Series
Accession:
GSE80151
ID:
200080151
10.

Enhancer invasion shapes MYCN dependent transcriptional amplification in neuroblastoma [ChIP_RX]

(Submitter supplied) In neuroblastoma, amplification of the oncogenic basic helix-loop-helix (bHLH) transcription factor (TF) MYCN is the defining prognosticator of high-risk disease, occurs in one-third of neuroblastoma, and drastically reduces overall survival rates. As a proto-oncogene, targeted MYCN overexpression in peripheral neural crest is sufficient to initiate disease in mouse models. In MYCN amplified neuroblastoma, elevated expression of the factor is crucial to maintain tumor stemness and is associated with increased proliferation and aberrant cell cycle progression, as these tumors lack the ability to arrest in G1 in response to irradiation. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
21 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE80150
ID:
200080150
11.

Enhancer invasion shapes MYCN dependent transcriptional amplification in neuroblastoma [ARRAY]

(Submitter supplied) In neuroblastoma, amplification of the oncogenic basic helix-loop-helix (bHLH) transcription factor (TF) MYCN is the defining prognosticator of high-risk disease, occurs in one-third of neuroblastoma, and drastically reduces overall survival rates1,2. As a proto-oncogene, targeted MYCN overexpression in peripheral neural crest is sufficient to initiate disease in mouse models3. In MYCN amplified neuroblastoma, elevated expression of the factor is crucial to maintain tumor stemness4,5 and is associated with increased proliferation and aberrant cell cycle progression, as these tumors lack the ability to arrest in G1 in response to irradiation6-9. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL16043
15 Samples
Download data: CEL
Series
Accession:
GSE80149
ID:
200080149
12.

Super-enhancer Driven Core Regulatory Circuitry in MYCN-amplified Neuroblastoma [array]

(Submitter supplied) Transcriptional dysregulation plays a major role in the development and progression of human tumors such as pediatric neuroblastoma. Therefore, we sought to elucidate the relationship between genes required for neuroblastoma cell growth and survival and the transcriptional core regulatory circuitry (CRC) that controls the gene expression program. A genome-scale CRISPR-Cas9 screen for oncogenic dependencies revealed that 143 genes are essential for cell survival and growth in neuroblastoma relative to other cancers, including many super-enhancer (SE) regulated transcription factors. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL16043
12 Samples
Download data: CEL, TXT
Series
Accession:
GSE108914
ID:
200108914
13.

Super-enhancer Driven Core Regulatory Circuitry in MYCN-amplified Neuroblastoma

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other; Expression profiling by array
Platforms:
GPL18573 GPL16791 GPL16043
30 Samples
Download data: BED, CEL, WIG
Series
Accession:
GSE94824
ID:
200094824
14.

Super-enhancer Driven Core Regulatory Circuitry in MYCN-amplified Neuroblastoma [ATAC-Seq]

(Submitter supplied) Transcriptional dysregulation plays a major role in the development and progression of human tumors such as pediatric neuroblastoma. Therefore, we sought to elucidate the relationship between genes required for neuroblastoma cell growth and survival and the transcriptional core regulatory circuitry (CRC) that controls the gene expression program. A genome-scale CRISPR-Cas9 screen for oncogenic dependencies revealed that 143 genes are essential for cell survival and growth in neuroblastoma relative to other cancers, including many super-enhancer (SE) regulated transcription factors. more...
Organism:
Homo sapiens
Type:
Other
Platform:
GPL18573
2 Samples
Download data: WIG
Series
Accession:
GSE94823
ID:
200094823
15.

Super-enhancer Driven Core Regulatory Circuitry in MYCN-amplified Neuroblastoma [ChIP-Seq]

(Submitter supplied) Transcriptional dysregulation plays a major role in the development and progression of human tumors such as pediatric neuroblastoma. Therefore, we sought to elucidate the relationship between genes required for neuroblastoma cell growth and survival and the transcriptional core regulatory circuitry (CRC) that controls the gene expression program. A genome-scale CRISPR-Cas9 screen for oncogenic dependencies revealed that 143 genes are essential for cell survival and growth in neuroblastoma relative to other cancers, including many super-enhancer (SE) regulated transcription factors. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL18573 GPL16791
16 Samples
Download data: BED, WIG
Series
Accession:
GSE94822
ID:
200094822
16.

Targeting EZH2 in MYCN-amplified Neuroblastoma

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
24 Samples
Download data: BW
Series
Accession:
GSE85432
ID:
200085432
17.

Targeting EZH2 in MYCN-amplified Neuroblastoma [RNA-seq]

(Submitter supplied) Purpose: Identify new targets in MYCN-amplified Neuroblastoma Methods: Kelly and LAN-1 neuroblastoma cells were treated in duplicate with 2 uM GSK126 (Excess Biosciences M60071-2) or DMSO for 2 or 5 days. RNA was extracted from cells with the RNeasy Kit (Qiagen). RNA libraries were prepared for sequencing using standard Illumina protocols. The pool of sixteen samples was sequenced on two lanes of an Illumina HiSeq, generating single end reads of 32-76 bp length. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
16 Samples
Download data: TXT
18.

Targeting EZH2 in MYCN-amplified Neuroblastoma [ChIP-seq]

(Submitter supplied) Purpose: Identify new targets in MYCN-amplified Neuroblastoma Methods: ChIP-Seq experiments were performed on Kelly and LAN-1 neuroblastoma cells by using the following antibodies: anti-EZH2 (Cell Signaling 5246S); anti-H3K27me3 (Millipore 07-449); anti-H3K4me3 (Abcam ab8580). We evaluated the global EZH2 PRC2-dependence by identifiying direct genome-wide target genes for EZH2, H3K27me3 and H3K4me3. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
8 Samples
Download data: BW
Series
Accession:
GSE85430
ID:
200085430
19.

Gene expression data from primary neuroblastoma tumors

(Submitter supplied) This dataset contains gene expression data from the NRC series (Neuroblastoma Research Consortium) for a total of 283 primary neuroblastoma tumors. All tumor samples are fully annotated including patient age at diagnosis, overall and progresison free survival and MYCN amplification status, enabling subgroup analysis, survival analysis and gene expression network analysis.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL5175
283 Samples
Download data: CEL
Series
Accession:
GSE85047
ID:
200085047
20.

Network-based, cross-cohort discovery of transcriptional mechanisms presiding over maintenance of high-risk neuroblastoma subtype state

(Submitter supplied) Network-based analysis of neuroblastoma samples from two large cohorts identified master regulator proteins controlling the transcriptional state of three high-risk molecular subtypes. In particular, a TEAD4-MYCN positive feedback loop emerged as the core regulatory motif of a small protein module presiding over implementation and stability of the subtype associated with MYCN amplification. Specifically, MYCN transcriptionally activates TEAD4, which in turn activates MYCN both transcriptionally and post-translationally. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL18573 GPL16791
16 Samples
Download data: BED, TXT
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_6748acc2462e1a751e0c8ecf|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center