NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE218219 Query DataSets for GSE218219
Status Public on Jul 01, 2023
Title Transcriptomic investigation of the modes of action of polymyxins and colistin/sulbactam combination against carbapenem-resistant Acinetobacter baumannii
Organism Acinetobacter baumannii
Experiment type Expression profiling by high throughput sequencing
Summary Carbapenem-resistant Acinetobacter baumannii (CRAB) is a Priority 1 (Critical) pathogen urgently requiring new antibiotics. Polymyxins are a last-line option against CRAB-associated infections. This transcriptomic study utilized a CRAB strain to investigate mechanisms of bacterial killing with polymyxin B, colistin, colistin B and colistin/sulbactam combination therapy. After 4 h of 2 mg/L polymyxin monotherapy, all polymyxins exhibited common modes of action which primarily involved disruption to amino acid and fatty acid metabolism. Of the three monotherapies, polymyxin B induced the greatest number of differentially expressed genes (DEGs), including for genes involved with fatty acid metabolism. Gene disturbances with colistin and colistin B were highly similar (89% common genes for colistin B), though effects on gene expression were generally lower (0-1.5-fold in most cases) with colistin B. Colistin alone (2 mg/L) or combined with sulbactam (64 mg/L) resulted in rapid membrane disruption as early as 1 h. Transcriptomic analysis of this combination revealed the effects were driven by colistin and included disturbances in fatty acid synthesis and catabolism and inhibition of nutrient uptake. Combination therapy produced substantially higher fold changes in 72% of DEGs shared with monotherapy, resulting in substantially greater reductions in fatty acid biosynthesis and increases in biofilm, cell wall and phospholipid synthesis. This indicates synergistic bacterial killing with the colistin/sulbactam combination results from a systematic increase in perturbation of many genes associated with bacterial metabolism. These mechanistic insights enhance our understanding of bacterial responses to polymyxin mono- and combination therapy and will assist to optimize polymyxin use in patients.
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a Priority 1 (Critical) pathogen urgently requiring new antibiotics. Polymyxins are a last-line option against CRAB-associated infections. This transcriptomic study utilized a CRAB strain to investigate mechanisms of bacterial killing with polymyxin B, colistin, colistin B and colistin/sulbactam combination therapy. After 4 h of 2 mg/L polymyxin monotherapy, all polymyxins exhibited common modes of action which primarily involved disruption to amino acid and fatty acid metabolism. Of the three monotherapies, polymyxin B induced the greatest number of differentially expressed genes (DEGs), including for genes involved with fatty acid metabolism. Gene disturbances with colistin and colistin B were highly similar (89% common genes for colistin B), though effects on gene expression were generally lower (0-1.5-fold in most cases) with colistin B. Colistin alone (2 mg/L) or combined with sulbactam (64 mg/L) resulted in rapid membrane disruption as early as 1 h. Transcriptomic analysis of this combination revealed the effects were driven by colistin and included disturbances in fatty acid synthesis and catabolism and inhibition of nutrient uptake. Combination therapy produced substantially higher fold changes in 72% of DEGs shared with monotherapy, resulting in substantially greater reductions in fatty acid biosynthesis and increases in biofilm, cell wall and phospholipid synthesis. This indicates synergistic bacterial killing with the colistin/sulbactam combination results from a systematic increase in perturbation of many genes associated with bacterial metabolism. These mechanistic insights enhance our understanding of bacterial responses to polymyxin mono- and combination therapy and will assist to optimize polymyxin use in patients.
 
Overall design We have six groups including colistin, polymyxin B, colistin B, sulbactam, colistin combined with sulbactam and control. Each group have three replicates.
 
Contributor(s) Bian X, Li M, Liu X, Zhu Y, Li J, Bergen PJ, Li W, Li X, Feng M, Zhang J
Citation(s) 39006922
Submission date Nov 17, 2022
Last update date Aug 09, 2024
Contact name Xingchen Bian
E-mail(s) [email protected]
Phone 02152888193
Organization name Huashan hospital, Fudan University
Street address Fudan university, Huashan hospital
City Shanghai
State/province Shanghai
ZIP/Postal code 200040
Country China
 
Platforms (1)
GPL28641 Illumina NovaSeq 6000 (Acinetobacter baumannii)
Samples (18)
GSM6736748 A.baumannii control rep1
GSM6736749 A.baumannii control rep2
GSM6736750 A.baumannii control rep3
Relations
BioProject PRJNA902757

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE218219_Expression.xlsx 1.4 Mb (ftp)(http) XLSX
SRA Run SelectorHelp
Raw data are available in SRA
Processed data are available on Series record

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap