NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE52878 Query DataSets for GSE52878
Status Public on Nov 14, 2014
Title Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution
Organism Saccharomyces cerevisiae
Experiment type Expression profiling by high throughput sequencing
Other
Summary Ribosome assembly in eukaryotes involves the activity of hundreds of assembly factors that direct the hierarchical assembly of ribosomal proteins and numerous ribosomal RNA folding steps. However, detailed insights into the function of assembly factors and ribosomal RNA folding events are lacking. To address this, we have developed ChemModSeq, a method that combines structure probing, high throughput sequencing and statistical modeling, to quantitatively measure RNA structural rearrangements during the assembly of macromolecular complexes. By applying ChemModSeq to purified 40S assembly intermediates we obtained nucleotide-resolution maps of ribosomal RNA flexibility revealing structurally distinct assembly intermediates and mechanistic insights into assembly dynamics not readily observed in cryo-electron microscopy reconstructions. We show that RNA restructuring events coincide with the release of assembly factors and predict that completion of the head domain is required before the Rio1 kinase enters the assembly pathway. Collectively, our results suggest that 40S assembly factors regulate the timely incorporation of ribosomal proteins by delaying specific folding steps in the 3’ major domain of the 20S pre-ribosomal RNA.
 
Overall design Three datasets of yeast ribosomal samples subjected to different chemical modifications; 1M7 dataset contains 8 different modified samples and 2 control samples; NAI dataset contains 3 different modified samples and 2 control samples; DMS dataset contains 1 modified sample and 1 control sample. Each sample consists of at least two replicates.
 
Contributor(s) Hector RD, Granneman S
Citation(s) 25200078, 34044851
Submission date Dec 02, 2013
Last update date Jun 03, 2021
Contact name Sander Granneman
E-mail(s) [email protected]
Organization name University of Edinburgh
Department Centre for Synthetic and Systems Biology
Lab Granneman lab
Street address Mayfield Road, Kings Buildings, Waddington building, room 3.06
City Edinburgh
ZIP/Postal code EH9 3JD
Country United Kingdom
 
Platforms (1)
GPL13821 Illumina HiSeq 2000 (Saccharomyces cerevisiae)
Samples (41)
GSM1277395 mid_early_controls_1
GSM1277396 mid_early_controls_2
GSM1277397 mid_early_controls_3
Relations
BioProject PRJNA230385
SRA SRP033417

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE52878_Average_drop_off_rates.txt.gz 106.9 Kb (ftp)(http) TXT
SRA Run SelectorHelp
Raw data are available in SRA
Processed data are available on Series record

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap