NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE72598 Query DataSets for GSE72598
Status Public on Dec 21, 2015
Title Gene expression data from wild-type (WT) and ribbon (rib) mutant Drosophila mid through late stage embryos
Organism Drosophila melanogaster
Experiment type Expression profiling by array
Summary Transcription factors, which regulate the spatiotemporal patterns of gene expression during organogenesis, often regulate multiple aspects of tissue morphogenesis, including cell-type specification, cell proliferation, cell death, cell polarity, cell shape, cell arrangement and cell migration. In this work, we describe a distinct role for Ribbon (Rib) in controlling cell shape changes during elongation of the Drosophila salivary gland (SG). Notably, the morphogenetic changes in rib mutants occurred without effects on general SG cell attributes such as specification, proliferation and apoptosis. Moreover, the abnormal cell/organ shape in rib mutants occurred without compromising epithelial-specific morphological attributes such as apicobasal polarity and junctional integrity. To identify the genes regulated by Rib that control cell and organ shape, we performed ChIP-seq analysis in embryos driving rib expression specifically in the SGs. To learn if the Rib binding sites identified in the ChIP-seq analysis were linked to changes in gene expression through transcriptional activation, repression, or both, we performed microarray analysis comparing RNA samples from age-matched wild-type and rib null embryos. From the superposed ChIP-seq and microarray gene expression data, we identified 60 genomic sites of bound Rib most likely to regulate SG-specific gene expression. We confirmed several of the identified Rib targets by qRT-pCR and/or in situ hybridization. Our results indicate that Rib regulates cell shape change in the Drosophila salivary gland via a diverse array of targets through both transcriptional activation and repression. Furthermore, our results suggest that a critical component of the SG morphogenetic gene network involving Rib is its autoregulation.
 
Overall design Three independent collections of stage 11 – 16 rib1/ribP7 embryos and three of wild-type embryos were used for hybridization to Drosophila Genome 2.0 Chips. Scanned intensity values were normalized using RMA (Partek software) and statistical analysis analyses were performed using the Spotfire software package (TIBCO). Target genes were identified as those that were upregulated/downregulated (1.5-fold change cutoff, P < 0.05) in rib1/ribP7 embryos when compared with Oregon R controls.
 
Contributor(s) Andrew D, Loganathan R
Citation(s) 26477561
Submission date Sep 01, 2015
Last update date May 04, 2018
Contact name Deborah J Andrew
E-mail(s) [email protected]
Organization name Johns Hopkins University School of Medicine
Department Cell Biology
Street address 725 N. Wolfe St., Hunterian G-1
City Baltimore
State/province MD
ZIP/Postal code 21205
Country USA
 
Platforms (1)
GPL1322 [Drosophila_2] Affymetrix Drosophila Genome 2.0 Array
Samples (6)
GSM1865830 wild-type embryos replicate 1
GSM1865831 wild-type embryos replicate 2
GSM1865832 wild-type embryos replicate 3
This SubSeries is part of SuperSeries:
GSE73781 Genome-wide Ribbon occupancy and gene expression profiling of wildtype and ribbon mutant Drosophila mid through late stage embryos
Relations
BioProject PRJNA294429

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE72598_RAW.tar 11.9 Mb (http)(custom) TAR (of CEL)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap