NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Sample GSM451556 Query DataSets for GSM451556
Status Public on Dec 01, 2016
Title GSY144-Rep1-g200-FRY923
Sample type genomic
 
Channel 1
Source name S cerevisiae + S bayanus genomic DNA sonicated, 300 ng each
Organism Saccharomyces cerevisiae
Characteristics reference: S cerevisiae + S bayanus genomic DNA sonicated, 300 ng each
Extracted molecule genomic DNA
Extraction protocol not provided
Label Cy3
Label protocol not provided
 
Channel 2
Source name GSY144-Rep1-g200-FRY923-MB1-8genomic DNA, Hae III cut, 450 ng
Organism Saccharomyces cerevisiae
Characteristics strain: GSY144
genotype: whole genome
developmental stage: 200
replicate: Rep1
Extracted molecule genomic DNA
Extraction protocol not provided
Label Cy5
Label protocol not provided
 
 
Hybridization protocol not provided
Scan protocol Scanner Model: G2505C
Description Simple annotation: Interspecific Hybrid, aCGH cell line
Image: http://smd.stanford.edu/MicroArray/gifs/2009-01/82531.gif
Data processing VALUE is Log (base 2) of the ratio of the median of Channel 2 (usually 635 nm) to Channel 1 (usually 532 nm)
 
Submission date Sep 10, 2009
Last update date Dec 01, 2016
Contact name Barbara Dunn
E-mail(s) [email protected]
Phone 650-498-5995
Organization name Stanford University
Department Genetics
Street address -
City Stanford
State/province CA
ZIP/Postal code 94305
Country USA
 
Platform ID GPL9174
Series (1)
GSE35549 Array CGH of interspecific hybrid yeasts using multi-species array platform

Data table header descriptions
ID_REF ID_REF
AGILENT_RAW.G_MEAN_SIGNAL Mean foreground intensity Ch 1.; Type: float; Scale: linear_scale
AGILENT_RAW.G_MEDIAN_SIGNAL Median foreground intensity Ch 1.; Type: float; Scale: linear_scale
AGILENT_RAW.R_MEAN_SIGNAL Mean foreground intensity Ch 2.; Type: float; Scale: linear_scale
AGILENT_RAW.R_MEDIAN_SIGNAL Median foreground intensity Ch 2.; Type: float; Scale: linear_scale
AGILENT_RAW.G_MEAN_BG Mean background intensity Ch 1.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.G_MEDIAN_BG Median background intensity Ch 1.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.R_MEAN_BG Mean background intensity Ch 2.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.R_MEDIAN_BG Median background intensity Ch 2.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.G_NUM_PIX Total number of pixels used to compute feature statistics; ie. Total number of inlier pixels per spot, computed independently for the green channel. The number of inlier pixels are the same in both channels.; Type: integer; Scale: linear_scale
AGILENT_RAW.R_NUM_PIX Total number of pixels used to compute feature statistics; ie. Total number of inlier pixels per spot, computed independently for the red channel. The number of inlier pixels are the same in both channels.; Type: integer; Scale: linear_scale
AGILENT_RAW.G_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the green channel; Type: float; Scale: linear_scale
AGILENT_RAW.R_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the red channel; Type: float; Scale: linear_scale
AGILENT_RAW.G_BG_NUM_PIX Total number of pixels used to compute Local background statistics per spot; ie. Total number of BG inlier pixels. This number is calculated independently for the green channel.; Type: integer; Scale: linear_scale
AGILENT_RAW.R_BG_NUM_PIX Total number of pixels used to compute Local background statistics per spot; ie. Total number of BG inlier pixels. This number is calculated independently for the red channel.; Type: integer; Scale: linear_scale
AGILENT_RAW.G_BG_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the green channel; Type: float; Scale: linear_scale
AGILENT_RAW.R_BG_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the red channel; Type: float; Scale: linear_scale
AGILENT_RAW.TOP Top coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.BOT Bottom coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.LEFT Left coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.RIGHT Right coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.POSITION_X X-coordinate of spot.; Type: float; Scale: linear_scale
AGILENT_RAW.POSITION_Y Y-coordinate of spot.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.BG_PIX_CORRELATION Ratio of estimated feature Background covariance in Red Green space to product of feature Standard Deviation in Red Green space. The covariance of two features measures their tendency to vary together, ie., co-vary. In this case, it is a cumulative quantitation of the tendency of pixels belonging to a particular feature's Background in Red and Green spaces to co-vary.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.BG_SUB_SIG_CORRELATION Ratio of estimated background subtracted feature signal covariance in Red Green space to product of background subtracted feature Standard Deviation in Red Green space.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_BG_SD_USED Standard deviation of background used in green channel; Type: float; Scale: linear_scale; Background
AGILENT_COMPUTED.G_BG_SUB_SIGNAL The net green signal following the subtraction of the background from the raw green mean signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_BG_SUB_SIG_ERROR Propagated standard error as computed on net green background subtracted signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_BG_USED Background value subtracted from the raw mean signal to generate the BG subtracted signal; this value is computed for the green channel. If global BG subtraction is used, the column is identical for every feature in a channel. Options: gBGSubSignal (gMeansignal - gBGUsed); Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_BG_SD_USED Standard deviation of background used in red channel; Type: float; Scale: linear_scale; Background
AGILENT_COMPUTED.R_BG_SUB_SIGNAL The net green signal following the subtraction of the background from the raw red mean signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_BG_SUB_SIG_ERROR Propagated standard error as computed on net red background subtracted signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_BG_USED Background value subtracted from the raw mean signal to generate the BG subtracted signal; this value is computed for the red channel. If global BG subtraction is used, the column is identical for every feature in a channel. Options: rBGSubSignal (rMeansignal - rBGUsed); Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_DYE_NORM_SIGNAL The dye normalized signal in the green channel.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_DYE_NORM_SIGNAL The dye normalized signal in the red channel.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_IS_GOOD_PM Feature passes gIsWellAboveBG and additionally the gPerfMatchSignal is positive and significant (t-test p value < 0.01) versus its gDelCtrlSignal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_IS_LOW_SPECIFICITY gPerfMatchSignal fails positive and significance t-test (0.01) versus its gDelCtrlSignal; and deletion control passes gIsWellAboveBG; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_IS_GOOD_PM Feature passes rIsWellAboveBG and additionally the rPerfMatchSignal is positive and significant (t-test p value < 0.01) versus its rDelCtrlSignal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_IS_LOW_SPECIFICITY rPerfMatchSignal fails positive and significance t-test (0.01) versus its rDelCtrlSignal; and deletion control passes rIsWellAboveBG; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_NUM_SAT_PIX Total number of saturated pixels per feature, computed for the green channel; Type: integer; Scale: linear_scale
AGILENT_COMPUTED.R_NUM_SAT_PIX Total number of saturated pixels per feature, computed for the red channel; Type: integer; Scale: linear_scale
AGILENT_COMPUTED.G_PROCESSED_SIGNAL The propagated feature signal in the green channel, used for computation of log ratio; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_PROCESSED_SIGNAL The propagated feature signal in the red channel, used for computation of log ratio; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_PVAL_FEAT_EQ_BG Log (base 10) of p-value from t-test of significance between green Mean signal and green background.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_PVAL_FEAT_EQ_BG Log (base 10) of p-value from t-test of significance between red Mean signal and red background.; Type: float; Scale: linear_scale
VALUE log(REDsignal/GREENsignal); Type: float; Scale: linear_scale
AGILENT_COMPUTED.LOG_RATIO_ERROR Error of the log ratio calculated according to the error model chosen.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.PIX_CORRELATION Ratio of estimated feature covariance in Red Green space to product of feature Standard Deviation ion Red Green space. The covariance of two features measures their tendency to vary together, ie., co-vary. In this case, it is a cumultive quantitation of the tendency of pixels belonging to a particular feature in Red and Green spaces to co-vary.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.P_VALUE_LOG_RATIO Log (base 10) of significance level of the Log Ratio computed for a feature.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.DYE_NORM_CORRELATION Dye normalized red and green pixel correlation.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_DYE_NORM_ERROR The standard error associated with the green dye normalized signal.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_DYE_NORM_ERROR The standard error associated with the red dye normalized signal.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.ERROR_MODEL Indicates the error model that the user chose for feature extraction. Options: 0 (Propagated model chosen by user or by software) | 1 (Universal error model chosen by user of software).; Type: integer; Scale: linear_scale
AGILENT_COMPUTED.G_IS_FOUND A boolean used to flag found (strong) features. The flag is applied independently to the green channel. A feature is considered found if the found spot centroid is within the bounds of the spot deviation limit with respect to corresponding nominal centroid. NOTE: Isfound was previously termed IsStrong.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_FOUND A boolean used to flag found (strong) features. The flag is applied independently to the red channel. A feature is considered found if the found spot centroid is within the bounds of the spot deviation limit with respect to corresponding nominal centroid. NOTE: Isfound was previously termed IsStrong.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_FEAT_NON_UNIF_OL Boolean flag indicating if a feature is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature is a non-uniformity outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_FEAT_NON_UNIF_OL Boolean flag indicating if a feature is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature is a non-uniformity outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_FEAT_POPN_OL Boolean flag indicating if a feature is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature is a population outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_FEAT_POPN_OL Boolean flag indicating if a feature is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature is a population outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_SATURATED Boolean flag indicating if a feature is saturated or not in the green channel. A feature is saturated IF 50% of the pixels in a feature are above the saturation threshold. Options: 1 (saturated) | 0 (not saturated); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_SATURATED Boolean flag indicating if a feature is saturated or not in the red channel. A feature is saturated IF 50% of the pixels in a feature are above the saturation threshold. Options: 1 (saturated) | 0 (not saturated); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_WELL_ABOVE_BG Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_WELL_ABOVE_BG Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_BG_NON_UNIF_OL Boolean flag indicating if a feature's Background is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature's background is a non-uniformity outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_BG_NON_UNIF_OL Boolean flag indicating if a feature's Background is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature's background is a non-uniformity outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_BG_POPN_OL Boolean flag indicating if a feature's Background is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature's background is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature Background is a population outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_BG_POPN_OL Boolean flag indicating if a feature's Background is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature's background is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature Background is a population outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_POS_AND_SIGNIF Boolean flag indicating if the mean signal of a feature is greater than the corresponding background and if this difference is significant. Significance is established via a 2-sided t-test against the user-settable maximum p-value (BGSub tab) Options: 1 (Feature is positive and significant above background in the green channel); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_POS_AND_SIGNIF Boolean flag indicating if the mean signal of a feature is greater than the corresponding background and if this difference is significant. Significance is established via a 2-sided t-test against the user-settable maximum p-value (BGSub tab) Options: 1 (Feature is positive and significant above background in the red channel); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.IS_USED_BG_ADJUST Boolean flag used to flag features used for computation of global Background offset; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.IS_NORMALIZATION Boolean flag which indicates if a feaure is used to measure dye bias. Options: 1 (Feature used) | 0 (Feature not used).; Type: boolean; Scale: linear_scale

Data table
ID_REF AGILENT_RAW.G_MEAN_SIGNAL AGILENT_RAW.G_MEDIAN_SIGNAL AGILENT_RAW.R_MEAN_SIGNAL AGILENT_RAW.R_MEDIAN_SIGNAL AGILENT_RAW.G_MEAN_BG AGILENT_RAW.G_MEDIAN_BG AGILENT_RAW.R_MEAN_BG AGILENT_RAW.R_MEDIAN_BG AGILENT_RAW.G_NUM_PIX AGILENT_RAW.R_NUM_PIX AGILENT_RAW.G_PIX_SDEV AGILENT_RAW.R_PIX_SDEV AGILENT_RAW.G_BG_NUM_PIX AGILENT_RAW.R_BG_NUM_PIX AGILENT_RAW.G_BG_PIX_SDEV AGILENT_RAW.R_BG_PIX_SDEV AGILENT_RAW.TOP AGILENT_RAW.BOT AGILENT_RAW.LEFT AGILENT_RAW.RIGHT AGILENT_RAW.POSITION_X AGILENT_RAW.POSITION_Y AGILENT_COMPUTED.BG_PIX_CORRELATION AGILENT_COMPUTED.BG_SUB_SIG_CORRELATION AGILENT_COMPUTED.G_BG_SD_USED AGILENT_COMPUTED.G_BG_SUB_SIGNAL AGILENT_COMPUTED.G_BG_SUB_SIG_ERROR AGILENT_COMPUTED.G_BG_USED AGILENT_COMPUTED.R_BG_SD_USED AGILENT_COMPUTED.R_BG_SUB_SIGNAL AGILENT_COMPUTED.R_BG_SUB_SIG_ERROR AGILENT_COMPUTED.R_BG_USED AGILENT_COMPUTED.G_DYE_NORM_SIGNAL AGILENT_COMPUTED.R_DYE_NORM_SIGNAL AGILENT_COMPUTED.G_IS_GOOD_PM AGILENT_COMPUTED.G_IS_LOW_SPECIFICITY AGILENT_COMPUTED.R_IS_GOOD_PM AGILENT_COMPUTED.R_IS_LOW_SPECIFICITY AGILENT_COMPUTED.G_NUM_SAT_PIX AGILENT_COMPUTED.R_NUM_SAT_PIX AGILENT_COMPUTED.G_PROCESSED_SIGNAL AGILENT_COMPUTED.R_PROCESSED_SIGNAL AGILENT_COMPUTED.G_PVAL_FEAT_EQ_BG AGILENT_COMPUTED.R_PVAL_FEAT_EQ_BG VALUE AGILENT_COMPUTED.LOG_RATIO_ERROR AGILENT_COMPUTED.PIX_CORRELATION AGILENT_COMPUTED.P_VALUE_LOG_RATIO AGILENT_COMPUTED.DYE_NORM_CORRELATION AGILENT_COMPUTED.G_DYE_NORM_ERROR AGILENT_COMPUTED.R_DYE_NORM_ERROR AGILENT_COMPUTED.ERROR_MODEL AGILENT_COMPUTED.G_IS_FOUND AGILENT_COMPUTED.R_IS_FOUND AGILENT_COMPUTED.G_IS_FEAT_NON_UNIF_OL AGILENT_COMPUTED.R_IS_FEAT_NON_UNIF_OL AGILENT_COMPUTED.G_IS_FEAT_POPN_OL AGILENT_COMPUTED.R_IS_FEAT_POPN_OL AGILENT_COMPUTED.G_IS_SATURATED AGILENT_COMPUTED.R_IS_SATURATED AGILENT_COMPUTED.R_IS_WELL_ABOVE_BG AGILENT_COMPUTED.G_IS_WELL_ABOVE_BG AGILENT_COMPUTED.G_IS_BG_NON_UNIF_OL AGILENT_COMPUTED.R_IS_BG_NON_UNIF_OL AGILENT_COMPUTED.G_IS_BG_POPN_OL AGILENT_COMPUTED.R_IS_BG_POPN_OL AGILENT_COMPUTED.G_IS_POS_AND_SIGNIF AGILENT_COMPUTED.R_IS_POS_AND_SIGNIF AGILENT_COMPUTED.IS_USED_BG_ADJUST AGILENT_COMPUTED.IS_NORMALIZATION
1 134.8646 134 101.9694 101 51.01581 51 67.64837 67 229 229 12.79268 14.63815 1075 1075 6.683363 9.391797 39 66 36 63 50.266 52.99 .0561159 0 6.68336 1.91701 6.92065 132.948 9.3918 1.55466 9.04439 100.415 1.03745 .912605 null null null null 0 0 3.732498 11.25867 -.326253109656571 -.183617494379116 0 .4139380636 .0775269 0 0 3.74533 5.30917 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 137.5913 137.5 102.4304 100.5 51.56365 51 68.39391 68 230 230 15.45038 15.18882 1084 1084 6.501126 9.480154 39 66 79 106 92.935 53.386 -.00402534 0 6.50113 4.72469 6.93411 132.867 9.48015 2.1609 9.04563 100.27 2.53982 1.26847 null null null null 0 0 3.707529 10.56551 -1.11472700499578 -.271735521352348 0 .4302452465 .156037 0 0 3.72751 5.3099 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 8035.872 7881 27206.88 26248 51.78209 51 69.04155 68 211 211 1069.827 4477.233 1083 1083 6.479926 9.683204 42 69 120 147 134.359 56.056 .00918826 0 6.47993 7903.1 790.341 132.768 9.6832 27106.7 2710.69 100.141 4203.77 15912 null null null null 0 0 4203.771 15912 -308 -308 .5780857877 .0812605188 .460378 -11.9479116858648 0 420.393 1591.21 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
4 1950.84 1763 208.962 197 51.46125 51 68.65028 68 237 237 634.8534 55.70879 1058 1058 6.56075 9.329793 41 68 164 191 177.927 54.655 .0194385 0 6.56075 1818.17 181.949 132.669 9.32979 109.029 14.1651 99.9329 960.353 64.0015 null null null null 0 0 960.3533 64.00149 -308 -95.1741242405251 -1.176240959 .1265850643 .656829 -19.8202327818389 0 96.1048 8.3151 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
5 6069.967 5695 26749.89 24539 51.35421 51 68.05479 67 241 241 1660.337 7327.411 1022 1022 6.539848 9.336297 41 68 206 233 220.035 55.007 -.00349431 0 6.53985 5937.4 593.78 132.566 9.3363 26650.1 2665.03 99.7725 3104.9 15644 null null null null 0 0 3104.899 15643.96 -308 -308 .7022992535 .08932992385 .79043 -14.4219635559021 0 310.511 1564.4 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0
6 5530.762 5366 45926.31 45863 51.22727 51 69.41477 69 240 240 1051.235 10300.49 1056 1056 6.507411 10.14419 39 66 249 276 262.866 53.363 .00619522 0 6.50741 5398.29 539.874 132.47 10.1442 45826.7 4582.68 99.6109 2798.5 26900.9 null null null null 0 0 2798.504 26900.86 -308 -308 .9828403008 .1102879947 .719774 -18.2983427059847 0 279.873 2690.09 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1
7 2816.476 2713 2172.911 2077 52.34051 51 67.76239 67 225 225 569.7755 485.1241 1069 1069 6.977093 9.409815 40 67 291 318 305.092 54.475 .041252 0 6.97709 2684.09 268.499 132.381 9.40981 2073.48 207.546 99.427 1373.53 1217.16 null null null null 0 0 1373.532 1217.162 -308 -308 -.05249039422 .06164239681 .592922 -.403980944745094 0 137.399 121.832 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
8 4496.664 4236 124.1207 123 52.387 52 66.6 66 232 232 1152.413 18.74581 1000 1000 6.885684 9.371116 39 66 332 359 345.99 52.942 .078834 0 6.88568 4364.37 436.492 132.292 9.37112 24.868 9.37875 99.2527 2210.84 14.5979 null null null null 0 0 2210.838 14.59786 -308 -11.1634771419213 -2.180267911 .2195715616 .159332 -22.5095479483119 0 221.112 5.50545 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
9 7877.276 7437.5 17655.14 16568.5 51.24186 51 67.71814 67 228 228 1855.369 4645.673 1075 1075 6.675724 9.445107 40 67 375 402 389.147 54.163 .0638564 0 6.67572 7745.08 774.538 132.201 9.44511 17556 1755.62 99.1423 3864.62 10305.6 null null null null 0 0 3864.622 10305.6 -308 -308 .425966089 .0727906422 .544996 -8.31346450250108 0 386.478 1030.57 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0
10 3992.906 3736 17490.06 15969 51.19297 51 67.95342 68 245 245 1109.665 4986.067 1052 1052 6.532931 9.637419 38 65 418 445 432.46 52.349 .0683444 0 6.53293 3860.8 386.142 132.106 9.63742 17391 1739.13 99.0284 1903.14 10208.8 null null null null 0 0 1903.137 10208.76 -308 -308 .7295029071 .09121246842 .698147 -14.8975019994817 0 190.344 1020.89 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0
11 890.1276 859 968.7984 910 50.81966 50 66.0792 66 243 243 213.5243 250.3034 1048 1048 5.991152 9.1213 41 68 461 488 474.619 55.275 .0449698 0 5.99115 758.107 76.1257 132.021 9.1213 869.902 87.459 98.8965 366.888 510.644 null null null null 0 0 366.8877 510.6436 -308 -308 .1435847588 .06311513268 .692613 -1.64001303940727 0 36.8412 51.3395 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
12 4053.983 3901.5 113.5684 112 50.71152 50 65.93127 65 234 234 790.8001 16.33651 1033 1033 6.488215 9.264739 40 67 502 529 515.88 54.239 .0419039 0 6.48821 3922.04 392.265 131.939 9.26474 14.8213 9.1637 98.7471 1872.05 8.7003 null null null null 0 0 1872.052 8.7003 -308 -4.56272678934645 -2.332783581 .2345007489 .0734606 -22.5890008553334 0 187.234 5.37921 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
13 1426.101 1438.5 121.2294 122 50.84004 50 66.64559 66.5 218 218 305.6698 18.52145 1044 1044 6.513669 9.138587 40 67 545 572 558.76 53.883 .0540194 0 6.51367 1294.25 129.61 131.847 9.13859 22.619 9.32164 98.6103 608.047 13.2777 null null null null 0 0 608.0466 13.27766 -308 -9.47439550833549 -1.660815391 .1707166906 .177783 -21.6421518637866 0 60.8915 5.47192 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
14 9814.661 9852 27827.06 27301 49.86238 49 66.84987 66 239 239 2180.231 6107.142 1119 1119 5.768554 9.58377 39 66 587 614 601.44 53.074 .0133782 0 5.76855 9682.9 968.314 131.764 9.58377 27728.6 2772.87 98.4844 4477.79 16277 null null null null 0 0 4477.792 16277.03 -308 -308 .5605111927 .08019547485 .679827 -11.5587172863194 0 447.791 1627.71 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
15 1898.884 1835.5 127.7107 127 50.06354 50 66.11878 66 242 242 459.0175 17.5234 1086 1086 6.121099 9.328499 42 69 629 656 643.3 55.651 .0815248 0 6.1211 1767.22 176.858 131.662 9.3285 29.3325 9.50688 98.3783 800.959 17.2185 null null null null 0 0 800.9588 17.21855 -308 -14.8197737381109 -1.667613674 .1709684514 .154146 -21.7508784285016 0 80.1572 5.58066 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
16 2458.378 2392 125.6395 123 50.41144 50 66.5286 66 233 233 553.5017 19.44928 1084 1084 6.0338 9.167675 39 66 673 700 686.6 52.8 -.0285902 0 6.0338 2326.83 232.786 131.546 9.16768 27.3702 9.44817 98.2693 1039.39 16.0666 null null null null 0 0 1039.391 16.06665 -308 -13.16621053101 -1.810853828 .1842713252 .100943 -22.0652174244094 0 103.985 5.5462 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
17 1220.975 1185 109.0837 108 50.55818 50 65.57237 65 239 239 223.9511 14.84688 1057 1057 6.403026 8.924277 41 68 714 741 728.46 55.242 .0415512 0 6.40303 1089.55 109.174 131.425 8.92428 10.9267 9.10882 98.157 476.685 6.41413 null null null null 0 0 476.6849 6.414125 -308 -2.73257246533507 -1.871093922 .1912304173 -.0379424 -21.8819238525666 0 47.7645 5.347 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
18 9805.038 9760 5838.271 5683.5 50.44972 50 65.02562 65 240 240 1522.324 776.2857 1054 1054 6.380677 9.111127 39 66 757 784 770.62 53.333 .0565349 0 6.38068 9673.74 967.398 131.302 9.11113 5740.24 574.095 98.0344 4165.29 3369.59 null null null null 0 0 4165.29 3369.592 -308 -308 -.09206784566 .06199515372 .539008 -.86162691077193 0 416.54 337.001 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
19 4432.739 4400 5387.817 5199 49.91304 50 64.2346 64 241 241 1305.368 1380.348 1104 1104 5.763993 8.648796 40 67 800 827 813.71 54.061 .00902991 0 5.76399 4301.48 430.204 131.254 8.6488 5289.91 529.068 97.9113 1815.66 3105.24 null null null null 0 0 1815.658 3105.243 -308 -308 .2330615325 .06501822018 .679469 -3.47153261350654 0 181.589 310.57 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0
20 1733.119 1730.5 110.8451 110 50.08018 50 64.15576 64 226 226 351.4254 14.78582 1085 1085 5.866128 8.713176 39 66 841 868 855.07 53.497 .0471329 0 5.86613 1601.9 160.34 131.215 8.71318 13.0612 9.13689 97.784 664.227 7.66707 null null null null 0 0 664.2272 7.667068 -308 -3.68070235181783 -1.937687331 .1968516587 .0346868 -22.135471145507 0 66.4846 5.36347 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0

Total number of rows: 10807

Table truncated, full table size 4216 Kbytes.




Supplementary data files not provided
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap