NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Sample GSM451558 Query DataSets for GSM451558
Status Public on Dec 01, 2016
Title GSY123-Rep1-200b
Sample type genomic
 
Channel 1
Source name S cerevisiae + S bayanus genomic DNA sonicated, 300 ng each
Organism Saccharomyces cerevisiae
Characteristics reference: S cerevisiae + S bayanus genomic DNA sonicated, 300 ng each
Extracted molecule genomic DNA
Extraction protocol not provided
Label Cy3
Label protocol not provided
 
Channel 2
Source name GSY123-Rep1-200b-MB2-39genomic DNA, Hae III cut, 450 ng
Organism Saccharomyces cerevisiae
Characteristics strain: GSY123
genotype: whole genome
developmental stage: 200
replicate: Rep1
Extracted molecule genomic DNA
Extraction protocol not provided
Label Cy5
Label protocol not provided
 
 
Hybridization protocol not provided
Scan protocol Scanner Model: G2505C
Description Simple annotation: Interspecific Hybrid, aCGH cell line
Image: http://smd.stanford.edu/MicroArray/gifs/2009-01/82555.gif
Data processing VALUE is Log (base 2) of the ratio of the median of Channel 2 (usually 635 nm) to Channel 1 (usually 532 nm)
 
Submission date Sep 10, 2009
Last update date Dec 01, 2016
Contact name Barbara Dunn
E-mail(s) [email protected]
Phone 650-498-5995
Organization name Stanford University
Department Genetics
Street address -
City Stanford
State/province CA
ZIP/Postal code 94305
Country USA
 
Platform ID GPL9174
Series (1)
GSE35549 Array CGH of interspecific hybrid yeasts using multi-species array platform

Data table header descriptions
ID_REF ID_REF
AGILENT_RAW.G_MEAN_SIGNAL Mean foreground intensity Ch 1.; Type: float; Scale: linear_scale
AGILENT_RAW.G_MEDIAN_SIGNAL Median foreground intensity Ch 1.; Type: float; Scale: linear_scale
AGILENT_RAW.R_MEAN_SIGNAL Mean foreground intensity Ch 2.; Type: float; Scale: linear_scale
AGILENT_RAW.R_MEDIAN_SIGNAL Median foreground intensity Ch 2.; Type: float; Scale: linear_scale
AGILENT_RAW.G_MEAN_BG Mean background intensity Ch 1.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.G_MEDIAN_BG Median background intensity Ch 1.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.R_MEAN_BG Mean background intensity Ch 2.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.R_MEDIAN_BG Median background intensity Ch 2.; Type: float; Scale: linear_scale; Background
AGILENT_RAW.G_NUM_PIX Total number of pixels used to compute feature statistics; ie. Total number of inlier pixels per spot, computed independently for the green channel. The number of inlier pixels are the same in both channels.; Type: integer; Scale: linear_scale
AGILENT_RAW.R_NUM_PIX Total number of pixels used to compute feature statistics; ie. Total number of inlier pixels per spot, computed independently for the red channel. The number of inlier pixels are the same in both channels.; Type: integer; Scale: linear_scale
AGILENT_RAW.G_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the green channel; Type: float; Scale: linear_scale
AGILENT_RAW.R_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the red channel; Type: float; Scale: linear_scale
AGILENT_RAW.G_BG_NUM_PIX Total number of pixels used to compute Local background statistics per spot; ie. Total number of BG inlier pixels. This number is calculated independently for the green channel.; Type: integer; Scale: linear_scale
AGILENT_RAW.R_BG_NUM_PIX Total number of pixels used to compute Local background statistics per spot; ie. Total number of BG inlier pixels. This number is calculated independently for the red channel.; Type: integer; Scale: linear_scale
AGILENT_RAW.G_BG_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the green channel; Type: float; Scale: linear_scale
AGILENT_RAW.R_BG_PIX_SDEV Standard deviation of all inlier pixels per feature; this is computed independently for the red channel; Type: float; Scale: linear_scale
AGILENT_RAW.TOP Top coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.BOT Bottom coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.LEFT Left coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.RIGHT Right coordinate of "box" containing spot in gif image; Type: integer; Scale: linear_scale
AGILENT_RAW.POSITION_X X-coordinate of spot.; Type: float; Scale: linear_scale
AGILENT_RAW.POSITION_Y Y-coordinate of spot.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.BG_PIX_CORRELATION Ratio of estimated feature Background covariance in Red Green space to product of feature Standard Deviation in Red Green space. The covariance of two features measures their tendency to vary together, ie., co-vary. In this case, it is a cumulative quantitation of the tendency of pixels belonging to a particular feature's Background in Red and Green spaces to co-vary.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.BG_SUB_SIG_CORRELATION Ratio of estimated background subtracted feature signal covariance in Red Green space to product of background subtracted feature Standard Deviation in Red Green space.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_BG_SD_USED Standard deviation of background used in green channel; Type: float; Scale: linear_scale; Background
AGILENT_COMPUTED.G_BG_SUB_SIGNAL The net green signal following the subtraction of the background from the raw green mean signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_BG_SUB_SIG_ERROR Propagated standard error as computed on net green background subtracted signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_BG_USED Background value subtracted from the raw mean signal to generate the BG subtracted signal; this value is computed for the green channel. If global BG subtraction is used, the column is identical for every feature in a channel. Options: gBGSubSignal (gMeansignal - gBGUsed); Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_BG_SD_USED Standard deviation of background used in red channel; Type: float; Scale: linear_scale; Background
AGILENT_COMPUTED.R_BG_SUB_SIGNAL The net green signal following the subtraction of the background from the raw red mean signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_BG_SUB_SIG_ERROR Propagated standard error as computed on net red background subtracted signal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_BG_USED Background value subtracted from the raw mean signal to generate the BG subtracted signal; this value is computed for the red channel. If global BG subtraction is used, the column is identical for every feature in a channel. Options: rBGSubSignal (rMeansignal - rBGUsed); Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_DYE_NORM_SIGNAL The dye normalized signal in the green channel.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_DYE_NORM_SIGNAL The dye normalized signal in the red channel.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_IS_GOOD_PM Feature passes gIsWellAboveBG and additionally the gPerfMatchSignal is positive and significant (t-test p value < 0.01) versus its gDelCtrlSignal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_IS_LOW_SPECIFICITY gPerfMatchSignal fails positive and significance t-test (0.01) versus its gDelCtrlSignal; and deletion control passes gIsWellAboveBG; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_IS_GOOD_PM Feature passes rIsWellAboveBG and additionally the rPerfMatchSignal is positive and significant (t-test p value < 0.01) versus its rDelCtrlSignal; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_IS_LOW_SPECIFICITY rPerfMatchSignal fails positive and significance t-test (0.01) versus its rDelCtrlSignal; and deletion control passes rIsWellAboveBG; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_NUM_SAT_PIX Total number of saturated pixels per feature, computed for the green channel; Type: integer; Scale: linear_scale
AGILENT_COMPUTED.R_NUM_SAT_PIX Total number of saturated pixels per feature, computed for the red channel; Type: integer; Scale: linear_scale
AGILENT_COMPUTED.G_PROCESSED_SIGNAL The propagated feature signal in the green channel, used for computation of log ratio; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_PROCESSED_SIGNAL The propagated feature signal in the red channel, used for computation of log ratio; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_PVAL_FEAT_EQ_BG Log (base 10) of p-value from t-test of significance between green Mean signal and green background.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_PVAL_FEAT_EQ_BG Log (base 10) of p-value from t-test of significance between red Mean signal and red background.; Type: float; Scale: linear_scale
VALUE log(REDsignal/GREENsignal); Type: float; Scale: linear_scale
AGILENT_COMPUTED.LOG_RATIO_ERROR Error of the log ratio calculated according to the error model chosen.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.PIX_CORRELATION Ratio of estimated feature covariance in Red Green space to product of feature Standard Deviation ion Red Green space. The covariance of two features measures their tendency to vary together, ie., co-vary. In this case, it is a cumultive quantitation of the tendency of pixels belonging to a particular feature in Red and Green spaces to co-vary.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.P_VALUE_LOG_RATIO Log (base 10) of significance level of the Log Ratio computed for a feature.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.DYE_NORM_CORRELATION Dye normalized red and green pixel correlation.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.G_DYE_NORM_ERROR The standard error associated with the green dye normalized signal.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.R_DYE_NORM_ERROR The standard error associated with the red dye normalized signal.; Type: float; Scale: linear_scale
AGILENT_COMPUTED.ERROR_MODEL Indicates the error model that the user chose for feature extraction. Options: 0 (Propagated model chosen by user or by software) | 1 (Universal error model chosen by user of software).; Type: integer; Scale: linear_scale
AGILENT_COMPUTED.G_IS_FOUND A boolean used to flag found (strong) features. The flag is applied independently to the green channel. A feature is considered found if the found spot centroid is within the bounds of the spot deviation limit with respect to corresponding nominal centroid. NOTE: Isfound was previously termed IsStrong.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_FOUND A boolean used to flag found (strong) features. The flag is applied independently to the red channel. A feature is considered found if the found spot centroid is within the bounds of the spot deviation limit with respect to corresponding nominal centroid. NOTE: Isfound was previously termed IsStrong.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_FEAT_NON_UNIF_OL Boolean flag indicating if a feature is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature is a non-uniformity outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_FEAT_NON_UNIF_OL Boolean flag indicating if a feature is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature is a non-uniformity outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_FEAT_POPN_OL Boolean flag indicating if a feature is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature is a population outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_FEAT_POPN_OL Boolean flag indicating if a feature is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature is a population outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_SATURATED Boolean flag indicating if a feature is saturated or not in the green channel. A feature is saturated IF 50% of the pixels in a feature are above the saturation threshold. Options: 1 (saturated) | 0 (not saturated); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_SATURATED Boolean flag indicating if a feature is saturated or not in the red channel. A feature is saturated IF 50% of the pixels in a feature are above the saturation threshold. Options: 1 (saturated) | 0 (not saturated); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_WELL_ABOVE_BG Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_WELL_ABOVE_BG Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.Boolean flag indicating if a feature is well above background or not. Feature passes if RIsPosAndSignif AND RBGSubSignal is greater than 2.6*RBG_SD.; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_BG_NON_UNIF_OL Boolean flag indicating if a feature's Background is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature's background is a non-uniformity outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_BG_NON_UNIF_OL Boolean flag indicating if a feature's Background is a NonUniformity Outlier or not. A feature is non-uniform if the pixel noise of feature exceeds a threshold established for a "uniform" feature. Option 1 (Feature's background is a non-uniformity outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_BG_POPN_OL Boolean flag indicating if a feature's Background is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature's background is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature Background is a population outlier in the green channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_BG_POPN_OL Boolean flag indicating if a feature's Background is a Population Outlier or not. Probes with replicate features on a microarray are examined using population statistics. A feature's background is a population outlier if its signal is less than a lower threshold or exceeds an upper threshold determined using the interquartile range (ie., IQR) of the population. Options: 1 (feature Background is a population outlier in the red channel).; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.G_IS_POS_AND_SIGNIF Boolean flag indicating if the mean signal of a feature is greater than the corresponding background and if this difference is significant. Significance is established via a 2-sided t-test against the user-settable maximum p-value (BGSub tab) Options: 1 (Feature is positive and significant above background in the green channel); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.R_IS_POS_AND_SIGNIF Boolean flag indicating if the mean signal of a feature is greater than the corresponding background and if this difference is significant. Significance is established via a 2-sided t-test against the user-settable maximum p-value (BGSub tab) Options: 1 (Feature is positive and significant above background in the red channel); Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.IS_USED_BG_ADJUST Boolean flag used to flag features used for computation of global Background offset; Type: boolean; Scale: linear_scale
AGILENT_COMPUTED.IS_NORMALIZATION Boolean flag which indicates if a feaure is used to measure dye bias. Options: 1 (Feature used) | 0 (Feature not used).; Type: boolean; Scale: linear_scale

Data table
ID_REF AGILENT_RAW.G_MEAN_SIGNAL AGILENT_RAW.G_MEDIAN_SIGNAL AGILENT_RAW.R_MEAN_SIGNAL AGILENT_RAW.R_MEDIAN_SIGNAL AGILENT_RAW.G_MEAN_BG AGILENT_RAW.G_MEDIAN_BG AGILENT_RAW.R_MEAN_BG AGILENT_RAW.R_MEDIAN_BG AGILENT_RAW.G_NUM_PIX AGILENT_RAW.R_NUM_PIX AGILENT_RAW.G_PIX_SDEV AGILENT_RAW.R_PIX_SDEV AGILENT_RAW.G_BG_NUM_PIX AGILENT_RAW.R_BG_NUM_PIX AGILENT_RAW.G_BG_PIX_SDEV AGILENT_RAW.R_BG_PIX_SDEV AGILENT_RAW.TOP AGILENT_RAW.BOT AGILENT_RAW.LEFT AGILENT_RAW.RIGHT AGILENT_RAW.POSITION_X AGILENT_RAW.POSITION_Y AGILENT_COMPUTED.BG_PIX_CORRELATION AGILENT_COMPUTED.BG_SUB_SIG_CORRELATION AGILENT_COMPUTED.G_BG_SD_USED AGILENT_COMPUTED.G_BG_SUB_SIGNAL AGILENT_COMPUTED.G_BG_SUB_SIG_ERROR AGILENT_COMPUTED.G_BG_USED AGILENT_COMPUTED.R_BG_SD_USED AGILENT_COMPUTED.R_BG_SUB_SIGNAL AGILENT_COMPUTED.R_BG_SUB_SIG_ERROR AGILENT_COMPUTED.R_BG_USED AGILENT_COMPUTED.G_DYE_NORM_SIGNAL AGILENT_COMPUTED.R_DYE_NORM_SIGNAL AGILENT_COMPUTED.G_IS_GOOD_PM AGILENT_COMPUTED.G_IS_LOW_SPECIFICITY AGILENT_COMPUTED.R_IS_GOOD_PM AGILENT_COMPUTED.R_IS_LOW_SPECIFICITY AGILENT_COMPUTED.G_NUM_SAT_PIX AGILENT_COMPUTED.R_NUM_SAT_PIX AGILENT_COMPUTED.G_PROCESSED_SIGNAL AGILENT_COMPUTED.R_PROCESSED_SIGNAL AGILENT_COMPUTED.G_PVAL_FEAT_EQ_BG AGILENT_COMPUTED.R_PVAL_FEAT_EQ_BG VALUE AGILENT_COMPUTED.LOG_RATIO_ERROR AGILENT_COMPUTED.PIX_CORRELATION AGILENT_COMPUTED.P_VALUE_LOG_RATIO AGILENT_COMPUTED.DYE_NORM_CORRELATION AGILENT_COMPUTED.G_DYE_NORM_ERROR AGILENT_COMPUTED.R_DYE_NORM_ERROR AGILENT_COMPUTED.ERROR_MODEL AGILENT_COMPUTED.G_IS_FOUND AGILENT_COMPUTED.R_IS_FOUND AGILENT_COMPUTED.G_IS_FEAT_NON_UNIF_OL AGILENT_COMPUTED.R_IS_FEAT_NON_UNIF_OL AGILENT_COMPUTED.G_IS_FEAT_POPN_OL AGILENT_COMPUTED.R_IS_FEAT_POPN_OL AGILENT_COMPUTED.G_IS_SATURATED AGILENT_COMPUTED.R_IS_SATURATED AGILENT_COMPUTED.R_IS_WELL_ABOVE_BG AGILENT_COMPUTED.G_IS_WELL_ABOVE_BG AGILENT_COMPUTED.G_IS_BG_NON_UNIF_OL AGILENT_COMPUTED.R_IS_BG_NON_UNIF_OL AGILENT_COMPUTED.G_IS_BG_POPN_OL AGILENT_COMPUTED.R_IS_BG_POPN_OL AGILENT_COMPUTED.G_IS_POS_AND_SIGNIF AGILENT_COMPUTED.R_IS_POS_AND_SIGNIF AGILENT_COMPUTED.IS_USED_BG_ADJUST AGILENT_COMPUTED.IS_NORMALIZATION
1 135.3906 130 99.83262 97 60.94238 59 65.77216 66 233 233 34.7611 25.08421 1128 1128 15.43447 17.00818 37 64 56 83 70.357 50.716 .143502 0 15.4345 -26.2925 28.2038 161.683 17.0082 -19.9692 24.8431 119.802 -1.98456 -6.64807 null null null null 0 0 2.122116 4.80305 -1.79775968848055 -1.42656905243326 0 1.130067528 .0823913 0 0 2.12883 8.27067 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
2 146.687 146.5 100.1348 99 64.78166 64 66.83231 67 230 230 40.17633 26.3587 1145 1145 16.6453 17.06394 36 63 98 125 112.065 50.403 .144472 0 16.6453 -14.2124 28.2038 160.899 17.0639 -19.2811 24.8431 119.416 -1.08405 -6.41897 null null null null 0 0 2.144456 4.77327 -.718732495188738 -1.35191431552771 0 1.129664368 .220616 0 0 2.15124 8.27067 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 36511.07 36808.2 891.3651 945 64.21656 62 65.83348 66 242 241 5313.066 245.5161 1099 1099 16.62707 16.78598 39 66 140 167 154.143 53.256 .135833 0 16.6271 36350.4 3635.15 160.673 16.786 772.133 81.1115 119.232 2798.76 257.055 null null null null 0 0 2798.76 257.0554 -308 -208.209078290522 -1.036938904 .1147146217 .0484397 -18.802194367325 0 279.884 27.0033 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
4 5596.562 5595.5 25715.36 25219.8 61.19625 60 65.08296 65 242 237 455.2043 2801.681 1121 1121 15.84774 17.33981 37 64 183 210 197.027 50.775 .171668 0 15.8477 5436.13 544.344 160.432 17.3398 25596.3 2559.75 119.035 422.51 8521.43 null null null null 0 0 422.5096 8521.43 -308 -308 1.304675866 .1374494458 .54649 -20.6448305941205 0 42.3078 852.183 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0
5 25723.89 25886 41381.56 40663 63.28315 62 66.84319 67 223 223 1822.272 3927.432 1116 1116 16.6869 17.92675 37 64 226 253 239.863 51.198 .165459 0 16.6869 25563.3 2556.48 160.622 17.9267 41262.6 4126.33 118.988 2003.38 13737 null null null null 0 0 2003.375 13736.98 -308 -308 .8361288126 .098926196 .209154 -16.5432689991783 0 200.35 1373.72 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
6 43625.18 43296.4 1113.042 1099.5 62.16725 60 65.66197 66 233 236 3711.629 109.0864 1136 1136 16.41409 17.19815 37 64 268 295 282.1 51.34 .149185 0 16.4141 43464.5 4346.54 160.719 17.1982 994.145 102.472 118.898 3431.88 330.967 null null null null 0 0 3431.883 330.9668 -308 -240.710152509643 -1.015748056 .1129724759 .24032 -18.6112879383173 0 343.195 34.1144 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
7 34431.92 34789.4 446.5579 440 63.36637 62 66.17168 67 231 242 2476.649 70.09826 1130 1130 15.61228 17.4579 39 66 311 338 324.52 52.769 .115417 0 15.6123 34271.7 3427.28 160.269 17.4579 327.955 41.1427 118.603 2724.11 109.182 null null null null 0 0 2724.109 109.1816 -308 -106.378640895877 -1.397075114 .1457295288 .363452 -21.0414939842813 0 272.42 13.6971 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
8 7372.351 7446 59535.85 58964.1 61.1338 60 66.53873 66 245 244 456.547 4013.113 1136 1136 15.56563 17.37983 36 63 352 379 365.58 50.358 .0965582 0 15.5656 7212.72 721.823 159.634 17.3798 59417.6 5941.81 118.235 576.959 19781.1 null null null null 0 0 576.9592 19781.08 -308 -308 1.535104971 .15819122 .555527 -21.5382118166283 0 57.74 1978.13 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0
9 25563.79 25742.9 31116.14 30467.2 62.04286 61 66.88214 67 246 246 1721.995 3047.76 1120 1120 15.5614 17.0719 39 66 395 422 408.74 53.343 .134039 0 15.5614 25404.9 2540.64 158.915 17.0719 30998.3 3099.93 117.83 2042.9 10319.8 null null null null 0 0 2042.901 10319.84 -308 -308 .7034254681 .08940931271 .670514 -14.4414442593887 0 204.303 1032.02 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
10 34824.06 34600.6 705.5532 703 61.93019 61 65.91449 66 239 235 2752.79 84.36743 1146 1146 15.73876 17.67142 37 64 438 465 451.6 50.818 .166988 0 15.7388 34665.9 3466.71 158.11 17.6714 588.165 63.8479 117.388 2802.74 195.81 null null null null 0 0 2802.744 195.8096 -308 -174.047963509248 -1.155749477 .1246168335 .336598 -19.7481680923742 0 280.284 21.256 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
11 3332.942 3324 3456.307 3455 61.40543 60 64.65324 64 225 225 307.9622 276.5134 1142 1142 15.31776 16.72305 39 66 480 507 493.79 53.22 .113411 0 15.3178 3175.33 318.783 157.612 16.7231 3339.25 334.848 117.057 257.765 1111.69 null null null null 0 0 257.765 1111.69 -308 -308 .6347596545 .08506859102 .422455 -13.0686048615261 0 25.878 111.476 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0
12 4998.239 5018 26152.99 25961.9 60.39011 59 66.45971 66 243 239 342.4964 2024.756 1092 1092 14.90366 16.11187 39 66 521 548 535.27 53.467 .0924476 0 14.9037 4841.15 484.936 157.085 16.1119 26036.3 2603.75 116.714 394.477 8667.9 null null null null 0 0 394.4771 8667.896 -308 -308 1.341891855 .140739736 .484961 -20.8224103627019 0 39.5146 866.829 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0
13 11499.89 11487 20913.63 20955.4 64.12222 62 67.3 67 240 240 772.1741 1731.197 1080 1080 16.4603 17.57248 42 69 564 591 578.38 56.162 .112168 0 16.4603 11343.6 1134.71 156.307 17.5725 20797.4 2079.88 116.27 927.118 6923.78 null null null null 0 0 927.1183 6923.775 -308 -308 .8732078328 .1017286239 .673041 -17.0368234860814 0 92.7405 692.427 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
14 37612.8 37469.2 246.8708 244.5 63.8185 62 67.28709 67 236 240 3167.364 47.75947 1146 1146 16.67329 17.82909 39 66 607 634 620.52 52.82 .131584 0 16.6733 37457.2 3745.82 155.64 17.8291 131.004 28.0856 115.867 3071.9 43.6132 null null null null 0 0 3071.901 43.61324 -308 -32.9769328239764 -1.847788821 .1875321757 .314094 -22.1777861375495 0 307.199 9.35014 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
15 8038.808 8057 46160.21 45433.6 62.37857 61 67.82679 67 239 240 553.4209 4041.259 1120 1120 15.89885 16.53924 42 69 648 675 662.08 55.907 .0999177 0 15.8989 7884.09 788.913 154.718 16.5392 46044.9 4604.55 115.359 647.824 15329.1 null null null null 0 0 647.8244 15329.07 -308 -308 1.374058605 .143599339 .453531 -20.9655273655482 0 64.8239 1532.93 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
16 8099.597 8104 39514.01 38952.7 61.3523 60 66.2692 66 236 242 579.6038 3579.787 1107 1107 15.16887 16.95611 39 66 691 718 705.49 53.084 .13076 0 15.1689 7945.91 795.092 153.684 16.9561 39399.2 3940 114.8 654.578 13116.6 null null null null 0 0 654.5783 13116.63 -308 -308 1.301860738 .1371976459 .630986 -20.6319230474255 0 65.499 1311.69 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0
17 4936.477 4886 6151.392 6022 63.93363 62 65.55247 66 237 237 416.5706 672.7859 1115 1115 16.45687 15.8271 42 69 734 761 748.04 56.043 .129054 0 16.4569 4783.84 479.215 152.637 15.8271 6037.16 604.227 114.232 394.546 2009.87 null null null null 0 0 394.546 2009.868 -308 -308 .7070698893 .08973526761 .61429 -14.4832414763073 0 39.5231 201.157 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
18 23321.04 23189 12916.51 12804.5 64.47627 62 66.22056 66 241 238 1620.66 884.4623 1138 1138 17.03749 16.30319 41 68 776 803 790.43 55.124 .149549 0 17.0375 23169.4 2317.11 151.617 16.3032 12802.8 1280.52 113.669 1913.63 4262.27 null null null null 0 0 1913.633 4262.272 -308 -308 .3477824589 .06919605705 .698846 -6.30042252656406 0 191.377 426.307 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1
19 38988.41 39029.4 239.3162 235 63.34225 61 66.17469 66 244 234 2876.8 41.17223 1122 1122 15.80644 17.03001 42 69 819 846 832.61 55.956 .134433 0 15.8064 38837.2 3883.83 151.173 17.03 125.971 27.8544 113.345 3210.22 41.9378 null null null null 0 0 3210.218 41.93782 -308 -31.0308101473541 -1.883928661 .1909712357 .00302834 -22.2288360479769 0 321.03 9.27317 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
20 7267.454 7254.5 288.8908 290 64.65057 63 68.03248 68 238 238 652.4748 47.27651 1139 1139 16.70421 17.33638 41 68 861 888 875.15 54.947 .111381 0 16.7042 7116.75 712.233 150.707 17.3364 175.87 30.4382 113.02 588.727 58.5501 null null null null 0 0 588.7271 58.55011 -308 -50.77566639091 -1.002386351 .1130314007 .295795 -18.1288349918898 0 58.9189 10.1334 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0

Total number of rows: 10807

Table truncated, full table size 4223 Kbytes.




Supplementary data files not provided
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap