U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Primary dilated cardiomyopathy(DCM)

MedGen UID:
2880
Concept ID:
C0007193
Disease or Syndrome
Synonyms: DCM; Dilated Cardiomyopathy
SNOMED CT: Congestive cardiomyopathy (399020009); Dilated cardiomyopathy (399020009); CCM - Congestive cardiomyopathy (399020009); COCM - Congestive cardiomyopathy (399020009); DCM - Dilated cardiomyopathy (399020009); Congestive dilated cardiomyopathy (399020009); Primary dilated cardiomyopathy (195021004)
 
Genes (locations): ABCC9 (12p12.1); ACTC1 (15q14); ACTN2 (1q43); ANKRD1 (10q23.31); BAG3 (10q26.11); CSRP3 (11p15.1); DES (2q35); DSG2 (18q12.1); EYA4 (6q23.2); FKTN (9q31.2); LDB3 (10q23.2); LMNA (1q22); MYBPC3 (11p11.2); MYH6 (14q11.2); NEXN (1p31.1); PLN (6q22.31); PSEN1 (14q24.2); PSEN2 (1q42.13); RBM20 (10q25.2); SGCD (5q33.2-33.3); TAFAZZIN (Xq28); TCAP (17q12); TMPO (12q23.1); TNNT2 (1q32.1); TPM1 (15q22.2); TTN (2q31.2); VCL (10q22.2)
Related genes: TNNI3, TNNC1, SDHA, SCN5A, MYH7, LAMA4, CRYAB
 
HPO: HP:0001644
Monarch Initiative: MONDO:0005021
Orphanet: ORPHA217604

Definition

Familial dilated cardiomyopathy is a genetic form of heart disease. It occurs when heart (cardiac) muscle becomes thin and weakened in at least one chamber of the heart, causing the open area of the chamber to become enlarged (dilated). As a result, the heart is unable to pump blood as efficiently as usual. To compensate, the heart attempts to increase the amount of blood being pumped through the heart, leading to further thinning and weakening of the cardiac muscle. Over time, this condition results in heart failure.

It usually takes many years for symptoms of familial dilated cardiomyopathy to cause health problems. They typically begin in mid-adulthood, but can occur at any time from infancy to late adulthood. Signs and symptoms of familial dilated cardiomyopathy can include an irregular heartbeat (arrhythmia), shortness of breath (dyspnea), extreme tiredness (fatigue), fainting episodes (syncope), and swelling of the legs and feet. In some cases, the first sign of the disorder is sudden cardiac death. The severity of the condition varies among affected individuals, even in members of the same family. [from MedlinePlus Genetics]

Term Hierarchy

CClinical test,  RResearch test,  OOMIM,  GGeneReviews,  VClinVar  
Follow this link to review classifications for Primary dilated cardiomyopathy in Orphanet.

Conditions with this feature

Duchenne muscular dystrophy
MedGen UID:
3925
Concept ID:
C0013264
Disease or Syndrome
The dystrophinopathies cover a spectrum of X-linked muscle disease ranging from mild to severe that includes Duchenne muscular dystrophy, Becker muscular dystrophy, and DMD-associated dilated cardiomyopathy (DCM). The mild end of the spectrum includes the phenotypes of asymptomatic increase in serum concentration of creatine phosphokinase (CK) and muscle cramps with myoglobinuria. The severe end of the spectrum includes progressive muscle diseases that are classified as Duchenne/Becker muscular dystrophy when skeletal muscle is primarily affected and as DMD-associated DCM when the heart is primarily affected. Duchenne muscular dystrophy (DMD) usually presents in early childhood with delayed motor milestones including delays in walking independently and standing up from a supine position. Proximal weakness causes a waddling gait and difficulty climbing stairs, running, jumping, and standing up from a squatting position. DMD is rapidly progressive, with affected children being wheelchair dependent by age 12 years. Cardiomyopathy occurs in almost all individuals with DMD after age 18 years. Few survive beyond the third decade, with respiratory complications and progressive cardiomyopathy being common causes of death. Becker muscular dystrophy (BMD) is characterized by later-onset skeletal muscle weakness. With improved diagnostic techniques, it has been recognized that the mild end of the spectrum includes men with onset of symptoms after age 30 years who remain ambulatory even into their 60s. Despite the milder skeletal muscle involvement, heart failure from DCM is a common cause of morbidity and the most common cause of death in BMD. Mean age of death is in the mid-40s. DMD-associated DCM is characterized by left ventricular dilation and congestive heart failure. Females heterozygous for a DMD pathogenic variant are at increased risk for DCM.
Acute febrile neutrophilic dermatosis
MedGen UID:
43097
Concept ID:
C0085077
Disease or Syndrome
Acute febrile neutrophilic dermatosis (AFND) is an autosomal dominant autoinflammatory disorder characterized by onset of recurrent fever and dermatologic abnormalities in childhood. Laboratory studies show elevated acute-phase reactants and activation of the inflammatory response, particularly IL1B (147720). Additional more variable features may include myalgia and arthralgia (summary by Masters et al., 2016).
Johanson-Blizzard syndrome
MedGen UID:
59798
Concept ID:
C0175692
Disease or Syndrome
Johanson-Blizzard syndrome is an autosomal recessive disorder characterized by poor growth, mental retardation, and variable dysmorphic features, including aplasia or hypoplasia of the nasal alae, abnormal hair patterns or scalp defects, and oligodontia. Other features include hypothyroidism, sensorineural hearing loss, imperforate anus, and pancreatic exocrine insufficiency (summary by Al-Dosari et al., 2008).
Infantile GM1 gangliosidosis
MedGen UID:
75665
Concept ID:
C0268271
Disease or Syndrome
GLB1-related disorders comprise two phenotypically distinct lysosomal storage disorders: GM1 gangliosidosis and mucopolysaccharidosis type IVB (MPS IVB). The phenotype of GM1 gangliosidosis constitutes a spectrum ranging from severe (infantile) to intermediate (late-infantile and juvenile) to mild (chronic/adult). Type I (infantile) GM1 gangliosidosis begins before age 12 months. Prenatal manifestations may include nonimmune hydrops fetalis, intrauterine growth restriction, and placental vacuolization; congenital dermal melanocytosis (Mongolian spots) may be observed. Macular cherry-red spot is detected on eye exam. Progressive central nervous system dysfunction leads to spasticity and rapid regression; blindness, deafness, decerebrate rigidity, seizures, feeding difficulties, and oral secretions are observed. Life expectancy is two to three years. Type II can be subdivided into the late-infantile (onset age 1-3 years) and juvenile (onset age 3-10 years) phenotypes. Central nervous system dysfunction manifests as progressive cognitive, motor, and speech decline as measured by psychometric testing. There may be mild corneal clouding, hepatosplenomegaly, and/or cardiomyopathy; the typical course is characterized by progressive neurologic decline, progressive skeletal disease in some individuals (including kyphosis and avascular necrosis of the femoral heads), and progressive feeding difficulties leading to aspiration risk. Type III begins in late childhood to the third decade with generalized dystonia leading to unsteady gait and speech disturbance followed by extrapyramidal signs including akinetic-rigid parkinsonism. Cardiomyopathy develops in some and skeletal involvement occurs in most. Intellectual impairment is common late in the disease with prognosis directly related to the degree of neurologic impairment. MPS IVB is characterized by skeletal dysplasia with specific findings of axial and appendicular dysostosis multiplex, short stature (below 15th centile in adults), kyphoscoliosis, coxa/genu valga, joint laxity, platyspondyly, and odontoid hypoplasia. First signs and symptoms may be apparent at birth. Bony involvement is progressive, with more than 84% of adults requiring ambulation aids; life span does not appear to be limited. Corneal clouding is detected in some individuals and cardiac valvular disease may develop.
Alstrom syndrome
MedGen UID:
78675
Concept ID:
C0268425
Disease or Syndrome
Alström syndrome is characterized by cone-rod dystrophy, obesity, progressive bilateral sensorineural hearing impairment, acute infantile-onset cardiomyopathy and/or adolescent- or adult-onset restrictive cardiomyopathy, insulin resistance / type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), and chronic progressive kidney disease. Cone-rod dystrophy presents as progressive visual impairment, photophobia, and nystagmus usually starting between birth and age 15 months. Many individuals lose all perception of light by the end of the second decade, but a minority retain the ability to read large print into the third decade. Children usually have normal birth weight but develop truncal obesity during their first year. Sensorineural hearing loss presents in the first decade in as many as 70% of individuals and may progress to the severe or moderately severe range (40-70 db) by the end of the first to second decade. Insulin resistance is typically accompanied by the skin changes of acanthosis nigricans, and proceeds to T2DM in the majority by the third decade. Nearly all demonstrate hypertriglyceridemia. Other findings can include endocrine abnormalities (hypothyroidism, hypogonadotropic hypogonadism in males, and hyperandrogenism in females), urologic dysfunction / detrusor instability, progressive decrease in renal function, and hepatic disease (ranging from elevated transaminases to steatohepatitis/NAFLD). Approximately 20% of affected individuals have delay in early developmental milestones, most commonly in gross and fine motor skills. About 30% have a learning disability. Cognitive impairment (IQ <70) is very rare. Wide clinical variability is observed among affected individuals, even within the same family.
Deficiency of malonyl-CoA decarboxylase
MedGen UID:
91001
Concept ID:
C0342793
Disease or Syndrome
Malonyl-CoA decarboxylase deficiency is an uncommon inherited metabolic disease. The characteristic phenotype is variable, but may include developmental delay in early childhood, seizures, hypotonia, diarrhea, vomiting, metabolic acidosis, hypoglycemia, ketosis, abnormal urinary compounds, lactic acidemia, and hypertrophic cardiomyopathy (Sweetman and Williams, 2001).
McLeod neuroacanthocytosis syndrome
MedGen UID:
140765
Concept ID:
C0398568
Disease or Syndrome
McLeod neuroacanthocytosis syndrome (designated as MLS throughout this review) is a multisystem disorder with central nervous system (CNS), neuromuscular, cardiovascular, and hematologic manifestations in males: CNS manifestations are a neurodegenerative basal ganglia disease including movement disorders, cognitive alterations, and psychiatric symptoms. Neuromuscular manifestations include a (mostly subclinical) sensorimotor axonopathy and muscle weakness or atrophy of different degrees. Cardiac manifestations include dilated cardiomyopathy, atrial fibrillation, and tachyarrhythmia. Hematologically, MLS is defined as a specific blood group phenotype (named after the first proband, Hugh McLeod) that results from absent expression of the Kx erythrocyte antigen and weakened expression of Kell blood group antigens. The hematologic manifestations are red blood cell acanthocytosis and compensated hemolysis. Alloantibodies in the Kell and Kx blood group system can cause strong reactions to transfusions of incompatible blood and severe anemia in affected male newborns of Kell-negative mothers. Females heterozygous for XK pathogenic variants have mosaicism for the Kell and Kx blood group antigens. Although they usually lack CNS and neuromuscular manifestations, some heterozygous females may develop clinical manifestations including chorea or late-onset cognitive decline.
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4
MedGen UID:
140820
Concept ID:
C0410174
Disease or Syndrome
Fukuyama congenital muscular dystrophy (FCMD) is characterized by hypotonia, symmetric generalized muscle weakness, and CNS migration disturbances that result in changes consistent with cobblestone lissencephaly with cerebral and cerebellar cortical dysplasia. Mild, typical, and severe phenotypes are recognized. Onset typically occurs in early infancy with poor suck, weak cry, and floppiness. Affected individuals have contractures of the hips, knees, and interphalangeal joints. Later features include myopathic facial appearance, pseudohypertrophy of the calves and forearms, motor and speech delays, intellectual disability, seizures, ophthalmologic abnormalities including visual impairment and retinal dysplasia, and progressive cardiac involvement after age ten years. Swallowing disturbance occurs in individuals with severe FCMD and in individuals older than age ten years, leading to recurrent aspiration pneumonia and death.
Emery-Dreifuss muscular dystrophy 2, autosomal dominant
MedGen UID:
98048
Concept ID:
C0410190
Disease or Syndrome
Emery-Dreifuss muscular dystrophy (EDMD) is characterized by the clinical triad of: joint contractures that begin in early childhood; slowly progressive muscle weakness and wasting initially in a humero-peroneal distribution that later extends to the scapular and pelvic girdle muscles; and cardiac involvement that may manifest as palpitations, presyncope and syncope, poor exercise tolerance, and congestive heart failure along with variable cardiac rhythm disturbances. Age of onset, severity, and progression of muscle and cardiac involvement demonstrate both inter- and intrafamilial variability. Clinical variability ranges from early onset with severe presentation in childhood to late onset with slow progression in adulthood. In general, joint contractures appear during the first two decades, followed by muscle weakness and wasting. Cardiac involvement usually occurs after the second decade and respiratory function may be impaired in some individuals.
Congenital myopathy with fiber type disproportion
MedGen UID:
108177
Concept ID:
C0546264
Disease or Syndrome
Congenital fiber-type disproportion is a condition that primarily affects skeletal muscles, which are muscles used for movement. People with this condition typically experience muscle weakness (myopathy), particularly in the muscles of the shoulders, upper arms, hips, and thighs. Weakness can also affect the muscles of the face and muscles that control eye movement (ophthalmoplegia), sometimes causing droopy eyelids (ptosis). Individuals with congenital fiber-type disproportion generally have a long face, a high arch in the roof of the mouth (high-arched palate), and crowded teeth.\n\nIndividuals with congenital fiber-type disproportion may have joint deformities (contractures) and an abnormally curved lower back (lordosis) or a spine that curves to the side (scoliosis). Approximately 30 percent of people with this disorder experience mild to severe breathing problems related to weakness of muscles needed for breathing. Some people who experience these breathing problems require use of a machine to help regulate their breathing at night (noninvasive mechanical ventilation), and occasionally during the day as well. About 30 percent of affected individuals have difficulty swallowing due to muscle weakness in the throat. Rarely, people with this condition have a weakened and enlarged heart muscle (dilated cardiomyopathy).\n\nThe severity of congenital fiber-type disproportion varies widely. It is estimated that up to 25 percent of affected individuals experience severe muscle weakness at birth and die in infancy or childhood. Others have only mild muscle weakness that becomes apparent in adulthood. Most often, the signs and symptoms of this condition appear by age 1. The first signs of this condition are usually decreased muscle tone (hypotonia) and muscle weakness. In most cases, muscle weakness does not worsen over time, and in some instances it may improve. Although motor skills such as standing and walking may be delayed, many affected children eventually learn to walk. These individuals often have less stamina than their peers, but they remain active. Rarely, people with this condition have a progressive decline in muscle strength over time. These individuals may lose the ability to walk and require wheelchair assistance.
3-Methylglutaconic aciduria type 2
MedGen UID:
107893
Concept ID:
C0574083
Disease or Syndrome
Barth syndrome is characterized in affected males by cardiomyopathy, neutropenia, skeletal myopathy, prepubertal growth delay, and distinctive facial gestalt (most evident in infancy); not all features may be present in a given affected male. Cardiomyopathy, which is almost always present before age five years, is typically dilated cardiomyopathy with or without endocardial fibroelastosis or left ventricular noncompaction; hypertrophic cardiomyopathy can also occur. Heart failure is a significant cause of morbidity and mortality; risk of arrhythmia and sudden death is increased. Neutropenia is most often associated with mouth ulcers, pneumonia, and sepsis. The nonprogressive myopathy predominantly affects the proximal muscles, and results in early motor delays. Prepubertal growth delay is followed by a postpubertal growth spurt with remarkable "catch-up" growth. Heterozygous females who have a normal karyotype are asymptomatic and have normal biochemical studies.
Dilated cardiomyopathy-hypergonadotropic hypogonadism syndrome
MedGen UID:
162901
Concept ID:
C0796031
Disease or Syndrome
This syndrome is characterized by the association of dilated cardiomyopathy and hypergonadotropic hypogonadism (DCM-HH).
Danon disease
MedGen UID:
209235
Concept ID:
C0878677
Disease or Syndrome
Danon disease is a multisystem condition with predominant involvement of the heart, skeletal muscles, and retina, with overlying cognitive dysfunction. Males are typically more severely affected than females. Males usually present with childhood onset concentric hypertrophic cardiomyopathy that is progressive and often requires heart transplantation. Rarely, hypertrophic cardiomyopathy can evolve to resemble dilated cardiomyopathy. Most affected males also have cardiac conduction abnormalities. Skeletal muscle weakness may lead to delayed acquisition of motor milestones. Learning disability and intellectual disability, most often in the mild range, are common. Additionally, affected males can develop retinopathy with subsequent visual impairment. The clinical features in females are broader and more variable. Females are more likely to have dilated cardiomyopathy, with a smaller proportion requiring heart transplantation compared to affected males. Cardiac conduction abnormalities, skeletal muscle weakness, mild cognitive impairment, and pigmentary retinopathy are variably seen in affected females.
Deficiency of 3-hydroxyacyl-CoA dehydrogenase
MedGen UID:
266222
Concept ID:
C1291230
Disease or Syndrome
3-hydroxyacyl-CoA dehydrogenase deficiency is an inherited condition that prevents the body from converting certain fats to energy, particularly during prolonged periods without food (fasting).\n\nInitial signs and symptoms of this disorder typically occur during infancy or early childhood and can include poor appetite, vomiting, diarrhea, and lack of energy (lethargy). Affected individuals can also have muscle weakness (hypotonia), liver problems, low blood glucose (hypoglycemia), and abnormally high levels of insulin (hyperinsulinism). Insulin controls the amount of glucose that moves from the blood into cells for conversion to energy. Individuals with 3-hydroxyacyl-CoA dehydrogenase deficiency are also at risk for complications such as seizures, life-threatening heart and breathing problems, coma, and sudden death. This condition may explain some cases of sudden infant death syndrome (SIDS), which is defined as unexplained death in babies younger than 1 year.\n\nProblems related to 3-hydroxyacyl-CoA dehydrogenase deficiency can be triggered by periods of fasting or by illnesses such as viral infections. This disorder is sometimes mistaken for Reye syndrome, a severe disorder that may develop in children while they appear to be recovering from viral infections such as chicken pox or flu. Most cases of Reye syndrome are associated with the use of aspirin during these viral infections.
Dilated cardiomyopathy 1A
MedGen UID:
258500
Concept ID:
C1449563
Disease or Syndrome
LMNA-related dilated cardiomyopathy (DCM) is characterized by left ventricular enlargement and/or reduced systolic function preceded (sometimes by many years) by or accompanied by conduction system disease and/or arrhythmias. LMNA-related DCM usually presents in early to mid-adulthood with symptomatic conduction system disease or arrhythmias, or with symptomatic DCM including heart failure or embolus from a left ventricular mural thrombus. Sudden cardiac death can occur, and in some instances is the presenting manifestation; sudden cardiac death may occur with minimal or no systolic dysfunction.
Catecholaminergic polymorphic ventricular tachycardia 1
MedGen UID:
351513
Concept ID:
C1631597
Disease or Syndrome
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is characterized by episodic syncope occurring during exercise or acute emotion. The underlying cause of these episodes is the onset of fast ventricular tachycardia (bidirectional or polymorphic). Spontaneous recovery may occur when these arrhythmias self-terminate. In other instances, ventricular tachycardia may degenerate into ventricular fibrillation and cause sudden death if cardiopulmonary resuscitation is not readily available. The mean onset of symptoms (usually a syncopal episode) is between age seven and 12 years; onset as late as the fourth decade of life has been reported. If untreated, CPVT is highly lethal, as approximately 30% of affected individuals experience at least one cardiac arrest and up to 80% have one or more syncopal spells. Sudden death may be the first manifestation of the disease.
Dilated cardiomyopathy 1D
MedGen UID:
316943
Concept ID:
C1832243
Disease or Syndrome
Left ventricular noncompaction is a heart (cardiac) muscle disorder that occurs when the lower left chamber of the heart (left ventricle), which helps the heart pump blood, does not develop correctly. Instead of the muscle being smooth and firm, the cardiac muscle in the left ventricle is thick and appears spongy. The abnormal cardiac muscle is weak and has an impaired ability to pump blood because it either cannot completely contract or it cannot completely relax. For the heart to pump blood normally, cardiac muscle must contract and relax fully.\n\nSome individuals with left ventricular noncompaction experience no symptoms at all; others have heart problems that can include sudden cardiac death. Additional signs and symptoms include abnormal blood clots, irregular heart rhythm (arrhythmia), a sensation of fluttering or pounding in the chest (palpitations), extreme fatigue during exercise (exercise intolerance), shortness of breath (dyspnea), fainting (syncope), swelling of the legs (lymphedema), and trouble laying down flat. Some affected individuals have features of other heart defects. Left ventricular noncompaction can be diagnosed at any age, from birth to late adulthood. Approximately two-thirds of individuals with left ventricular noncompaction develop heart failure.
Dilated cardiomyopathy 1C
MedGen UID:
316944
Concept ID:
C1832244
Disease or Syndrome
An autosomal dominant subtype of dilated cardiomyopathy caused by mutation(s) in the LDB3 gene, encoding LIM domain-binding protein 3.
Desmin-related myofibrillar myopathy
MedGen UID:
330449
Concept ID:
C1832370
Disease or Syndrome
Myofibrillar myopathy (MFM) is a noncommittal term that refers to a group of morphologically homogeneous, but genetically heterogeneous chronic neuromuscular disorders. The morphologic changes in skeletal muscle in MFM result from disintegration of the sarcomeric Z disc and the myofibrils, followed by abnormal ectopic accumulation of multiple proteins involved in the structure of the Z disc, including desmin, alpha-B-crystallin (CRYAB; 123590), dystrophin (300377), and myotilin (TTID; 604103). Genetic Heterogeneity of Myofibrillar Myopathy Other forms of MFM include MFM2 (608810), caused by mutation in the CRYAB gene (123590); MFM3 (609200), caused by mutation in the MYOT gene (604103); MFM4 (609452), caused by mutation in the ZASP gene (LDB3; 605906); MFM5 (609524), caused by mutation in the FLNC gene (102565); MFM6 (612954), caused by mutation in the BAG3 gene (603883); MFM7 (617114), caused by mutation in the KY gene (605739); MFM8 (617258), caused by mutation in the PYROXD1 gene (617220); MFM9 (603689), caused by mutation in the TTN gene (188840); MFM10 (619040), caused by mutation in the SVIL UNC45B gene (611220); MFM11 (619178), caused by mutation in the UNC45B gene (611220); and MFM12 (619424), caused by mutation in the MYL2 gene (160781). 'Desmin-related myopathy' is another term referring to MFM in which there are intrasarcoplasmic aggregates of desmin, usually in addition to other sarcomeric proteins. Rigid spine syndrome (602771), caused by mutation in the SEPN1 gene (606210), is another desmin-related myopathy. Goebel (1995) provided a review of desmin-related myopathy.
Naxos disease
MedGen UID:
321991
Concept ID:
C1832600
Disease or Syndrome
Naxos disease (NXD) is characterized by arrhythmogenic right ventricular cardiomyopathy associated with abnormalities of the skin, hair, and nails. The ectodermal features are evident from birth or early childhood, whereas the cardiac symptoms develop in young adulthood or later. Clinical variability of ectodermal features has been observed, with hair anomalies ranging from woolly hair to alopecia, and skin abnormalities ranging from mild focal palmoplantar keratoderma to generalized skin fragility or even lethal neonatal epidermolysis bullosa (Protonotarios et al., 1986; Cabral et al., 2010; Pigors et al., 2011; Erken et al., 2011; Sen-Chowdhry and McKenna, 2014). Another syndrome involving cardiomyopathy, woolly hair, and keratoderma (DCWHK; 605676) is caused by mutation in the desmoplakin gene (DSP; 125647). Also see 610476 for a similar disorder caused by homozygous mutation in the DSC2 gene (125645).
Dilated cardiomyopathy 1E
MedGen UID:
331341
Concept ID:
C1832680
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the SCN5A gene.
Carnitine palmitoyl transferase II deficiency, severe infantile form
MedGen UID:
322211
Concept ID:
C1833511
Disease or Syndrome
Carnitine palmitoyltransferase II (CPT II) deficiency is a disorder of long-chain fatty-acid oxidation. The three clinical presentations are lethal neonatal form, severe infantile hepatocardiomuscular form, and myopathic form (which is usually mild and can manifest from infancy to adulthood). While the former two are severe multisystemic diseases characterized by liver failure with hypoketotic hypoglycemia, cardiomyopathy, seizures, and early death, the latter is characterized by exercise-induced muscle pain and weakness, sometimes associated with myoglobinuria. The myopathic form of CPT II deficiency is the most common disorder of lipid metabolism affecting skeletal muscle and the most frequent cause of hereditary myoglobinuria. Males are more likely to be affected than females.
Carnitine palmitoyl transferase II deficiency, neonatal form
MedGen UID:
318896
Concept ID:
C1833518
Disease or Syndrome
Carnitine palmitoyltransferase II (CPT II) deficiency is a disorder of long-chain fatty-acid oxidation. The three clinical presentations are lethal neonatal form, severe infantile hepatocardiomuscular form, and myopathic form (which is usually mild and can manifest from infancy to adulthood). While the former two are severe multisystemic diseases characterized by liver failure with hypoketotic hypoglycemia, cardiomyopathy, seizures, and early death, the latter is characterized by exercise-induced muscle pain and weakness, sometimes associated with myoglobinuria. The myopathic form of CPT II deficiency is the most common disorder of lipid metabolism affecting skeletal muscle and the most frequent cause of hereditary myoglobinuria. Males are more likely to be affected than females.
Dilated cardiomyopathy 1S
MedGen UID:
371831
Concept ID:
C1834481
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the MYH7 gene.
DK1-congenital disorder of glycosylation
MedGen UID:
332072
Concept ID:
C1835849
Disease or Syndrome
DOLK-congenital disorder of glycosylation (DOLK-CDG, formerly known as congenital disorder of glycosylation type Im) is an inherited condition that often affects the heart but can also involve other body systems. The pattern and severity of this disorder's signs and symptoms vary among affected individuals.\n\nIndividuals with DOLK-CDG typically develop signs and symptoms of the condition during infancy or early childhood. Nearly all individuals with DOLK-CDG develop a weakened and enlarged heart (dilated cardiomyopathy). Other frequent signs and symptoms include recurrent seizures; developmental delay; poor muscle tone (hypotonia); and dry, scaly skin (ichthyosis). Less commonly, affected individuals can have distinctive facial features, kidney disease, hormonal abnormalities, or eye problems.\n\nIndividuals with DOLK-CDG typically do not survive into adulthood, often because of complications related to dilated cardiomyopathy, and some do not survive past infancy.
Dilated cardiomyopathy 1Q
MedGen UID:
332088
Concept ID:
C1835926
Disease or Syndrome
A dilated cardiomyopathy that has material basis in variation in the chromosome region 7q22.3-q31.1.
Dilated cardiomyopathy 1P
MedGen UID:
322782
Concept ID:
C1835928
Disease or Syndrome
An autosomal dominant subtype of dilated cardiomyopathy caused by mutation(s) in the PLN gene, encoding cardiac phospholamban.
Dilated cardiomyopathy 1O
MedGen UID:
325268
Concept ID:
C1837839
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the ABCC9 gene.
Chromosome 1p36 deletion syndrome
MedGen UID:
334629
Concept ID:
C1842870
Disease or Syndrome
The constitutional deletion of chromosome 1p36 results in a syndrome with multiple congenital anomalies and mental retardation (Shapira et al., 1997). Monosomy 1p36 is the most common terminal deletion syndrome in humans, occurring in 1 in 5,000 births (Shaffer and Lupski, 2000; Heilstedt et al., 2003). See also neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH; 616975), which shows overlapping features and is caused by heterozygous mutation in the RERE gene (605226) on proximal chromosome 1p36. See also Radio-Tartaglia syndrome (RATARS; 619312), caused by mutation in the SPEN gene (613484) on chromosome 1p36, which shows overlapping features.
Lethal congenital contracture syndrome 2
MedGen UID:
334413
Concept ID:
C1843478
Disease or Syndrome
Lethal congenital contracture syndrome-2 (LCCS2) is an autosomal recessive disorder characterized by severe multiple congenital contractures with muscle wasting and atrophy. Micrognathia and other craniofacial anomalies, including cleft palate, as well as cardiac defects and enlarged urinary bladder at birth have also been reported. Hydrops fetalis and multiple pterygia are absent. Most patients have died in the neonatal period, although 2 survived to early adolescence (Landau et al., 2003). For a general phenotypic description and a discussion of genetic heterogeneity of LCCS, see LCCS1 (253310).
Dilated cardiomyopathy 1M
MedGen UID:
334498
Concept ID:
C1843808
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the CSRP3 gene.
Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
MedGen UID:
375302
Concept ID:
C1843851
Disease or Syndrome
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+").
Autosomal recessive limb-girdle muscular dystrophy type 2I
MedGen UID:
339580
Concept ID:
C1846672
Disease or Syndrome
MDGDC5 is an autosomal recessive muscular dystrophy characterized by variable age at onset, normal cognition, and no structural brain changes (Brockington et al., 2001). It is part of a group of similar disorders resulting from defective glycosylation of alpha-dystroglycan (DAG1; 128239), collectively known as 'dystroglycanopathies' (Mercuri et al., 2006). For a discussion of genetic heterogeneity of muscular dystrophy-dystroglycanopathy type C, see MDDGC1 (609308).
Dilated cardiomyopathy 1L
MedGen UID:
335735
Concept ID:
C1847667
Disease or Syndrome
Dilated cardiomyopathy, a disorder characterized by cardiac dilation and reduced systolic function, represents an outcome of a heterogeneous group of inherited and acquired disorders. For background and phenotypic information on dilated cardiomyopathy, see CMD1A (115200).
Myopathy, myosin storage, autosomal recessive
MedGen UID:
340603
Concept ID:
C1850709
Disease or Syndrome
Autosomal recessive myosin storage congenital myopathy-7B (CMYO7B) is a skeletal muscle disorder characterized by the onset of scapuloperoneal muscle weakness in early childhood or young adulthood. Affected individuals have difficulty walking, steppage gait, and scapular winging due to shoulder girdle involvement. The severity and progression of the disorder is highly variable, even within families. Most patients develop respiratory insufficiency, nocturnal hypoventilation, and restrictive lung disease; some develop hypertrophic cardiomyopathy. Additional features include myopathic facies, high-arched palate, scoliosis, and muscle wasting with thin body habitus. Serum creatine kinase may be normal or elevated. Skeletal muscle biopsy shows variable findings, including myosin storage disease, type 1 fiber predominance, centralized nuclei, and multiminicore disease (Onengut et al., 2004; Tajsharghi et al., 2007; Beecroft et al., 2019). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000).
Arrhythmogenic cardiomyopathy with wooly hair and keratoderma
MedGen UID:
340124
Concept ID:
C1854063
Disease or Syndrome
Dilated cardiomyopathy with woolly hair and keratoderma (DCWHK) is characterized by the presence of woolly or sparse hair from birth. Some patients exhibit fragile skin with blisters/erosions after minor mechanical trauma, with hyperkeratosis and epidermolytic keratoderma developing in early childhood. Cardiomyopathy may become apparent in the first decade of life, and early death due to heart failure has been reported, but patients may remain asymptomatic into the fourth decade of life. Some patients exhibit an arrhythmogenic form of cardiomyopathy, with sudden death in early adulthood (Carvajal-Huerta, 1998; Whittock et al., 2002; Alcalai et al., 2003; Uzumcu et al., 2006). Another syndrome involving cardiomyopathy, woolly hair, and keratoderma (Naxos disease; 601214) is caused by mutation in the plakoglobin gene (JUP; 173325). Also see 610476 for a similar disorder caused by homozygous mutation in the DSC2 gene (125645). Dilated cardiomyopathy with woolly hair, keratoderma, and tooth agenesis (DCWHKTA; 615821) is caused by heterozygous mutation in DSP. An isolated form of striated PPK (PPKS2; 612908) is also caused by heterozygous mutation in DSP. Reviews In a review of cardiocutaneous syndromes and arrhythmogenic cardiomyopathy, Sen-Chowdhry and McKenna (2014) stated that although the cardiac component of Carvajal syndrome was originally considered dilated cardiomyopathy, many of its features resemble those of arrhythmogenic cardiomyopathy (see 607450). In addition, they noted that different disease subtypes have been found to coexist within the same kindred, suggesting a role for modifier genes and/or environmental influences.
Dilated cardiomyopathy 1K
MedGen UID:
381354
Concept ID:
C1854159
Disease or Syndrome
A dilated cardiomyopathy that has material basis in variation in the chromosome region 6q12-q16.
Dilated cardiomyopathy 1J
MedGen UID:
343105
Concept ID:
C1854368
Disease or Syndrome
Sensorineural deafness with dilated cardiomyopathy is an extremely rare autosomal dominant syndrome described in two families to date and characterized by moderate to severe sensorineural hearing loss manifesting during childhood, and associated with late-onset dilated cardiomyopathy that generally progresses to heart failure.
Microcephalus cardiomyopathy syndrome
MedGen UID:
381554
Concept ID:
C1855080
Disease or Syndrome
Syndrome with characteristics of severe intellectual deficit, microcephaly and dilated cardiomyopathy. Hand and foot anomalies have also been reported. The syndrome has been described in three individuals. Transmission is autosomal recessive.
Methylmalonic aciduria, cblB type
MedGen UID:
344420
Concept ID:
C1855102
Disease or Syndrome
For this GeneReview, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid. Isolated MMA is caused by complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (mut0 enzymatic subtype or mut– enzymatic subtype, respectively), a defect in the transport or synthesis of its cofactor, 5-deoxy-adenosyl-cobalamin (cblA, cblB, or cblD-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. Prior to the advent of newborn screening, common phenotypes included: Infantile/non-B12-responsive form (mut0 enzymatic subtype, cblB), the most common phenotype, associated with infantile-onset lethargy, tachypnea, hypothermia, vomiting, and dehydration on initiation of protein-containing feeds. Without appropriate treatment, the infantile/non-B12-responsive phenotype could rapidly progress to coma due to hyperammonemic encephalopathy. Partially deficient or B12-responsive phenotypes (mut– enzymatic subtype, cblA, cblB [rare], cblD-MMA), in which symptoms occur in the first few months or years of life and are characterized by feeding problems, failure to thrive, hypotonia, and developmental delay marked by episodes of metabolic decompensation. Methylmalonyl-CoA epimerase deficiency, in which findings range from complete absence of symptoms to severe metabolic acidosis. Affected individuals can also develop ataxia, dysarthria, hypotonia, mild spastic paraparesis, and seizures. In those individuals diagnosed by newborn screening and treated from an early age, there appears to be decreased early mortality, less severe symptoms at diagnosis, favorable short-term neurodevelopmental outcome, and lower incidence of movement disorders and irreversible cerebral damage. However, secondary complications may still occur and can include intellectual disability, tubulointerstitial nephritis with progressive impairment of renal function, "metabolic stroke" (bilateral lacunar infarction of the basal ganglia during acute metabolic decompensation), pancreatitis, growth failure, functional immune impairment, bone marrow failure, optic nerve atrophy, arrhythmias and/or cardiomyopathy (dilated or hypertrophic), liver steatosis/fibrosis/cancer, and renal cancer.
Vici syndrome
MedGen UID:
340962
Concept ID:
C1855772
Disease or Syndrome
With the current widespread use of multigene panels and comprehensive genomic testing, it has become apparent that the phenotypic spectrum of EPG5-related disorder represents a continuum. At the most severe end of the spectrum is classic Vici syndrome (defined as a neurodevelopmental disorder with multisystem involvement characterized by the combination of agenesis of the corpus callosum, cataracts, hypopigmentation, cardiomyopathy, combined immunodeficiency, microcephaly, and failure to thrive); at the milder end of the spectrum are attenuated neurodevelopmental phenotypes with variable multisystem involvement. Median survival in classic Vici syndrome appears to be 24 months, with only 10% of children surviving longer than age five years; the most common causes of death are respiratory infections as a result of primary immunodeficiency and/or cardiac insufficiency resulting from progressive cardiac failure. No data are available on life span in individuals at the milder end of the spectrum.
3-methylglutaconic aciduria type 5
MedGen UID:
347542
Concept ID:
C1857776
Disease or Syndrome
3-Methylglutaconic aciduria type V (MGCA5) is an autosomal recessive disorder characterized by the onset of dilated or noncompaction cardiomyopathy in infancy or early childhood. Many patients die of cardiac failure. Other features include microcytic anemia, growth retardation, mild ataxia, mild muscle weakness, genital anomalies in males, and increased urinary excretion of 3-methylglutaconic acid. Some patients may have optic atrophy or delayed psychomotor development (summary by Davey et al., 2006 and Ojala et al., 2012). For a discussion of genetic heterogeneity of 3-methylglutaconic aciduria, see MGCA type I (250950).
Heart-hand syndrome, Slovenian type
MedGen UID:
341859
Concept ID:
C1857829
Disease or Syndrome
A rare autosomal dominant form of heart-hand syndrome, first described in members of a Slovenian family. The syndrome has characteristics of adult onset, progressive cardiac conduction disease, tachyarrhythmias that can lead to sudden death, dilated cardiomyopathy and brachydactyly, with the hands less severely affected than the feet. Muscle weakness and/or myopathic electromyographic findings have been observed in some cases.
Dilated cardiomyopathy 1I
MedGen UID:
387998
Concept ID:
C1858154
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the DES gene.
Dilated cardiomyopathy 1H
MedGen UID:
348980
Concept ID:
C1858591
Disease or Syndrome
A dilated cardiomyopathy that has material basis in variation in the chromosome region 2q14-q22.
Autosomal recessive limb-girdle muscular dystrophy type 2E
MedGen UID:
347674
Concept ID:
C1858593
Disease or Syndrome
Limb-girdle muscular dystrophies are characterized clinically by predominantly proximal muscle weakness of variable severity and dystrophic changes on muscle biopsy. LGMDR4 is in general a severe form of the disorder, with some patients developing symptoms before 8 years of age and losing the ability to ambulate in their second decade. Some patients have a milder course, with weakness evident in the teenage years and loss of walking ability in their fourth decade (summary by Lim et al., 1995 and Bonnemann et al., 1996). For a general phenotypic description and a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
Dilated cardiomyopathy 1G
MedGen UID:
347714
Concept ID:
C1858763
Disease or Syndrome
Dilated cardiomyopathy-1G (CMD1G) is an autosomal dominant disorder characterized by ventricular dilatation and systolic contractile dysfunction (Siu et al., 1999). For a general phenotypic description and a discussion of genetic heterogeneity of dilated cardiomyopathy (CMD), see CMD1A (115200).
Blepharophimosis - intellectual disability syndrome, SBBYS type
MedGen UID:
350209
Concept ID:
C1863557
Disease or Syndrome
KAT6B disorders include genitopatellar syndrome (GPS) and Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome (SBBYSS) which are part of a broad phenotypic spectrum with variable expressivity; individuals presenting with a phenotype intermediate between GPS and SBBYSS have been reported. Both phenotypes are characterized by some degree of global developmental delay / intellectual disability; hypotonia; genital abnormalities; and skeletal abnormalities including patellar hypoplasia/agenesis, flexion contractures of the knees and/or hips, and anomalies of the digits, spine, and/or ribs. Congenital heart defects, small bowel malrotation, feeding difficulties, slow growth, cleft palate, hearing loss, and dental anomalies have been observed in individuals with either phenotype.
Fatal mitochondrial disease due to combined oxidative phosphorylation defect type 3
MedGen UID:
355842
Concept ID:
C1864840
Disease or Syndrome
Combined oxidative phosphorylation deficiency type 3 is an extremely rare clinically heterogenous disorder described in about 5 patients to date. Clinical signs included hypotonia, lactic acidosis, and hepatic insufficiency, with progressive encephalomyopathy or hypertrophic cardiomyopathy.
Megaconial type congenital muscular dystrophy
MedGen UID:
355943
Concept ID:
C1865233
Disease or Syndrome
Megaconial-type congenital muscular dystrophy (MDCMC) is an autosomal recessive disorder characterized by early-onset muscle wasting and impaired intellectual development. Some patients develop fatal cardiomyopathy. Muscle biopsy shows peculiar enlarged mitochondria that are prevalent toward the periphery of the fibers but are sparse in the center (summary by Mitsuhashi et al., 2011).
Hemochromatosis type 2A
MedGen UID:
356321
Concept ID:
C1865614
Disease or Syndrome
Juvenile hemochromatosis is characterized by onset of severe iron overload occurring typically in the first to third decades of life. Males and females are equally affected. Prominent clinical features include hypogonadotropic hypogonadism, cardiomyopathy, glucose intolerance and diabetes, arthropathy, and liver fibrosis or cirrhosis. Hepatocellular cancer has been reported occasionally. The main cause of death is cardiac disease. If juvenile hemochromatosis is detected early enough and if blood is removed regularly through the process of phlebotomy to achieve iron depletion, morbidity and mortality are greatly reduced.
Dilated cardiomyopathy 1X
MedGen UID:
370583
Concept ID:
C1969024
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the FKTN gene.
Mitochondrial trifunctional protein deficiency
MedGen UID:
370665
Concept ID:
C1969443
Disease or Syndrome
Long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency and trifunctional protein (TFP) deficiency are caused by impairment of mitochondrial TFP. TFP has three enzymatic activities – long-chain enoyl-CoA hydratase, long-chain 3-hydroxyacyl-CoA dehydrogenase, and long-chain 3-ketoacyl-CoA thiolase. In individuals with LCHAD deficiency, there is isolated deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase, while deficiency of all three enzymes occurs in individuals with TFP deficiency. Individuals with TFP deficiency can present with a severe-to-mild phenotype, while individuals with LCHAD deficiency typically present with a severe-to-intermediate phenotype. Neonates with the severe phenotype present within a few days of birth with hypoglycemia, hepatomegaly, encephalopathy, and often cardiomyopathy. The intermediate phenotype is characterized by hypoketotic hypoglycemia precipitated by infection or fasting in infancy. The mild (late-onset) phenotype is characterized by myopathy and/or neuropathy. Long-term complications include peripheral neuropathy and retinopathy.
Dilated cardiomyopathy 1W
MedGen UID:
370063
Concept ID:
C1969639
Disease or Syndrome
An genetic condition that is a subtype of dilated cardiomyopathy caused by mutation(s) in the VCL gene, encoding vinculin.
Deficiency of isobutyryl-CoA dehydrogenase
MedGen UID:
370754
Concept ID:
C1969809
Disease or Syndrome
Isobutyryl-CoA dehydrogenase (IBD) deficiency is a condition that disrupts the breakdown of certain proteins. Normally, proteins from food are broken down into parts called amino acids. Amino acids can be further processed to provide energy for growth and development. People with IBD deficiency have inadequate levels of an enzyme that helps break down a particular amino acid called valine.\n\nMost people with IBD deficiency are asymptomatic, which means they do not have any signs or symptoms of the condition. A few children with IBD deficiency have developed features such as a weakened and enlarged heart (dilated cardiomyopathy), weak muscle tone (hypotonia), and developmental delay. This condition may also cause low numbers of red blood cells (anemia) and very low blood levels of carnitine, which is a natural substance that helps convert certain foods into energy. The range of signs and symptoms associated with IBD deficiency remains unclear because very few affected individuals have been reported.
Early-onset myopathy with fatal cardiomyopathy
MedGen UID:
435983
Concept ID:
C2673677
Disease or Syndrome
Salih myopathy is characterized by muscle weakness (manifest during the neonatal period or in early infancy) and delayed motor development; children acquire independent walking between ages 20 months and four years. In the first decade of life, global motor performance is stable or tends to improve. Moderate joint and neck contractures and spinal rigidity may manifest in the first decade but become more obvious in the second decade. Scoliosis develops after age 11 years. Cardiac dysfunction manifests between ages five and 16 years, progresses rapidly, and leads to death between ages eight and 20 years, usually from heart rhythm disturbances.
Dilated cardiomyopathy 1AA
MedGen UID:
393713
Concept ID:
C2677338
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the ACTN2 gene.
Dilated cardiomyopathy 2A
MedGen UID:
437214
Concept ID:
C2678474
Disease or Syndrome
A dilated cardiomyopathy that has material basis in mutation in the TNNI3 gene on chromosome 19q13.
Dilated cardiomyopathy 1Z
MedGen UID:
395631
Concept ID:
C2678475
Disease or Syndrome
Dilated cardiomyopathy-1Z (CMD1Z) is characterized by severe reduction in cardiac function, with onset in infancy or early childhood in some patients but diagnosis as late as the fifth decade in others. Patients exhibit biventricular systolic dysfunction, with severely reduced left ventricular ejection fractions. Most affected individuals require transplantation for survival (Mogensen et al., 2004; Kaski et al., 2007; Pinto et al., 2011). For a general phenotypic description and a discussion of genetic heterogeneity of dilated cardiomyopathy, see CMD1A (115200).
Dilated cardiomyopathy 1Y
MedGen UID:
437215
Concept ID:
C2678476
Disease or Syndrome
Dilated cardiomyopathy-1Y (CMD1Y) is characterized by severe progressive cardiac failure, resulting in death in the third to sixth decades of life in some patients. Electron microscopy shows an abnormal sarcomere structure (Olson et al., 2001). In left ventricular noncompaction-9 (LVNC9), patients may present with cardiac failure or may be asymptomatic. Echocardiography shows noncompaction of the apex and midventricular wall of the left ventricle (Probst et al., 2011). Some patients also exhibit Ebstein anomaly of the tricuspid valve (Kelle et al., 2016) and some have mitral valve insufficiency (Nijak et al., 2018).
Myopathy, congenital, with fiber-type disproportion, X-linked
MedGen UID:
440714
Concept ID:
C2749128
Disease or Syndrome
Dilated cardiomyopathy 1FF
MedGen UID:
412876
Concept ID:
C2750091
Disease or Syndrome
A dilated cardiomyopathy that has material basis in mutation in the TNNI3 gene on chromosome 19q13.42.
Dilated cardiomyopathy 1EE
MedGen UID:
412965
Concept ID:
C2750466
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the MYH6 gene.
Dilated cardiomyopathy 1DD
MedGen UID:
416441
Concept ID:
C2750995
Disease or Syndrome
An autosomal dominant subtype of dilated cardiomyopathy caused by mutation(s) in the RBM20 gene, encoding RNA-binding protein 20.
Dilated cardiomyopathy 1CC
MedGen UID:
413929
Concept ID:
C2751084
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the NEXN gene.
DPM3-congenital disorder of glycosylation
MedGen UID:
414534
Concept ID:
C2752007
Disease or Syndrome
Limb-girdle muscular dystrophy-dystroglycanopathy type C15 (MDDGC15) is an autosomal recessive disorder characterized by progressive proximal muscle weakness, manifest initially as unsteady gait, but later including more distal muscles, and dilated cardiomyopathy. The age at onset varies widely from the first decade to adulthood; those with earlier onset may have delayed motor development. Laboratory studies show increased serum creatine kinase and muscle biopsy shows dystrophic features with decreased alpha-dystroglycan (DAG1; 128239). Biochemical studies often show evidence of abnormal N-glycosylation of serum proteins, consistent with a congenital disorder of glycosylation (CDG) (summary by Svahn et al., 2019). For a discussion of genetic heterogeneity of muscular dystrophy- dystroglycanopathy type C, see MDDGC1 (609308). For a discussion of the classification of CDGs, see CDG1A (212065).
PGM1-congenital disorder of glycosylation
MedGen UID:
414536
Concept ID:
C2752015
Disease or Syndrome
Congenital disorder of glycosylation type It (CDG1T) is an autosomal recessive disorder characterized by a wide range of clinical manifestations and severity. The most common features include cleft lip and bifid uvula, apparent at birth, followed by hepatopathy, intermittent hypoglycemia, short stature, and exercise intolerance, often accompanied by increased serum creatine kinase. Less common features include rhabdomyolysis, dilated cardiomyopathy, and hypogonadotropic hypogonadism (summary by Tegtmeyer et al., 2014). For a discussion of the classification of CDGs, see CDG1A (212065).
Dilated cardiomyopathy 1BB
MedGen UID:
414552
Concept ID:
C2752072
Disease or Syndrome
Dilated cardiomyopathy-1BB (CMD1BB) is a life-threatening, intractable disease characterized by ventricular dilation and thinning (Shiba et al., 2021). For a phenotypic description and a discussion of genetic heterogeneity of dilated cardiomyopathy, see CMD1A (115200).
Autosomal recessive limb-girdle muscular dystrophy type 2D
MedGen UID:
424706
Concept ID:
C2936332
Disease or Syndrome
Autosomal recessive limb-girdle muscular dystrophy-3 (LGMDR3) affects mainly the proximal muscles and results in difficulty walking. Most individuals have onset in childhood; the disorder is progressive. Other features may include scapular winging, calf pseudohypertrophy, and contractures. Cardiomyopathy has rarely been reported (summary by Babameto-Laku et al., 2011). For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600).
Bardet-Biedl syndrome 2
MedGen UID:
422453
Concept ID:
C2936863
Disease or Syndrome
BBS2 is an autosomal recessive ciliopathy characterized by retinal degeneration, polydactyly, renal disease, hypogonadism, obesity, dysmorphic features, and variable degrees of cognitive impairment (Innes et al., 2010). Mutation in the BBS2 gene is the third most frequent cause of BBS, accounting for approximately 8% of cases (Zaghloul and Katsanis, 2009). For a general phenotypic description and a discussion of genetic heterogeneity of Bardet-Biedl syndrome, see BBS1 (209900).
Dilated cardiomyopathy 1R
MedGen UID:
462031
Concept ID:
C3150681
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the ACTC1 gene.
Dilated cardiomyopathy 1GG
MedGen UID:
462248
Concept ID:
C3150898
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the SDHA gene.
Dilated cardiomyopathy 1V
MedGen UID:
462308
Concept ID:
C3150958
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the PSEN2 gene.
Dilated cardiomyopathy 1HH
MedGen UID:
462643
Concept ID:
C3151293
Disease or Syndrome
An autosomal dominant subtype of dilated cardiomyopathy caused by mutation(s) in the BAG3 gene, encoding BAG family molecular chaperone regulator 3.
Dyskeratosis congenita, autosomal dominant 2
MedGen UID:
462793
Concept ID:
C3151443
Disease or Syndrome
Dyskeratosis congenita and related telomere biology disorders (DC/TBD) are caused by impaired telomere maintenance resulting in short or very short telomeres. The phenotypic spectrum of telomere biology disorders is broad and includes individuals with classic dyskeratosis congenita (DC) as well as those with very short telomeres and an isolated physical finding. Classic DC is characterized by a triad of dysplastic nails, lacy reticular pigmentation of the upper chest and/or neck, and oral leukoplakia, although this may not be present in all individuals. People with DC/TBD are at increased risk for progressive bone marrow failure (BMF), myelodysplastic syndrome or acute myelogenous leukemia, solid tumors (usually squamous cell carcinoma of the head/neck or anogenital cancer), and pulmonary fibrosis. Other findings can include eye abnormalities (epiphora, blepharitis, sparse eyelashes, ectropion, entropion, trichiasis), taurodontism, liver disease, gastrointestinal telangiectasias, and avascular necrosis of the hips or shoulders. Although most persons with DC/TBD have normal psychomotor development and normal neurologic function, significant developmental delay is present in both forms; additional findings include cerebellar hypoplasia (Hoyeraal Hreidarsson syndrome) and bilateral exudative retinopathy and intracranial calcifications (Revesz syndrome and Coats plus syndrome). Onset and progression of manifestations of DC/TBD vary: at the mild end of the spectrum are those who have only minimal physical findings with normal bone marrow function, and at the severe end are those who have the diagnostic triad and early-onset BMF.
Moyamoya angiopathy-short stature-facial dysmorphism-hypergonadotropic hypogonadism syndrome
MedGen UID:
463207
Concept ID:
C3151857
Disease or Syndrome
This multisystem disorder is characterized by moyamoya disease, short stature, hypergonadotropic hypogonadism, and facial dysmorphism. Other variable features include dilated cardiomyopathy, premature graying of the hair, and early-onset cataracts. Moyamoya disease is a progressive cerebrovascular disorder characterized by stenosis or occlusion of the internal carotid arteries and the main branches, leading to the development of small collateral vessels (moyamoya vessels) at the base of the brain. Affected individuals can develop acute neurologic events due to stroke-like episodes (summary by Miskinyte et al., 2011). For a general phenotypic description and a discussion of genetic heterogeneity of moyamoya disease, see MYMY1 (252350).
Dilated cardiomyopathy 1U
MedGen UID:
463620
Concept ID:
C3160720
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the PSEN1 gene.
Multiple mitochondrial dysfunctions syndrome 2
MedGen UID:
482008
Concept ID:
C3280378
Disease or Syndrome
Multiple mitochondrial dysfunctions syndrome-2 (MMDS2) with hyperglycinemia is a severe autosomal recessive disorder characterized by developmental regression in infancy. Affected children have an encephalopathic disease course with seizures, spasticity, loss of head control, and abnormal movement. Additional more variable features include optic atrophy, cardiomyopathy, and leukodystrophy. Laboratory studies show increased serum glycine and lactate. Most patients die in childhood. The disorder represents a form of 'variant' nonketotic hyperglycinemia and is distinct from classic nonketotic hyperglycinemia (NKH, or GCE; 605899), which is characterized by significantly increased CSF glycine. Several forms of 'variant' NKH, including MMDS2, appear to result from defects of mitochondrial lipoate biosynthesis (summary by Baker et al., 2014). For a general description and a discussion of genetic heterogeneity of multiple mitochondrial dysfunctions syndrome, see MMDS1 (605711).
Dilated cardiomyopathy 2B
MedGen UID:
766323
Concept ID:
C3553409
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the GATAD1 gene.
Mitochondrial DNA depletion syndrome 11
MedGen UID:
767376
Concept ID:
C3554462
Disease or Syndrome
Mitochondrial DNA depletion syndrome-11 is an autosomal recessive mitochondrial disorder characterized by onset in childhood or adulthood of progressive external ophthalmoplegia (PEO), muscle weakness and atrophy, exercise intolerance, and respiratory insufficiency due to muscle weakness. More variable features include spinal deformity, emaciation, and cardiac abnormalities. Skeletal muscle biopsies show deletion and depletion of mitochondrial DNA (mtDNA) with variable defects in respiratory chain enzyme activities (summary by Kornblum et al., 2013). For a discussion of genetic heterogeneity of autosomal recessive mtDNA depletion syndromes, see MTDPS1 (603041).
Dilated cardiomyopathy 1II
MedGen UID:
767563
Concept ID:
C3554649
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the CRYAB gene.
Dilated cardiomyopathy 3B
MedGen UID:
777148
Concept ID:
C3668940
Disease or Syndrome
The dystrophinopathies cover a spectrum of X-linked muscle disease ranging from mild to severe that includes Duchenne muscular dystrophy, Becker muscular dystrophy, and DMD-associated dilated cardiomyopathy (DCM). The mild end of the spectrum includes the phenotypes of asymptomatic increase in serum concentration of creatine phosphokinase (CK) and muscle cramps with myoglobinuria. The severe end of the spectrum includes progressive muscle diseases that are classified as Duchenne/Becker muscular dystrophy when skeletal muscle is primarily affected and as DMD-associated DCM when the heart is primarily affected. Duchenne muscular dystrophy (DMD) usually presents in early childhood with delayed motor milestones including delays in walking independently and standing up from a supine position. Proximal weakness causes a waddling gait and difficulty climbing stairs, running, jumping, and standing up from a squatting position. DMD is rapidly progressive, with affected children being wheelchair dependent by age 12 years. Cardiomyopathy occurs in almost all individuals with DMD after age 18 years. Few survive beyond the third decade, with respiratory complications and progressive cardiomyopathy being common causes of death. Becker muscular dystrophy (BMD) is characterized by later-onset skeletal muscle weakness. With improved diagnostic techniques, it has been recognized that the mild end of the spectrum includes men with onset of symptoms after age 30 years who remain ambulatory even into their 60s. Despite the milder skeletal muscle involvement, heart failure from DCM is a common cause of morbidity and the most common cause of death in BMD. Mean age of death is in the mid-40s. DMD-associated DCM is characterized by left ventricular dilation and congestive heart failure. Females heterozygous for a DMD pathogenic variant are at increased risk for DCM.
Actin accumulation myopathy
MedGen UID:
777997
Concept ID:
C3711389
Disease or Syndrome
Congenital myopathy-2A (CMYO2A) is an autosomal dominant disorder of the skeletal muscle characterized by infantile- or childhood-onset myopathy with delayed motor milestones and nonprogressive muscle weakness. Of the patients with congenital myopathy caused by mutation in the ACTA1 gene, about 90% carry heterozygous mutations that are usually de novo and cause the severe infantile phenotype (CMYO2C; 620278). Some patients with de novo mutations have a more typical and milder disease course with delayed motor development and proximal muscle weakness, but are able to achieve independent ambulation. Less frequently, autosomal dominant transmission of the disorder within a family may occur when the ACTA1 mutation produces a phenotype compatible with adult life. Of note, intrafamilial variability has also been reported: a severely affected proband may be identified and then mildly affected or even asymptomatic relatives are found to carry the same mutation. The severity of the disease most likely depends on the detrimental effect of the mutation, although there are probably additional modifying factors (Ryan et al., 2001; Laing et al., 2009; Sanoudou and Beggs, 2001; Agrawal et al., 2004; Nowak et al., 2013; Sewry et al., 2019; Laitila and Wallgren-Pettersson, 2021). The most common histologic finding on muscle biopsy in patients with ACTA1 mutations is the presence of 'nemaline rods,' which represent abnormal thread- or rod-like structures ('nema' is Greek for 'thread'). However, skeletal muscle biopsy from patients with mutations in the ACTA1 gene can show a range of pathologic phenotypes. These include classic rods, intranuclear rods, clumped filaments, cores, or fiber-type disproportion, all of which are nonspecific pathologic findings and not pathognomonic of a specific congenital myopathy. Most patients have clinically severe disease, regardless of the histopathologic phenotype (Nowak et al., 2007; Sewry et al., 2019). ACTA1 mutations are the second most common cause of congenital myopathies classified histologically as 'nemaline myopathy' after mutations in the NEB gene (161650). ACTA1 mutations are overrepresented in the severe phenotype with early death (Laing et al., 2009). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000). For a discussion of genetic heterogeneity of nemaline myopathy, see NEM2 (256030).
Dilated cardiomyopathy 1KK
MedGen UID:
811544
Concept ID:
C3714995
Disease or Syndrome
Any dilated cardiomyopathy in which the cause of the disease is a mutation in the MYPN gene.
Left ventricular noncompaction 10
MedGen UID:
811617
Concept ID:
C3715165
Disease or Syndrome
Left ventricular noncompaction is a heart (cardiac) muscle disorder that occurs when the lower left chamber of the heart (left ventricle), which helps the heart pump blood, does not develop correctly. Instead of the muscle being smooth and firm, the cardiac muscle in the left ventricle is thick and appears spongy. The abnormal cardiac muscle is weak and has an impaired ability to pump blood because it either cannot completely contract or it cannot completely relax. For the heart to pump blood normally, cardiac muscle must contract and relax fully.\n\nSome individuals with left ventricular noncompaction experience no symptoms at all; others have heart problems that can include sudden cardiac death. Additional signs and symptoms include abnormal blood clots, irregular heart rhythm (arrhythmia), a sensation of fluttering or pounding in the chest (palpitations), extreme fatigue during exercise (exercise intolerance), shortness of breath (dyspnea), fainting (syncope), swelling of the legs (lymphedema), and trouble laying down flat. Some affected individuals have features of other heart defects. Left ventricular noncompaction can be diagnosed at any age, from birth to late adulthood. Approximately two-thirds of individuals with left ventricular noncompaction develop heart failure.
Dilated cardiomyopathy 1JJ
MedGen UID:
815265
Concept ID:
C3808935
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the LAMA4 gene.
Left ventricular noncompaction 8
MedGen UID:
815618
Concept ID:
C3809288
Disease or Syndrome
Some individuals with left ventricular noncompaction experience no symptoms at all; others have heart problems that can include sudden cardiac death. Additional signs and symptoms include abnormal blood clots, irregular heart rhythm (arrhythmia), a sensation of fluttering or pounding in the chest (palpitations), extreme fatigue during exercise (exercise intolerance), shortness of breath (dyspnea), fainting (syncope), swelling of the legs (lymphedema), and trouble laying down flat. Some affected individuals have features of other heart defects. Left ventricular noncompaction can be diagnosed at any age, from birth to late adulthood. Approximately two-thirds of individuals with left ventricular noncompaction develop heart failure.\n\nLeft ventricular noncompaction is a heart (cardiac) muscle disorder that occurs when the lower left chamber of the heart (left ventricle), which helps the heart pump blood, does not develop correctly. Instead of the muscle being smooth and firm, the cardiac muscle in the left ventricle is thick and appears spongy. The abnormal cardiac muscle is weak and has an impaired ability to pump blood because it either cannot completely contract or it cannot completely relax. For the heart to pump blood normally, cardiac muscle must contract and relax fully.
Vasculitis due to ADA2 deficiency
MedGen UID:
854497
Concept ID:
C3887654
Disease or Syndrome
Adenosine deaminase 2 deficiency (DADA2) is a complex systemic autoinflammatory disorder in which vasculopathy/vasculitis, dysregulated immune function, and/or hematologic abnormalities may predominate. Inflammatory features include intermittent fevers, rash (often livedo racemosa/reticularis), and musculoskeletal involvement (myalgia/arthralgia, arthritis, myositis). Vasculitis, which usually begins before age ten years, may manifest as early-onset ischemic (lacunar) and/or hemorrhagic strokes, or as cutaneous or systemic polyarteritis nodosa. Hypertension and hepatosplenomegaly are often found. More severe involvement may lead to progressive central neurologic deficits (dysarthria, ataxia, cranial nerve palsies, cognitive impairment) or to ischemic injury to the kidney, intestine, and/or digits. Dysregulation of immune function can lead to immunodeficiency or autoimmunity of varying severity; lymphadenopathy may be present and some affected individuals have had lymphoproliferative disease. Hematologic disorders may begin early in life or in late adulthood, and can include lymphopenia, neutropenia, pure red cell aplasia, thrombocytopenia, or pancytopenia. Of note, both interfamilial and intrafamilial phenotypic variability (e.g., in age of onset, frequency and severity of manifestations) can be observed; also, individuals with biallelic ADA2 pathogenic variants may remain asymptomatic until adulthood or may never develop clinical manifestations of DADA2.
Cardiomyopathy, dilated, with wooly hair, keratoderma, and tooth agenesis
MedGen UID:
862830
Concept ID:
C4014393
Disease or Syndrome
Keratoderma with woolly hair is a group of related conditions that affect the skin and hair and in many cases increase the risk of potentially life-threatening heart problems. People with these conditions have hair that is unusually coarse, dry, fine, and tightly curled. In some cases, the hair is also sparse. The woolly hair texture typically affects only scalp hair and is present from birth. Starting early in life, affected individuals also develop palmoplantar keratoderma, a condition that causes skin on the palms of the hands and the soles of the feet to become thick, scaly, and calloused.\n\nCardiomyopathy, which is a disease of the heart muscle, is a life-threatening health problem that can develop in people with keratoderma with woolly hair. Unlike the other features of this condition, signs and symptoms of cardiomyopathy may not appear until adolescence or later. Complications of cardiomyopathy can include an abnormal heartbeat (arrhythmia), heart failure, and sudden death.\n\nKeratoderma with woolly hair comprises several related conditions with overlapping signs and symptoms. Researchers have recently proposed classifying keratoderma with woolly hair into four types, based on the underlying genetic cause. Type I, also known as Naxos disease, is characterized by palmoplantar keratoderma, woolly hair, and a form of cardiomyopathy called arrhythmogenic right ventricular cardiomyopathy (ARVC). Type II, also known as Carvajal syndrome, has hair and skin abnormalities similar to type I but features a different form of cardiomyopathy, called dilated left ventricular cardiomyopathy. Type III also has signs and symptoms similar to those of type I, including ARVC, although the hair and skin abnormalities are often milder. Type IV is characterized by palmoplantar keratoderma and woolly and sparse hair, as well as abnormal fingernails and toenails. Type IV does not appear to cause cardiomyopathy.
Polyglucosan body myopathy type 1
MedGen UID:
863042
Concept ID:
C4014605
Disease or Syndrome
Polyglucosan body myopathy-1 (PGBM1) is an autosomal recessive disorder characterized by onset in childhood of progressive proximal muscle weakness, resulting in difficulties in ambulation. Most patients also develop progressive dilated cardiomyopathy, which may necessitate cardiac transplant in severe cases. A small subset of patients present with severe immunodeficiency and a hyperinflammatory state in very early childhood (summary by Boisson et al., 2012 and Nilsson et al., 2013). Genetic Heterogeneity of Polyglucosan Body Myopathy See also PGBM2 (616199), caused by mutation in the GYG1 gene (603942) on chromosome 3q24.
Dilated cardiomyopathy 1NN
MedGen UID:
863093
Concept ID:
C4014656
Disease or Syndrome
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the RAF1 gene.
Myopathy, centronuclear, 5
MedGen UID:
863251
Concept ID:
C4014814
Disease or Syndrome
Centronuclear myopathy-5 (CNM5) is an autosomal recessive congenital myopathy characterized by severe neonatal hypotonia with respiratory insufficiency and difficulty feeding. Some patients die in infancy, and some develop dilated cardiomyopathy. Children show severely delayed motor development (summary by Agrawal et al., 2014). For a discussion of genetic heterogeneity of centronuclear myopathy, see CNM1 (160150).
Atrial conduction disease
MedGen UID:
863722
Concept ID:
C4015285
Disease or Syndrome
A rare genetic cardiac disease characterized by variably expressed atrial tachyarrhythmia (such as atrial flutter, paroxysmal or chronic atrial fibrillation, ectopic atrial tachycardia, or multifocal atrial tachycardia), infra-Hisian conduction system disease, and vulnerability to dilated cardiomyopathy. Age of onset ranges between childhood and adulthood.
Myopathy, reducing body, X-linked, childhood-onset
MedGen UID:
904593
Concept ID:
C4225159
Disease or Syndrome
Reducing-body myopathy (RBM) is a rare myopathy characterized pathologically by the presence of intracytoplasmic inclusion bodies strongly stained by menadione-linked alpha-glycerophosphate dehydrogenase (MAG) in the absence of substrate, alpha-glycerophosphate. The term 'reducing body' refers to the reducing activity of the inclusions to nitroblue tetrazolium (NBT) in the absence of substrate. This condition is also commonly associated with rimmed vacuoles and cytoplasmic bodies. The clinical features of RBM are variable; a severe form has onset in infancy or early childhood and results in severe disability or early death (RBMX1A; 300717), and a less severe form has onset in late childhood or adulthood (RBMX1B) (summary by Liewluck et al., 2007 and Shalaby et al., 2009).
Autosomal recessive limb-girdle muscular dystrophy type 2W
MedGen UID:
897675
Concept ID:
C4225192
Disease or Syndrome
Autosomal recessive muscular dystrophy with cardiomyopathy and triangular tongue (MDRCMTT) is an autosomal recessive muscle disorder characterized by onset of severe and progressive muscle weakness and atrophy in childhood, resulting in loss of independent ambulation. Patients may also have dilated cardiomyopathy and have macroglossia with a small tip, resulting in a triangular appearance of the tongue (summary by Warman Chardon et al., 2015).
Nephrotic syndrome, type 11
MedGen UID:
898622
Concept ID:
C4225228
Disease or Syndrome
Nephrotic syndrome type 11 (NPHS11) is an autosomal recessive disorder of the kidney with onset in the first decade of life. The disorder is progressive and usually results in end-stage renal disease necessitating renal transplantation, although some patients may have a slightly milder phenotype (Miyake et al., 2015). For a general phenotypic description and a discussion of genetic heterogeneity of nephrotic syndrome, see NPHS1 (256300).
Short stature, microcephaly, and endocrine dysfunction
MedGen UID:
895448
Concept ID:
C4225288
Disease or Syndrome
In patients with SSMED, short stature and microcephaly are apparent at birth, and there is progressive postnatal growth failure. Endocrine dysfunction, including hypergonadotropic hypogonadism, multinodular goiter, and diabetes mellitus, is present in affected adults. Progressive ataxia has been reported in some patients, with onset ranging from the second to fifth decade of life. In addition, a few patients have developed tumors, suggesting that there may be a predisposition to tumorigenesis. In contrast to syndromes involving defects in other components of the nonhomologous end-joining (NHEJ) complex (see, e.g., 606593), no clinically overt immunodeficiency has been observed in SSMED, although laboratory analysis has revealed lymphopenia or borderline leukopenia in some patients (Murray et al., 2015; Bee et al., 2015; de Bruin et al., 2015; Guo et al., 2015).
Linear skin defects with multiple congenital anomalies 3
MedGen UID:
906997
Concept ID:
C4225421
Disease or Syndrome
Microphthalmia with linear skin defects (MLS) syndrome is characterized by unilateral or bilateral microphthalmia and/or anophthalmia and linear skin defects, usually involving the face and neck, which are present at birth and heal with age, leaving minimal residual scarring. Other findings can include a wide variety of other ocular abnormalities (e.g., corneal anomalies, orbital cysts, cataracts), central nervous system involvement (e.g., structural anomalies, developmental delay, infantile seizures), cardiac concerns (e.g., hypertrophic or oncocytic cardiomyopathy, atrial or ventricular septal defects, arrhythmias), short stature, diaphragmatic hernia, nail dystrophy, hearing impairment, and genitourinary malformations. Inter- and intrafamilial variability is described.
Arterial calcification, generalized, of infancy, 1
MedGen UID:
1631685
Concept ID:
C4551985
Disease or Syndrome
Generalized arterial calcification of infancy (GACI) is characterized by infantile onset of widespread arterial calcification and/or narrowing of large and medium-sized vessels resulting in cardiovascular findings (which can include heart failure, respiratory distress, edema, cyanosis, hypertension, and/or cardiomegaly). Additional findings can include typical skin and retinal manifestations of pseudoxanthoma elasticum (PXE), periarticular calcifications, development of rickets after infancy, cervical spine fusion, and hearing loss. While mortality in infancy is high, survival into the third and fourth decades has occurred.
MYH7-related skeletal myopathy
MedGen UID:
1647391
Concept ID:
C4552004
Disease or Syndrome
Laing distal myopathy is characterized by early-onset weakness (usually before age 5 years) that initially involves the dorsiflexors of the ankles and great toes and then the finger extensors, especially those of the third and fourth fingers. Weakness of the neck flexors is seen in most affected individuals and mild facial weakness is often present. After distal weakness has been present for more than ten years, mild proximal weakness may be observed. Life expectancy is normal.
Congenital heart defects, multiple types, 5
MedGen UID:
1636547
Concept ID:
C4693563
Disease or Syndrome
Acyl-CoA dehydrogenase 9 deficiency
MedGen UID:
1648400
Concept ID:
C4747517
Disease or Syndrome
MC1DN20 is an autosomal recessive multisystem disorder characterized by infantile onset of acute metabolic acidosis, hypertrophic cardiomyopathy, and muscle weakness associated with a deficiency of mitochondrial complex I activity in muscle, liver, and fibroblasts (summary by Haack et al., 2010). For a discussion of genetic heterogeneity of mitochondrial complex I deficiency, see 252010.
Microcephaly, growth restriction, and increased sister chromatid exchange 2
MedGen UID:
1648384
Concept ID:
C4748176
Disease or Syndrome
MGRISCE2 is an autosomal recessive disorder characterized by intrauterine growth restriction, poor postnatal growth with short stature and microcephaly, and increased sister chromatid exchange on cell studies. The disorder results from defective DNA decatenation. The pathogenesis of the disorder is similar to that of Bloom syndrome (BLM; 210900), but patients with mutations in the TOP3A gene do not have a malar rash (summary by Martin et al., 2018). For a discussion of genetic heterogeneity of MGRISCE, see Bloom syndrome (BLM; MGRISCE1; 210900)
Mitochondrial complex 5 (ATP synthase) deficiency nuclear type 5
MedGen UID:
1648429
Concept ID:
C4748269
Disease or Syndrome
Cardiomyopathy, dilated, 2c
MedGen UID:
1648379
Concept ID:
C4748647
Disease or Syndrome
Dilated cardiomyopathy-2C (CMD2C) is characterized by dilated cardiomyopathy of variable severity, with age of onset ranging from 2 to 20 years. Affected individuals exhibit reduction in coenzyme A (CoA) levels. Some severely affected children die in the first few years of life (Iuso et al., 2018). For a general phenotypic description and a discussion of genetic heterogeneity of dilated cardiomyopathy (CMD), see 115200.
NAD(P)HX dehydratase deficiency
MedGen UID:
1681210
Concept ID:
C5193026
Disease or Syndrome
Early-onset progressive encephalopathy with brain edema and/or leukoencephalopathy-2 (PEBEL2) is an autosomal recessive severe neurometabolic disorder characterized by rapidly progressive neurologic deterioration that is usually associated with a febrile illness. Affected infants tend to show normal early development followed by acute psychomotor regression with ataxia, hypotonia, and sometimes seizures, resulting in death in the first years of life. Brain imaging shows multiple abnormalities, including brain edema and signal abnormalities in the cortical and subcortical regions (summary by Van Bergen et al., 2019). For a discussion of genetic heterogeneity of PEBEL, see PEBEL1 (617186).
Galloway-Mowat syndrome 7
MedGen UID:
1679283
Concept ID:
C5193044
Disease or Syndrome
Galloway-Mowat syndrome-7 (GAMOS7) is an autosomal recessive disorder characterized by developmental delay, microcephaly, and early-onset nephrotic syndrome (summary by Rosti et al., 2017). For a general phenotypic description and a discussion of genetic heterogeneity of GAMOS, see GAMOS1 (251300).
Oculopharyngodistal myopathy 1
MedGen UID:
1684682
Concept ID:
C5231388
Disease or Syndrome
Oculopharyngodistal myopathy-1 (OPDM1) is an autosomal dominant disorder characterized by adult-onset ptosis, external ophthalmoplegia, facial muscle weakness, distal limb muscle weakness and atrophy, and pharyngeal involvement, resulting in dysphagia and dysarthria. Skeletal muscle biopsy shows myopathic changes with rimmed vacuoles. There are variable manifestations of the disorder regarding muscle involvement and severity (summary by Ishiura et al., 2019). Genetic Heterogeneity of Oculopharyngodistal Myopathy See also OPDM2 (618940), caused by trinucleotide repeat expansion in the GIPC1 gene (605072) on chromosome 19p13; OPDM3 (619473), caused by trinucleotide repeat expansion in the NOTCH2NLC gene (618025) on chromosome 1q21; and OPDM4 (619790), caused by trinucleotide repeat expansion in the RILPL1 gene (614092) on chromosome 12q24. Oculopharyngeal muscular dystrophy (OPMD; 164300) is a similar disorder with overlapping features. It is caused by a similar heterozygous trinucleotide repeat expansion in the PABPN1 gene (602279) (summary by Durmus et al., 2011).
Triokinase and FMN cyclase deficiency syndrome
MedGen UID:
1710207
Concept ID:
C5394125
Disease or Syndrome
Triokinase and FMN cyclase deficiency syndrome (TKFCD) is a multisystem disease with marked clinical variability, even intrafamilially. In addition to cataract and developmental delay of variable severity, other features may include liver dysfunction, microcytic anemia, and cerebellar hypoplasia. Fatal cardiomyopathy with lactic acidosis has been observed (Wortmann et al., 2020).
Chromosome 1p36.33 duplication syndrome, atad3 gene cluster, autosomal dominant
MedGen UID:
1708515
Concept ID:
C5394150
Disease or Syndrome
Autosomal dominant chromosome 1p36.33 duplication syndrome is a severe multisystemic disorder characterized by neonatal respiratory insufficiency, hypotonia, and cardiomyopathy, resulting in death in the first weeks of life. Affected infants may also have seizures, contractures, and corneal opacities. Brain imaging shows variable anomalies, such as white matter changes, and laboratory studies suggest that the phenotype results from metabolic defects in mitochondrial and cholesterol homeostasis (summary by Gunning et al., 2020).
Mitochondrial complex 2 deficiency, nuclear type 3
MedGen UID:
1751884
Concept ID:
C5436934
Disease or Syndrome
Mitochondrial complex II deficiency nuclear type 3 (MC2DN3) is an autosomal recessive multisystemic metabolic disorder with a highly variable phenotype. Some patients may have an encephalomyopathic picture with episodic developmental regression, loss of motor skills, hypotonia, ataxia, dystonia, and seizures or myoclonus. Other patients present in infancy with hypertrophic cardiomyopathy, which may be fatal. Laboratory studies show increased serum lactate and mitochondrial complex II deficiency in muscle and fibroblasts (summary by Jackson et al., 2014 and Alston et al., 2015). For a discussion of genetic heterogeneity of MC2DN, see MC2DN1 (252011).
Hypotaurinemic retinal degeneration and cardiomyopathy
MedGen UID:
1779589
Concept ID:
C5542181
Disease or Syndrome
Hypotaurinemic retinal degeneration and cardiomyopathy (HTRDC) is an autosomal recessive disorder characterized by low plasma taurine, childhood-onset progressive retinal degeneration, and cardiomyopathy (Ansar et al., 2020).
Cardiomyopathy, dilated, 2D
MedGen UID:
1782612
Concept ID:
C5543535
Disease or Syndrome
Dilated cardiomyopathy-2D (CMD2D) is characterized by neonatal onset of severe cardiomyopathy, with rapid progression to cardiac decompensation and death unless the patient undergoes heart transplantation (Ganapathi et al., 2020). For a general phenotypic description and a discussion of genetic heterogeneity of dilated cardiomyopathy, see 115200.
Dyskinesia with orofacial involvement, autosomal dominant
MedGen UID:
1790407
Concept ID:
C5551343
Disease or Syndrome
ADCY5 dyskinesia is a hyperkinetic movement disorder (more prominent in the face and arms than the legs) characterized by infantile to late-adolescent onset of chorea, athetosis, dystonia, myoclonus, or a combination of these. To date, affected individuals have had overlapping (but not identical) manifestations with wide-ranging severity. The facial movements are typically periorbital and perioral. The dyskinesia is prone to episodic or paroxysmal exacerbation lasting minutes to hours, and may occur during sleep. Precipitating factors in some persons have included emotional stress, intercurrent illness, sneezing, or caffeine; in others, no precipitating factors have been identified. In some children, severe infantile axial hypotonia results in gross motor delays accompanied by chorea, sometimes with language delays. The overall tendency is for the abnormal movements to stabilize in early middle age, at which point they may improve in some individuals; less commonly, the abnormal movements are slowly progressive, increasing in severity and frequency.
Myopathy, myofibrillar, 12, infantile-onset, with cardiomyopathy
MedGen UID:
1794147
Concept ID:
C5561937
Disease or Syndrome
Infantile-onset myofibrillar myopathy-12 with cardiomyopathy (MFM12) is a severe autosomal recessive disorder affecting both skeletal and cardiac muscle tissue that is apparent in the first weeks of life. Affected infants show tremor or clonus at birth, followed by onset of rapidly progressive generalized muscle weakness and dilated cardiomyopathy and cardiac failure, usually resulting in death by 6 months of age. Skeletal and cardiac muscle tissues show hypotrophy of type I muscle fibers and evidence of myofibrillar disorganization (summary by Weterman et al., 2013). For a discussion of genetic heterogeneity of myofibrillar myopathy, see MFM1 (601419).
Cardiomyopathy, dilated, 2E
MedGen UID:
1794180
Concept ID:
C5561970
Disease or Syndrome
CMD2E is characterized by neonatal or early childhood onset of dilated cardiomyopathy, with rapid progression to cardiac failure and death unless patients undergo cardiac transplantation (Vasilescu et al., 2018; Jones et al., 2019). For a general phenotypic description and a discussion of genetic heterogeneity of dilated cardiomyopathy, see 115200.
Immunodeficiency 87 and autoimmunity
MedGen UID:
1794280
Concept ID:
C5562070
Disease or Syndrome
Immunodeficiency-87 and autoimmunity (IMD87) is an autosomal recessive immunologic disorder with wide phenotypic variation and severity. Affected individuals usually present in infancy or early childhood with increased susceptibility to infections, often Epstein-Barr virus (EBV), as well as with lymphadenopathy or autoimmune manifestations, predominantly hemolytic anemia. Laboratory studies may show low or normal lymphocyte numbers, often with skewed T-cell subset ratios. The disorder results primarily from defects in T-cell function, which causes both immunodeficiency and overall immune dysregulation (summary by Serwas et al., 2019 and Fournier et al., 2021).
Leukodystrophy, hypomyelinating, 23, with ataxia, deafness, liver dysfunction, and dilated cardiomyopathy
MedGen UID:
1794284
Concept ID:
C5562074
Disease or Syndrome
Hypomyelinating leukodystrophy-23 with ataxia, deafness, liver dysfunction, and dilated cardiomyopathy (HLD23) is an autosomal recessive neurodegenerative disorder with systemic manifestations. Affected individuals show delayed motor development and ataxic gait in early childhood that progresses to spastic paraplegia with loss of ambulation in the first decades of life. Additional features include progressive sensorineural hearing loss resulting in deafness, hepatic dysfunction with elevated liver enzymes, and dilated cardiomyopathy that ultimately results in death in the first or second decades. Brain imaging shows hypomyelination, diffuse white matter abnormalities consistent with leukodystrophy, and thin corpus callosum (summary by Sferra et al., 2021). For a general phenotypic description and a discussion of genetic heterogeneity of HLD, see 312080.
Chromosome 1p36 deletion syndrome, proximal
MedGen UID:
1794324
Concept ID:
C5562114
Disease or Syndrome
Proximal 1p36 deletion syndrome is a multisystem developmental disorder characterized by global developmental delay with impaired intellectual development, poor overall growth with microcephaly, axial hypotonia, and dysmorphic facial features. Most patients have congenital cardiac malformations or cardiac dysfunction. Additional more variable features may include distal skeletal anomalies, seizures, and cleft palate. The phenotype shows some overlap with distal chromosome 1p36 deletion syndrome (summary by Kang et al., 2007).
Combined oxidative phosphorylation defect type 23
MedGen UID:
1799166
Concept ID:
C5567743
Disease or Syndrome
Combined oxidative phosphorylation deficiency-23 (COXPD23) is an autosomal recessive disorder characterized by early childhood onset of hypertrophic cardiomyopathy and/or neurologic symptoms, including hypotonia and delayed psychomotor development. Laboratory investigations are consistent with a defect in mitochondrial function resulting in lactic acidosis, impaired activities of respiratory complexes I and IV, and defective translation of mitochondrial proteins. Brain imaging shows abnormal lesions in the basal ganglia, thalamus, and brainstem. The severity of the disorder is variable, ranging from death in early infancy to survival into the second decade (summary by Kopajtich et al., 2014). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060).
Cardiomyopathy, dilated, 2F
MedGen UID:
1802616
Concept ID:
C5676917
Disease or Syndrome
Dilated cardiomyopathy-2F (CMD2F) is an autosomal recessive early-onset cardiomyopathy associated with refractory ventricular arrhythmias and severe heart failure requiring placement of a left ventricular assist device (Hakui et al., 2022). For a general phenotypic description and discussion of genetic heterogeneity of dilated cardiomyopathy, see 115200.
Cardiomyopathy, dilated, 2G
MedGen UID:
1801983
Concept ID:
C5676995
Disease or Syndrome
Dilated cardiomyopathy-2G (CMD2G) is characterized by early-onset severe dilated cardiomyopathy that progresses rapidly to heart failure in the neonatal period without evidence of intervening hypertrophy. Cardiac tissue exhibits markedly shortened thin filaments, disorganized myofibrils, and reduced contractile force generation, resulting in the severe ventricular dysfunction observed. There is no evidence of skeletal muscle hypertrophy (Ahrens-Nicklas et al., 2019). For a general phenotypic description and a discussion of genetic heterogeneity of dilated cardiomyopathy, see 115200.
Peripheral motor neuropathy, childhood-onset, biotin-responsive
MedGen UID:
1809728
Concept ID:
C5676997
Disease or Syndrome
Childhood-onset biotin-responsive peripheral motor neuropathy (COMNB) is an autosomal recessive disorder characterized predominantly by the onset of distal muscle weakness and atrophy late in the first decade of life. The disorder predominantly affects the upper limbs and hands, resulting in difficulties with fine motor skills. Some patients may have lower limb involvement, resulting in gait difficulties. Electrophysiologic studies and muscle biopsy are consistent with chronic denervation with axonal and demyelinating features. Rare patients may have additional neurologic signs, including spasticity, ataxia, and cerebellar signs. Sensation is intact, and patients have normal cognitive development. Treatment with biotin, pantothenic acid, and lipoic acid may result in clinical improvement (Holling et al., 2022).
Dilated cardiomyopathy 1B
MedGen UID:
1814491
Concept ID:
C5700078
Disease or Syndrome
A dilated cardiomyopathy that has material basis in variation in the chromosome region 9q13.
Mitochondrial complex II deficiency, nuclear type 1
MedGen UID:
1814582
Concept ID:
C5700310
Disease or Syndrome
Mitochondrial complex II deficiency is an autosomal recessive multisystemic metabolic disorder with a highly variable phenotype. Some patients have multisystem involvement of the brain, heart, and muscle with onset in infancy, whereas others have only isolated cardiac or muscle involvement. Measurement of complex II activity in muscle is the most reliable means of diagnosis; however, there is no clear correlation between residual complex II activity and severity or clinical outcome. In some cases, treatment with riboflavin may have clinical benefit (summary by Jain-Ghai et al., 2013). Complex II, also known as succinate dehydrogenase, is part of the mitochondrial respiratory chain. Genetic Heterogeneity of Mitochondrial Complex II Deficiency See MC2DN2 (619166), caused by mutation in the SDHAF1 gene (612848) on chromosome 19q13; MC2DN3 (619167), caused by mutation in the SDHD gene (602690) on chromosome 11q23; and MC2DN4 (619224), caused by mutation in the SDHB gene (185470) on chromosome 1p36. Fullerton et al. (2020) reviewed the genetic basis of isolated mitochondrial complex II deficiency.
Hypomagnesemia 7, renal, with or without dilated cardiomyopathy
MedGen UID:
1824039
Concept ID:
C5774266
Disease or Syndrome
Renal hypomagnesemia-7 with or without dilated cardiomyopathy (HOMG7) is characterized primarily by renal salt wasting resulting in hypomagnesemia with secondary effects such as hypokalemia or hypocalcemia. Many patients develop nephrocalcinosis, although renal function is generally well-preserved. The age at onset is highly variable, ranging from infancy to young adulthood. A subset of patients develop severe dilated cardiomyopathy as early as in infancy, which may require heart transplant (Schlingmann et al., 2021). For a discussion of genetic heterogeneity of hypomagnesemia, see 602014.
Cardiomyopathy, dilated, 100
MedGen UID:
1840927
Concept ID:
C5830291
Disease or Syndrome
Dilated cardiomyopathy-1OO (CMD1OO) is characterized by enlarged left ventricular end-diastolic diameter and reduced left ventricular ejection fraction, resulting in cardiac failure that may result in premature death. Some patients also exhibit second-degree atrioventricular block and premature ventricular beats (Shi et al., 2023). For a general phenotypic description and discussion of genetic heterogeneity of dilated cardiomyopathy, see CMD1A (115200).
Mitochondrial trifunctional protein deficiency 2
MedGen UID:
1841010
Concept ID:
C5830374
Disease or Syndrome
The mitochondrial trifunctional protein, composed of 4 alpha and 4 beta subunits, catalyzes 3 steps in mitochondrial beta-oxidation of fatty acids: long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), long-chain enoyl-CoA hydratase, and long-chain thiolase activities. Trifunctional protein deficiency is characterized by decreased activity of all 3 enzymes. Clinically, classic trifunctional protein deficiency can be classified into 3 main clinical phenotypes: neonatal onset of a severe, lethal condition resulting in sudden unexplained infant death (SIDS; 272120), infantile onset of a hepatic Reye-like syndrome, and late-adolescent onset of primarily a skeletal myopathy (summary by Spiekerkoetter et al., 2003). Some patients with MTP deficiency show a protracted progressive course associated with myopathy, recurrent rhabdomyolysis, and sensorimotor axonal neuropathy. These patients tend to survive into adolescence and adulthood (den Boer et al., 2003). See mitochondrial trifunctional protein deficiency-1 (609015), caused by mutation in the HADHA gene (600890), the alpha subunit of mitochondrial trifunctional protein.
Cardiomyopathy, dilated, 2I
MedGen UID:
1841321
Concept ID:
C5830685
Disease or Syndrome
Dilated cardiomyopathy-2I (CMD2I) is characterized by early-onset severe congestive heart failure. Some patients experience supraventricular tachycardia. Structural heart defects and nemaline bodies in cardiac and skeletal muscle have been observed (Aspit et al., 2019; Cheema et al., 2020; Gurunathan et al., 2022). For a general phenotypic description and discussion of genetic heterogeneity of dilated cardiomyopathy, see 115200.
Arrhythmogenic cardiomyopathy with variable ectodermal abnormalities
MedGen UID:
1847702
Concept ID:
C5882696
Disease or Syndrome
Arrhythmogenic cardiomyopathy with variable ectodermal abnormalities (ARCME) is characterized by severe dilated cardiomyopathy resulting in death or cardiac transplantation in childhood. Ventricular tachycardia, sustained or nonsustained, has been reported. In addition, some patients exhibit ectodermal manifestations including woolly or wiry hair, dental anomalies, dry skin, and/or dystrophic nails. Cleft lip and palate and corneal abnormalities have also been observed (Robinson et al., 2020; Henry et al., 2022).
Long-Olsen-Distelmaier syndrome
MedGen UID:
1847052
Concept ID:
C5882721
Disease or Syndrome
Long-Olsen-Distelmaier syndrome (LNGODS) is a severe, early-onset disease with multiple system involvement and lethal dilated cardiomyopathy (DCM) as a core clinical feature (summary by Reijnders et al., 2023).
Cardiomyopathy, dilated, 2j
MedGen UID:
1846005
Concept ID:
C5882725
Disease or Syndrome
Dilated cardiomyopathy-2J (CMD2J) is characterized by onset of heart failure within the first year of life, with severely reduced left ventricular ejection fractions (Ruijmbeek et al., 2023). For a general phenotypic description and discussion of genetic heterogeneity of dilated cardiomyopathy, see 115200.

Professional guidelines

PubMed

Heymans S, Lakdawala NK, Tschöpe C, Klingel K
Lancet 2023 Sep 16;402(10406):998-1011. doi: 10.1016/S0140-6736(23)01241-2. PMID: 37716772
Quiat D, Witkowski L, Zouk H, Daly KP, Roberts AE
J Am Heart Assoc 2020 Jun 2;9(11):e016195. Epub 2020 May 27 doi: 10.1161/JAHA.120.016195. PMID: 32458740Free PMC Article

Recent clinical studies

Etiology

Quiat D, Witkowski L, Zouk H, Daly KP, Roberts AE
J Am Heart Assoc 2020 Jun 2;9(11):e016195. Epub 2020 May 27 doi: 10.1161/JAHA.120.016195. PMID: 32458740Free PMC Article
Maher E, Elshehaby W, El Amrousy D, El Razaky O
Pediatr Cardiol 2020 Jan;41(1):101-107. Epub 2019 Nov 3 doi: 10.1007/s00246-019-02228-7. PMID: 31680221
Sarszegi Z, Szabo D, Gaszner B, Konyi A, Reglodi D, Nemeth J, Lelesz B, Polgar B, Jungling A, Tamas A
J Mol Neurosci 2019 Jul;68(3):368-376. Epub 2018 Jan 20 doi: 10.1007/s12031-017-1025-7. PMID: 29353438
Calore C, Cacciavillani L, Boffa GM, Silva C, Tiso E, Marra MP, Bacchiega E, Corbetti F, Iliceto S
J Cardiovasc Med (Hagerstown) 2007 Oct;8(10):821-9. doi: 10.2459/JCM.0b013e3280101e3c. PMID: 17885521
Iskandrian AS, Helfeld H, Lemlek J, Lee J, Iskandrian B, Heo J
Am Heart J 1992 Mar;123(3):768-73. doi: 10.1016/0002-8703(92)90518-z. PMID: 1539529

Diagnosis

Heymans S, Lakdawala NK, Tschöpe C, Klingel K
Lancet 2023 Sep 16;402(10406):998-1011. doi: 10.1016/S0140-6736(23)01241-2. PMID: 37716772
Quiat D, Witkowski L, Zouk H, Daly KP, Roberts AE
J Am Heart Assoc 2020 Jun 2;9(11):e016195. Epub 2020 May 27 doi: 10.1161/JAHA.120.016195. PMID: 32458740Free PMC Article
Maher E, Elshehaby W, El Amrousy D, El Razaky O
Pediatr Cardiol 2020 Jan;41(1):101-107. Epub 2019 Nov 3 doi: 10.1007/s00246-019-02228-7. PMID: 31680221
Iskandrian AS, Helfeld H, Lemlek J, Lee J, Iskandrian B, Heo J
Am Heart J 1992 Mar;123(3):768-73. doi: 10.1016/0002-8703(92)90518-z. PMID: 1539529
Oakley C
Postgrad Med J 1978 Jul;54(633):440-50. doi: 10.1136/pgmj.54.633.440. PMID: 704514Free PMC Article

Therapy

Carbucicchio C, Della Bella P, Fassini G, Trevisi N, Riva S, Giraldi F, Baratto F, Marenzi G, Sisillo E, Bartorelli A, Alamanni F
Herz 2009 Nov;34(7):545-52. doi: 10.1007/s00059-009-3289-3. PMID: 20091254
Rigatelli G, Rigatelli G, Barbiero M, Cotogni A, Bandello A, Riccardi R, Carraro U
Ann Thorac Surg 2003 Nov;76(5):1587-92. doi: 10.1016/s0003-4975(03)00759-8. PMID: 14602291
Guazzi M, Pontone G, Agostoni P
Am Heart J 1999 Aug;138(2 Pt 1):254-60. doi: 10.1016/s0002-8703(99)70109-2. PMID: 10426836
Pinto JV Jr, Ramani K, Neelagaru S, Kown M, Gheorghiade M
Prog Cardiovasc Dis 1997 Jul-Aug;40(1):85-93. doi: 10.1016/s0033-0620(97)80025-4. PMID: 9247558
Branzi A, Specchia S, Binetti G, Magelli C, Zannoli R, Magnani B
Eur Heart J 1983 Apr;4(4):252-8. doi: 10.1093/oxfordjournals.eurheartj.a061456. PMID: 6684041

Prognosis

Al-Wakeel-Marquard N, Seidel F, Herbst C, Kühnisch J, Kuehne T, Berger F, Klaassen S, Messroghli DR
Int J Cardiol 2021 Jun 15;333:219-225. Epub 2021 Mar 16 doi: 10.1016/j.ijcard.2021.03.023. PMID: 33737165
Quiat D, Witkowski L, Zouk H, Daly KP, Roberts AE
J Am Heart Assoc 2020 Jun 2;9(11):e016195. Epub 2020 May 27 doi: 10.1161/JAHA.120.016195. PMID: 32458740Free PMC Article
Radovanović N, Mihajlović B, Selestianskỳ J, Torbica V, Mijatov M, Popov M, Jonjev ZS
Ann Thorac Surg 2002 Mar;73(3):751-5. doi: 10.1016/s0003-4975(01)03433-6. PMID: 11899177
Pelliccia A, Culasso F, Di Paolo FM, Maron BJ
Ann Intern Med 1999 Jan 5;130(1):23-31. doi: 10.7326/0003-4819-130-1-199901050-00005. PMID: 9890846
Steimle AE, Stevenson LW, Fonarow GC, Hamilton MA, Moriguchi JD
J Am Coll Cardiol 1994 Mar 1;23(3):553-9. doi: 10.1016/0735-1097(94)90735-8. PMID: 8113533

Clinical prediction guides

Al-Wakeel-Marquard N, Seidel F, Herbst C, Kühnisch J, Kuehne T, Berger F, Klaassen S, Messroghli DR
Int J Cardiol 2021 Jun 15;333:219-225. Epub 2021 Mar 16 doi: 10.1016/j.ijcard.2021.03.023. PMID: 33737165
Quiat D, Witkowski L, Zouk H, Daly KP, Roberts AE
J Am Heart Assoc 2020 Jun 2;9(11):e016195. Epub 2020 May 27 doi: 10.1161/JAHA.120.016195. PMID: 32458740Free PMC Article
Sarszegi Z, Szabo D, Gaszner B, Konyi A, Reglodi D, Nemeth J, Lelesz B, Polgar B, Jungling A, Tamas A
J Mol Neurosci 2019 Jul;68(3):368-376. Epub 2018 Jan 20 doi: 10.1007/s12031-017-1025-7. PMID: 29353438
Radovanović N, Mihajlović B, Selestianskỳ J, Torbica V, Mijatov M, Popov M, Jonjev ZS
Ann Thorac Surg 2002 Mar;73(3):751-5. doi: 10.1016/s0003-4975(01)03433-6. PMID: 11899177
Loebe M, Müller J, Hetzer R
Curr Opin Cardiol 1999 May;14(3):234-48. doi: 10.1097/00001573-199905000-00008. PMID: 10358796

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.
    • Bookshelf
      See practice and clinical guidelines in NCBI Bookshelf. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...