U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Super-enhancer-driven CCAT1 is co-activated by SOX2 and TP63 and promotes squamous cancer from esophagus, head and neck and lung [RNA-seq]

(Submitter supplied) Squamous cell carcinomas (SCCs) are aggressive malignancies. Previous report demonstrated that the transcription factors TP63 and SOX2 exhibited overlapping genomic occupancy in SCCs. Our recent study have identified TP63 and SOX2 as super-enhancer-associated genes. However, functional consequences of their frequent co-localization at super-enhancers region remains unexplored. Here, ChIP-seq result indicated TP63 and SOX2 co-occupied peaks are significantly located the super enhancer region compare with unique of TP63 and SOX2 signaling, and combined RNA-seq analyses of different types of SCCs reveal that TP63 and SOX2 cooperatively regulate expression of the super-enhancer-associated the long non-coding RNA (lncRNA) gene, CCAT1. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16791
7 Samples
Download data: TSV
2.

Super-enhancer-driven CCAT1 is co-activated by SOX2 and TP63 and promotes squamous cancer from esophagus, head and neck and lung

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL16791
17 Samples
Download data: BW, NARROWPEAK, TSV
Series
Accession:
GSE106565
ID:
200106565
3.

Super-enhancer-driven CCAT1 is co-activated by SOX2 and TP63 and promotes squamous cancer from esophagus, head and neck and lung [ChIP-seq]

(Submitter supplied) Squamous cell carcinomas (SCCs) are aggressive malignancies. Previous report demonstrated that the transcription factors TP63 and SOX2 exhibited overlapping genomic occupancy in SCCs. Our recent study have identified TP63 and SOX2 as super-enhancer-associated genes. However, functional consequences of their frequent co-localization at super-enhancers region remains unexplored. Here, ChIP-seq result indicated TP63 and SOX2 co-occupied peaks are significantly located the super enhancer region compare with unique of TP63 and SOX2 signaling, and combined RNA-seq analyses of different types of SCCs reveal that TP63 and SOX2 cooperatively regulate expression of the super-enhancer-associated the long non-coding RNA (lncRNA) gene, CCAT1. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
10 Samples
Download data: BW, NARROWPEAK
Series
Accession:
GSE106563
ID:
200106563
4.

TP63-driven super-enhancer-associated LINC01503 promotes the malignancy of esophageal squamous cell carcinoma

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL16791
16 Samples
Download data: BW, NARROWPEAK, TXT
Series
Accession:
GSE106434
ID:
200106434
5.

TP63-driven super-enhancer-associated LINC01503 promotes the malignancy of esophageal squamous cell carcinoma (ChIP-Seq)

(Submitter supplied) Background & Aims: Lineage-specific expression of long non-coding RNAs (lncRNAs) has been observed recently. However, the underlying mechanism of such specific transcription regulation is unclear. The aim of this study is to identify squamous cell carcinoma (SCC) lineage-specific lncRNAs and to investigate the mechanisms for their expression and function. Methods: Expression characteristics and functions of four candidate SCC-specific lncRNAs were explored. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
12 Samples
Download data: BW, NARROWPEAK
Series
Accession:
GSE106433
ID:
200106433
6.

TP63-driven super-enhancer-associated LINC01503 promotes the malignancy of esophageal squamous cell carcinoma (4C-Seq)

(Submitter supplied) Background & Aims: Lineage-specific expression of long non-coding RNAs (lncRNAs) has been observed recently. However, the underlying mechanism of such specific transcription regulation is unclear. The aim of this study is to identify squamous cell carcinoma (SCC) lineage-specific lncRNAs and to investigate the mechanisms for their expression and function. Methods: Expression characteristics and functions of four candidate SCC-specific lncRNAs were explored. more...
Organism:
Homo sapiens
Type:
Other
Platform:
GPL16791
4 Samples
Download data: TXT
Series
Accession:
GSE106432
ID:
200106432
7.

Distal regulation mediated Core Transcriptional Regulatory Circuitry in Esophageal Squamous Cell Carcinoma

(Submitter supplied) In esophageal squamous cell carcinoma (ESCC), the core regulatory circuitry is ill-defined and the limited clinical approaches are available currently for the treatment of ESCC. Here, using enhancer profiling and CRC programme, we generated ESCC-dependent epigenomic-transcriptional regulatory circuitry, elaborated the exquisite work model mediated by core TFs and SEs through physical interaction between enhancers and promoter, and identified the crucial target of ESCC regulatory network.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20301
4 Samples
Download data: BW
Series
Accession:
GSE148920
ID:
200148920
8.

Distal regulation mediated Core Transcriptional Regulatory Circuitry in Esophageal Squamous Cell Carcinoma [ChIP-Seq Drug]

(Submitter supplied) In esophageal squamous cell carcinoma (ESCC), the core regulatory circuitry is ill-defined and the limited clinical approaches are available currently for the treatment of ESCC. Here, using enhancer profiling and CRC programme, we generated ESCC-dependent epigenomic-transcriptional regulatory circuitry, elaborated the exquisite work model mediated by core TFs and SEs through physical interaction between enhancers and promoter, and identified the crucial target of ESCC regulatory network.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20301
6 Samples
Download data: BW
Series
Accession:
GSE131661
ID:
200131661
9.

Distal regulation mediated Core Transcriptional Regulatory Circuitry in Esophageal Squamous Cell Carcinoma

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL20301
35 Samples
Download data: BW, TSV
Series
Accession:
GSE131493
ID:
200131493
10.

Distal regulation mediated Core Transcriptional Regulatory Circuitry in Esophageal Squamous Cell Carcinoma [RNA-seq]

(Submitter supplied) In esophageal squamous cell carcinoma (ESCC), the core regulatory circuitry is ill-defined and the limited clinical approaches are available currently for the treatment of ESCC. Here, using enhancer profiling and CRC programme, we generated ESCC-dependent epigenomic-transcriptional regulatory circuitry, elaborated the exquisite work model mediated by core TFs and SEs through physical interaction between enhancers and promoter, and identified the crucial target of ESCC regulatory network.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20301
3 Samples
Download data: TSV
Series
Accession:
GSE131492
ID:
200131492
11.

Distal regulation mediated Core Transcriptional Regulatory Circuitry in Esophageal Squamous Cell Carcinoma [ChIP-seq]

(Submitter supplied) In esophageal squamous cell carcinoma (ESCC), the core regulatory circuitry is ill-defined and the limited clinical approaches are available currently for the treatment of ESCC. Here, using enhancer profiling and CRC programme, we generated ESCC-dependent epigenomic-transcriptional regulatory circuitry, elaborated the exquisite work model mediated by core TFs and SEs through physical interaction between enhancers and promoter, and identified the crucial target of ESCC regulatory network.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20301
14 Samples
Download data: BW
Series
Accession:
GSE131490
ID:
200131490
12.

Distal regulation mediated Core Transcriptional Regulatory Circuitry in Esophageal Squamous Cell Carcinoma [ATAC-seq]

(Submitter supplied) In esophageal squamous cell carcinoma (ESCC), the core regulatory circuitry is ill-defined and the limited clinical approaches are available currently for the treatment of ESCC. Here, using enhancer profiling and CRC programme, we generated ESCC-dependent epigenomic-transcriptional regulatory circuitry, elaborated the exquisite work model mediated by core TFs and SEs through physical interaction between enhancers and promoter, and identified the crucial target of ESCC regulatory network.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20301
12 Samples
Download data: BW
Series
Accession:
GSE131489
ID:
200131489
13.

SREBF1 coordinates with master transcription factors in regulating lipid metabolism and cancer-promoting pathways in squamous cell carcinoma [4C]

(Submitter supplied) To determine whether a TP63/KLF5-regulated super-enhancer region can impact SREBF1 transcription, circularized chromosome conformation capture (4C) assays were performed. 4C assays identified complex, extensive interactions between the SREBF1 promoter and the super-enhancer region Moreover, these DNA-DNA contacts were strictly confined within the super-enhancer region, highlighting the specificity of chromatin interactions
Organism:
Homo sapiens
Type:
Other
Platform:
GPL15520
2 Samples
Download data: TXT
Series
Accession:
GSE178923
ID:
200178923
14.

SREBF1 coordinates with master transcription factors in regulating lipid metabolism and cancer-promoting pathways in squamous cell carcinoma

(Submitter supplied) We profiled esophageal squamous cell carcinorma (ESCC) cell lines with chromatin immunoprecipitation sequencing (ChIP-Seq). Mathematically modeling was performed to establish (super)-enhancers landscapes and inter-connected transcriptional circuitry formed by master TFs. Coregulation and cooperation between master TFs was investigated by ChIP-Seq, RNASeq, 4C-Seq and luciferase assay. Biological functions of candidate factors were evaluated by measuring cell proliferation, colony formation, cell apoptosis and xenograft growth. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL10999 GPL22790
13 Samples
Download data: BW, NARROWPEAK, TXT
15.

Differential gene expression by suppression of either SOX2 or TP63 in KYSE70 human esophageal squamous carcinoma cell line.

(Submitter supplied) SOX2 is a transcription factor essential for pluripotent stem cells, and development and maintenance of squamous epithelium. We previously reported SOX2 an oncogene subject to highly recurrent genomic amplification in squamous cell carcinomas (SCCs)1. Here we demonstrate in SCCs that SOX2 interacts with another master squamous transcription factor p63, and through ChIP-seq show that genomic occupancy of SOX2 overlaps with that of p63 at a large number of loci and that they cooperatively regulate gene expression including ETV4, which we find essential for SOX2-amplified SCC cell survival. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
6 Samples
Download data: TXT
16.

SOX2 and p63 occupancy in human squamous carcinoma cell lines and embryonic stem cells.

(Submitter supplied) SOX2 is a transcription factor essential for pluripotent stem cells, and development and maintenance of squamous epithelium. We previously reported SOX2 an oncogene subject to highly recurrent genomic amplification in squamous cell carcinomas (SCCs). Here we demonstrate in SCCs that SOX2 interacts with another master squamous transcription factor p63, and through ChIP-seq show that genomic occupancy of SOX2 overlaps with that of p63 at a large number of loci and that they cooperatively regulate gene expression including ETV4, which we find essential for SOX2-amplified SCC cell survival. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
11 Samples
Download data: BED
Series
Accession:
GSE46837
ID:
200046837
17.

Identification of a unique subtype of lung squamous cell carcinoma defined by SOX2 and a neural differentiation factor BRN2

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL18573
51 Samples
Download data: BED
Series
Accession:
GSE137461
ID:
200137461
18.

Identification of a unique subtype of lung squamous cell carcinoma defined by SOX2 and a neural differentiation factor BRN2 [RNA-seq]

(Submitter supplied) Lineage-specific transcriptional regulators control differentiation states not only during normal development but also during cancer evolution. By investigating super-enhancer landscape of lung squamous cell carcinoma (LUSC), we identified a unique ‘neural’ subtype defined by Sox2 and a neural lineage factor Brn2. Robust protein-protein interaction and genomic co-occupancy of these factors indicated their transcriptional cooperation in this ‘neural’ LUSC in contrast to the cooperation of Sox2 and p63 in the classical LUSC. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
8 Samples
Download data: TXT
19.

Identification of a unique subtype of lung squamous cell carcinoma defined by SOX2 and a neural differentiation factor BRN2 [ChIP-seq]

(Submitter supplied) Lineage-specific transcriptional regulators control differentiation states not only during normal development but also during cancer evolution. By investigating super-enhancer landscape of lung squamous cell carcinoma (LUSC), we identified a unique ‘neural’ subtype defined by Sox2 and a neural lineage factor Brn2. Robust protein-protein interaction and genomic co-occupancy of these factors indicated their transcriptional cooperation in this ‘neural’ LUSC in contrast to the cooperation of Sox2 and p63 in the classical LUSC. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
43 Samples
Download data: BED
Series
Accession:
GSE137459
ID:
200137459
20.

Activation of bivalent factor DLX5 cooperates with master regulator TP63 to promote squamous cell carcinoma

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20301
14 Samples
Download data: BW
Series
Accession:
GSE142863
ID:
200142863
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=2|blobid=MCID_678d7722f521160690db55e2|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center