Salmonella enterica Serovar Typhimurium (S. Typhimurium) causes enterocolitis in humans and calves characterized by diarrhea and polymorphonuclear cell (PMN) influx to the intestinal mucosa. The Salmonella Type III Secretion System encoded at Pathogenicity Island I (SPI-1) translocates the Salmonella effector proteins SipA, SopA, SopB, SopD, and SopE2 into the host epithelial cell cytoplasm. These five effector proteins act in concert to induce fluid secretion and transcription of C-X-C chemokines, which serve to recruit PMNs to the intestine. While the individual molecular interactions of these Salmonella proteins with cultured host cells have been extensively characterized, their combined role in the generation of fluid secretion and inflammation is less well understood. A bovine ligated ileal loop model was used in conjunction with a custom bovine microarray to determine intestinal response to acute S. Typhimurium infection in the calf. Gene expression responses to both wild type S. Typhimurium a delta sipA, sopABDE2 mutant were measured at seven times during the initial 12 hours of infection. Microarray analysis confirmed increased expression of genes encoding proteins previously associated with immune response to Salmonella spp. infection. Gene expression changes were mapped to molecular interaction pathways and changes in expression of mechanistic genes, which are defined as perturbed genes identified by Bayesian genetic network modeling, were strongly involved in the mechanisms of the host immune response. In addition to correctly identifying known effects of wild type S. Typhimurium on host (bovine) gene expression, Bayesian genetic network modeling identified novel effects of S. Typhimurium on several molecular interaction pathways. Novel effects impacted gene regulation in the following pathways: adipocytokine signaling, insulin signaling, complement and coagulation cascades, axon guidance, gap junction, neuroactive ligand-receptor interaction, long-term depression, long-term potentiation, melanogenesis, and natural killer cell mediated cytotoxicity. Known effects were observed in the following pathways: regulation of actin cytoskeleton, apoptosis, cytokine-cytokine receptor interaction, cell adhesion molecules (CAMs), MAPK signaling, calcium signaling, Jak-STAT signaling, leukocyte transendothelial migration, adherens junction, tight junction, and ECM-receptor interactions, phosphatidylinositol signaling system, and antigen processing and presentation. Quantitative real-time PCR was used to verify the expression of some of these mechanistic genes.
Overall design
Microarrays were used to examine the transcriptional profiles of bovine intestinal epithelia infected with wild type Salmonella enterica serotype Typhimurium (control and wild type or delta sipA sopABDE2 mutant infected) across seven time points (15 min, 30 min, 1, 2, 4, 8, and 12 hours). Experiments were performed in quadruplicate (bovine ligated ileal loops surgeries were performed with four calves), generateing a total of 84 arrays.