dbSNP Short Genetic Variations
Welcome to the Reference SNP (rs) Report
All alleles are reported in the Forward orientation. Click on the Variant Details tab for details on Genomic Placement, Gene, and Amino Acid changes. HGVS names are in the HGVS tab.
Reference SNP (rs) Report
This page reports data for a single dbSNP Reference SNP variation (RefSNP or rs) from the new redesigned dbSNP build.
Top of the page reports a concise summary for the rs, with more specific details included in the corresponding tabs below.
All alleles are reported in the Forward orientation. Use the Genomic View to inspect the nucleotides flanking the variant, and its neighbors.
For more information see Help documentation.
rs5082
Current Build 156
Released September 21, 2022
- Organism
- Homo sapiens
- Position
-
chr1:161223893 (GRCh38.p14) Help
The anchor position for this RefSNP. Includes all nucleotides potentially affected by this change, thus it can differ from HGVS, which is right-shifted. See here for details.
- Alleles
- G>A / G>C / G>T
- Variation Type
- SNV Single Nucleotide Variation
- Frequency
-
G=0.306139 (81032/264690, TOPMED)G=0.373136 (93143/249622, ALFA)G=0.323999 (45343/139948, GnomAD) (+ 21 more)
- Clinical Significance
- Reported in ClinVar
- Gene : Consequence
- APOA2 : 2KB Upstream Variant
- Publications
- 27 citations
- Genomic View
- See rs on genome
ALFA Allele Frequency
The ALFA project provide aggregate allele frequency from dbGaP. More information is available on the project page including descriptions, data access, and terms of use.
Population | Group | Sample Size | Ref Allele | Alt Allele | Ref HMOZ | Alt HMOZ | HTRZ | HWEP |
---|---|---|---|---|---|---|---|---|
Total | Global | 254658 | G=0.372613 | A=0.627387 | 0.141429 | 0.396202 | 0.462369 | 9 |
European | Sub | 224824 | G=0.390376 | A=0.609624 | 0.151897 | 0.371144 | 0.47696 | 0 |
African | Sub | 8682 | G=0.2275 | A=0.7725 | 0.046763 | 0.591799 | 0.361437 | 2 |
African Others | Sub | 350 | G=0.191 | A=0.809 | 0.022857 | 0.64 | 0.337143 | 1 |
African American | Sub | 8332 | G=0.2290 | A=0.7710 | 0.047768 | 0.589774 | 0.362458 | 2 |
Asian | Sub | 3864 | G=0.0797 | A=0.9203 | 0.006729 | 0.847308 | 0.145963 | 0 |
East Asian | Sub | 3134 | G=0.0696 | A=0.9304 | 0.003829 | 0.86471 | 0.131461 | 0 |
Other Asian | Sub | 730 | G=0.123 | A=0.877 | 0.019178 | 0.772603 | 0.208219 | 0 |
Latin American 1 | Sub | 1042 | G=0.2793 | A=0.7207 | 0.069098 | 0.510557 | 0.420345 | 1 |
Latin American 2 | Sub | 6648 | G=0.2315 | A=0.7685 | 0.051745 | 0.588748 | 0.359507 | 0 |
South Asian | Sub | 366 | G=0.251 | A=0.749 | 0.060109 | 0.557377 | 0.382514 | 0 |
Other | Sub | 9232 | G=0.3161 | A=0.6839 | 0.107886 | 0.475737 | 0.416378 | 4 |
Frequency tab displays a table of the reference and alternate allele frequencies reported by various studies and populations. Table lines, where Population="Global" refer to the entire study population, whereas lines, where Group="Sub", refer to a study-specific population subgroupings (i.e. AFR, CAU, etc.), if available. Frequency for the alternate allele (Alt Allele) is a ratio of samples observed-to-total, where the numerator (observed samples) is the number of chromosomes in the study with the minor allele present (found in "Sample size", where Group="Sub"), and the denominator (total samples) is the total number of all chromosomes in the study for the variant (found in "Sample size", where Group="Study-wide" and Population="Global").
DownloadStudy | Population | Group | Sample Size | Ref Allele | Alt Allele |
---|---|---|---|---|---|
TopMed | Global | Study-wide | 264690 | G=0.306139 | A=0.693861 |
Allele Frequency Aggregator | Total | Global | 249622 | G=0.373136 | A=0.626864 |
Allele Frequency Aggregator | European | Sub | 221730 | G=0.390168 | A=0.609832 |
Allele Frequency Aggregator | Other | Sub | 8432 | G=0.3188 | A=0.6812 |
Allele Frequency Aggregator | African | Sub | 7540 | G=0.2272 | A=0.7728 |
Allele Frequency Aggregator | Latin American 2 | Sub | 6648 | G=0.2315 | A=0.7685 |
Allele Frequency Aggregator | Asian | Sub | 3864 | G=0.0797 | A=0.9203 |
Allele Frequency Aggregator | Latin American 1 | Sub | 1042 | G=0.2793 | A=0.7207 |
Allele Frequency Aggregator | South Asian | Sub | 366 | G=0.251 | A=0.749 |
gnomAD - Genomes | Global | Study-wide | 139948 | G=0.323999 | A=0.676001 |
gnomAD - Genomes | European | Sub | 75810 | G=0.38830 | A=0.61170 |
gnomAD - Genomes | African | Sub | 41910 | G=0.23185 | A=0.76815 |
gnomAD - Genomes | American | Sub | 13628 | G=0.28933 | A=0.71067 |
gnomAD - Genomes | Ashkenazi Jewish | Sub | 3324 | G=0.3824 | A=0.6176 |
gnomAD - Genomes | East Asian | Sub | 3124 | G=0.0951 | A=0.9049 |
gnomAD - Genomes | Other | Sub | 2152 | G=0.3151 | A=0.6849 |
The PAGE Study | Global | Study-wide | 78066 | G=0.22740 | A=0.77260 |
The PAGE Study | AfricanAmerican | Sub | 32258 | G=0.23411 | A=0.76589 |
The PAGE Study | Mexican | Sub | 10718 | G=0.21982 | A=0.78018 |
The PAGE Study | Asian | Sub | 8264 | G=0.0599 | A=0.9401 |
The PAGE Study | PuertoRican | Sub | 7860 | G=0.3210 | A=0.6790 |
The PAGE Study | NativeHawaiian | Sub | 4510 | G=0.1463 | A=0.8537 |
The PAGE Study | Cuban | Sub | 4198 | G=0.3294 | A=0.6706 |
The PAGE Study | Dominican | Sub | 3780 | G=0.2841 | A=0.7159 |
The PAGE Study | CentralAmerican | Sub | 2422 | G=0.2614 | A=0.7386 |
The PAGE Study | SouthAmerican | Sub | 1966 | G=0.2284 | A=0.7716 |
The PAGE Study | NativeAmerican | Sub | 1242 | G=0.3390 | A=0.6610 |
The PAGE Study | SouthAsian | Sub | 848 | G=0.243 | A=0.757 |
14KJPN | JAPANESE | Study-wide | 28256 | G=0.06066 | A=0.93934 |
8.3KJPN | JAPANESE | Study-wide | 16760 | G=0.06020 | A=0.93980 |
1000Genomes_30x | Global | Study-wide | 6404 | G=0.2384 | A=0.7616 |
1000Genomes_30x | African | Sub | 1786 | G=0.2184 | A=0.7816 |
1000Genomes_30x | Europe | Sub | 1266 | G=0.3855 | A=0.6145 |
1000Genomes_30x | South Asian | Sub | 1202 | G=0.2105 | A=0.7895 |
1000Genomes_30x | East Asian | Sub | 1170 | G=0.0983 | A=0.9017 |
1000Genomes_30x | American | Sub | 980 | G=0.287 | A=0.713 |
1000Genomes | Global | Study-wide | 5008 | G=0.2370 | A=0.7630 |
1000Genomes | African | Sub | 1322 | G=0.2186 | A=0.7814 |
1000Genomes | East Asian | Sub | 1008 | G=0.0982 | A=0.9018 |
1000Genomes | Europe | Sub | 1006 | G=0.3867 | A=0.6133 |
1000Genomes | South Asian | Sub | 978 | G=0.217 | A=0.783 |
1000Genomes | American | Sub | 694 | G=0.285 | A=0.715 |
Genetic variation in the Estonian population | Estonian | Study-wide | 4480 | G=0.4491 | A=0.5509 |
The Avon Longitudinal Study of Parents and Children | PARENT AND CHILD COHORT | Study-wide | 3854 | G=0.3838 | A=0.6162 |
UK 10K study - Twins | TWIN COHORT | Study-wide | 3708 | G=0.3843 | A=0.6157 |
KOREAN population from KRGDB | KOREAN | Study-wide | 2930 | G=0.0676 | A=0.9324, C=0.0000, T=0.0000 |
HapMap | Global | Study-wide | 1892 | G=0.1987 | A=0.8013 |
HapMap | American | Sub | 770 | G=0.251 | A=0.749 |
HapMap | African | Sub | 692 | G=0.147 | A=0.853 |
HapMap | Asian | Sub | 254 | G=0.063 | A=0.937 |
HapMap | Europe | Sub | 176 | G=0.369 | A=0.631 |
Korean Genome Project | KOREAN | Study-wide | 1832 | G=0.0715 | A=0.9285 |
PharmGKB Aggregated | Global | Study-wide | 1090 | G=0.3202 | A=0.6798 |
PharmGKB Aggregated | PA135094714 | Sub | 946 | G=0.317 | A=0.683 |
PharmGKB Aggregated | PA130068832 | Sub | 144 | G=0.340 | A=0.660 |
Genome of the Netherlands Release 5 | Genome of the Netherlands | Study-wide | 998 | G=0.420 | A=0.580 |
CNV burdens in cranial meningiomas | Global | Study-wide | 788 | G=0.071 | A=0.929 |
CNV burdens in cranial meningiomas | CRM | Sub | 788 | G=0.071 | A=0.929 |
Northern Sweden | ACPOP | Study-wide | 600 | G=0.367 | A=0.633 |
SGDP_PRJ | Global | Study-wide | 532 | G=0.175 | A=0.825 |
Qatari | Global | Study-wide | 216 | G=0.319 | A=0.681 |
A Vietnamese Genetic Variation Database | Global | Study-wide | 212 | G=0.071 | A=0.929 |
Ancient Sardinia genome-wide 1240k capture data generation and analysis | Global | Study-wide | 56 | G=0.36 | A=0.64 |
Siberian | Global | Study-wide | 50 | G=0.20 | A=0.80 |
The Danish reference pan genome | Danish | Study-wide | 40 | G=0.28 | A=0.72 |
Variant Details tab shows known variant placements on genomic sequences: chromosomes (NC_), RefSeqGene, pseudogenes or genomic regions (NG_), and in a separate table: on transcripts (NM_) and protein sequences (NP_). The corresponding transcript and protein locations are listed in adjacent lines, along with molecular consequences from Sequence Ontology. When no protein placement is available, only the transcript is listed. Column "Codon[Amino acid]" shows the actual base change in the format of "Reference > Alternate" allele, including the nucleotide codon change in transcripts, and the amino acid change in proteins, respectively, allowing for known ribosomal slippage sites. To view nucleotides adjacent to the variant use the Genomic View at the bottom of the page - zoom into the sequence until the nucleotides around the variant become visible.
Sequence name | Change |
---|---|
GRCh38.p14 chr 1 | NC_000001.11:g.161223893G>A |
GRCh38.p14 chr 1 | NC_000001.11:g.161223893G>C |
GRCh38.p14 chr 1 | NC_000001.11:g.161223893G>T |
GRCh37.p13 chr 1 | NC_000001.10:g.161193683G>A |
GRCh37.p13 chr 1 | NC_000001.10:g.161193683G>C |
GRCh37.p13 chr 1 | NC_000001.10:g.161193683G>T |
APOA2 RefSeqGene | NG_012043.1:g.4736C>T |
APOA2 RefSeqGene | NG_012043.1:g.4736C>G |
APOA2 RefSeqGene | NG_012043.1:g.4736C>A |
Molecule type | Change | Amino acid[Codon] | SO Term |
---|---|---|---|
APOA2 transcript | NM_001643.2:c. | N/A | Upstream Transcript Variant |
Clinical Significance tab shows a list of clinical significance entries from ClinVar associated with the variation, per allele. Click on the RCV accession (i.e. RCV000001615.2) or Allele ID (i.e. 12274) to access full ClinVar report.
ClinVar Accession | Disease Names | Clinical Significance |
---|---|---|
RCV000019529.2 | Hypercholesterolemia, familial, 1 | Pathogenic |
Aliases tab displays HGVS names representing the variant placements and allele changes on genomic, transcript and protein sequences, per allele. HGVS name is an expression for reporting sequence accession and version, sequence type, position, and allele change. The column "Note" can have two values: "diff" means that there is a difference between the reference allele (variation interval) at the placement reported in HGVS name and the reference alleles reported in other HGVS names, and "rev" means that the sequence of this variation interval at the placement reported in HGVS name is in reverse orientation to the sequence(s) of this variation in other HGVS names not labeled as "rev".
Placement | G= | A | C | T |
---|---|---|---|---|
GRCh38.p14 chr 1 | NC_000001.11:g.161223893= | NC_000001.11:g.161223893G>A | NC_000001.11:g.161223893G>C | NC_000001.11:g.161223893G>T |
GRCh37.p13 chr 1 | NC_000001.10:g.161193683= | NC_000001.10:g.161193683G>A | NC_000001.10:g.161193683G>C | NC_000001.10:g.161193683G>T |
APOA2 RefSeqGene | NG_012043.1:g.4736= | NG_012043.1:g.4736C>T | NG_012043.1:g.4736C>G | NG_012043.1:g.4736C>A |
Submissions tab displays variations originally submitted to dbSNP, now supporting this RefSNP cluster (rs). We display Submitter handle, Submission identifier, Date and Build number, when the submission appeared for the first time. Direct submissions to dbSNP have Submission ID in the form of an ss-prefixed number (ss#). Other supporting variations are listed in the table without ss#.
No | Submitter | Submission ID | Date (Build) |
---|---|---|---|
1 | ARAVINDA | ss6526 | Sep 19, 2000 (52) |
2 | YUSUKE | ss5000035 | Aug 28, 2002 (108) |
3 | SNP500CANCER | ss8819660 | Jul 02, 2003 (116) |
4 | SSAHASNP | ss20592762 | Apr 05, 2004 (121) |
5 | IMCJ-GDT | ss22886696 | Apr 05, 2004 (121) |
6 | PARC | ss23144898 | Sep 20, 2004 (126) |
7 | PERLEGEN | ss24241958 | Sep 20, 2004 (123) |
8 | ABI | ss43878789 | Mar 11, 2006 (126) |
9 | ILLUMINA | ss65752392 | Oct 16, 2006 (127) |
10 | PERLEGEN | ss68781930 | May 18, 2007 (127) |
11 | PHARMGKB_PARC | ss69365253 | May 18, 2007 (127) |
12 | PHARMGKB_PARC | ss69369010 | May 18, 2007 (127) |
13 | ILLUMINA | ss74987612 | Dec 07, 2007 (129) |
14 | HGSV | ss78069002 | Dec 07, 2007 (129) |
15 | HGSV | ss81205194 | Dec 15, 2007 (130) |
16 | HGSV | ss84330846 | Dec 15, 2007 (130) |
17 | BCMHGSC_JDW | ss87840389 | Mar 23, 2008 (129) |
18 | HUMANGENOME_JCVI | ss97978337 | Feb 05, 2009 (130) |
19 | BGI | ss106604908 | Feb 05, 2009 (130) |
20 | 1000GENOMES | ss108635231 | Jan 23, 2009 (130) |
21 | 1000GENOMES | ss111228459 | Jan 25, 2009 (130) |
22 | ILLUMINA-UK | ss119054029 | Feb 15, 2009 (130) |
23 | KRIBB_YJKIM | ss119337524 | Dec 01, 2009 (131) |
24 | ENSEMBL | ss138090783 | Dec 01, 2009 (131) |
25 | ENSEMBL | ss139196038 | Dec 01, 2009 (131) |
26 | GMI | ss155817429 | Dec 01, 2009 (131) |
27 | ILLUMINA | ss160737974 | Dec 01, 2009 (131) |
28 | COMPLETE_GENOMICS | ss164228302 | Jul 04, 2010 (132) |
29 | COMPLETE_GENOMICS | ss165301504 | Jul 04, 2010 (132) |
30 | COMPLETE_GENOMICS | ss167187765 | Jul 04, 2010 (132) |
31 | ILLUMINA | ss173909011 | Jul 04, 2010 (132) |
32 | BUSHMAN | ss199146133 | Jul 04, 2010 (132) |
33 | BCM-HGSC-SUB | ss205293218 | Jul 04, 2010 (132) |
34 | 1000GENOMES | ss218674992 | Jul 14, 2010 (132) |
35 | 1000GENOMES | ss230748755 | Jul 14, 2010 (132) |
36 | 1000GENOMES | ss238393332 | Jul 15, 2010 (132) |
37 | ILLUMINA | ss244302790 | Jul 04, 2010 (132) |
38 | BL | ss253545564 | May 09, 2011 (134) |
39 | GMI | ss276068980 | May 04, 2012 (137) |
40 | GMI | ss284160608 | Apr 25, 2013 (138) |
41 | PJP | ss290646321 | May 09, 2011 (134) |
42 | ILLUMINA | ss481132029 | May 04, 2012 (137) |
43 | ILLUMINA | ss481154066 | May 04, 2012 (137) |
44 | ILLUMINA | ss482143581 | Sep 08, 2015 (146) |
45 | ILLUMINA | ss485361046 | May 04, 2012 (137) |
46 | ILLUMINA | ss537305360 | Sep 08, 2015 (146) |
47 | TISHKOFF | ss554759448 | Apr 25, 2013 (138) |
48 | SSMP | ss648444606 | Apr 25, 2013 (138) |
49 | ILLUMINA | ss778556333 | Sep 08, 2015 (146) |
50 | ILLUMINA | ss783126207 | Aug 21, 2014 (142) |
51 | ILLUMINA | ss784082815 | Sep 08, 2015 (146) |
52 | ILLUMINA | ss832385049 | Apr 01, 2015 (144) |
53 | ILLUMINA | ss834013135 | Sep 08, 2015 (146) |
54 | EVA-GONL | ss975730726 | Aug 21, 2014 (142) |
55 | JMKIDD_LAB | ss1068303988 | Aug 21, 2014 (142) |
56 | 1000GENOMES | ss1293111711 | Aug 21, 2014 (142) |
57 | DDI | ss1425992751 | Apr 01, 2015 (144) |
58 | EVA_GENOME_DK | ss1574422307 | Apr 01, 2015 (144) |
59 | EVA_DECODE | ss1585114134 | Apr 01, 2015 (144) |
60 | EVA_UK10K_ALSPAC | ss1601312832 | Apr 01, 2015 (144) |
61 | EVA_UK10K_TWINSUK | ss1644306865 | Apr 01, 2015 (144) |
62 | EVA_SVP | ss1712374609 | Apr 01, 2015 (144) |
63 | ILLUMINA | ss1751876735 | Sep 08, 2015 (146) |
64 | HAMMER_LAB | ss1795153609 | Sep 08, 2015 (146) |
65 | WEILL_CORNELL_DGM | ss1918966968 | Feb 12, 2016 (147) |
66 | ILLUMINA | ss1946012624 | Feb 12, 2016 (147) |
67 | ILLUMINA | ss1958324913 | Feb 12, 2016 (147) |
68 | GENOMED | ss1966877813 | Jul 19, 2016 (147) |
69 | JJLAB | ss2019997139 | Sep 14, 2016 (149) |
70 | USC_VALOUEV | ss2148024108 | Dec 20, 2016 (150) |
71 | HUMAN_LONGEVITY | ss2166917797 | Dec 20, 2016 (150) |
72 | SYSTEMSBIOZJU | ss2624507304 | Nov 08, 2017 (151) |
73 | ILLUMINA | ss2632582306 | Nov 08, 2017 (151) |
74 | ILLUMINA | ss2635003800 | Nov 08, 2017 (151) |
75 | GRF | ss2697998758 | Nov 08, 2017 (151) |
76 | ILLUMINA | ss2710683996 | Nov 08, 2017 (151) |
77 | GNOMAD | ss2761848806 | Nov 08, 2017 (151) |
78 | AFFY | ss2985527143 | Nov 08, 2017 (151) |
79 | SWEGEN | ss2987827815 | Nov 08, 2017 (151) |
80 | ILLUMINA | ss3021143595 | Nov 08, 2017 (151) |
81 | BIOINF_KMB_FNS_UNIBA | ss3023755949 | Nov 08, 2017 (151) |
82 | CSHL | ss3343730968 | Nov 08, 2017 (151) |
83 | ILLUMINA | ss3625552175 | Oct 11, 2018 (152) |
84 | ILLUMINA | ss3626221556 | Oct 11, 2018 (152) |
85 | ILLUMINA | ss3630614795 | Oct 11, 2018 (152) |
86 | ILLUMINA | ss3632911862 | Oct 11, 2018 (152) |
87 | ILLUMINA | ss3633607303 | Oct 11, 2018 (152) |
88 | ILLUMINA | ss3634354045 | Oct 11, 2018 (152) |
89 | ILLUMINA | ss3635300711 | Oct 11, 2018 (152) |
90 | ILLUMINA | ss3636032440 | Oct 11, 2018 (152) |
91 | ILLUMINA | ss3637051205 | Oct 11, 2018 (152) |
92 | ILLUMINA | ss3637790720 | Oct 11, 2018 (152) |
93 | ILLUMINA | ss3640061399 | Oct 11, 2018 (152) |
94 | ILLUMINA | ss3640987752 | Oct 11, 2018 (152) |
95 | ILLUMINA | ss3641281789 | Oct 11, 2018 (152) |
96 | ILLUMINA | ss3642799668 | Oct 11, 2018 (152) |
97 | ILLUMINA | ss3644508580 | Oct 11, 2018 (152) |
98 | URBANLAB | ss3646801362 | Oct 11, 2018 (152) |
99 | ILLUMINA | ss3651479451 | Oct 11, 2018 (152) |
100 | EGCUT_WGS | ss3655769954 | Jul 12, 2019 (153) |
101 | EVA_DECODE | ss3687874181 | Jul 12, 2019 (153) |
102 | ILLUMINA | ss3725072064 | Jul 12, 2019 (153) |
103 | ACPOP | ss3727524747 | Jul 12, 2019 (153) |
104 | ILLUMINA | ss3744054870 | Jul 12, 2019 (153) |
105 | ILLUMINA | ss3744654941 | Jul 12, 2019 (153) |
106 | EVA | ss3746864414 | Jul 12, 2019 (153) |
107 | PAGE_CC | ss3770846488 | Jul 12, 2019 (153) |
108 | ILLUMINA | ss3772156019 | Jul 12, 2019 (153) |
109 | PACBIO | ss3783579423 | Jul 12, 2019 (153) |
110 | PACBIO | ss3789208659 | Jul 12, 2019 (153) |
111 | PACBIO | ss3794080688 | Jul 12, 2019 (153) |
112 | KHV_HUMAN_GENOMES | ss3799864442 | Jul 12, 2019 (153) |
113 | EVA | ss3826448208 | Apr 25, 2020 (154) |
114 | EVA | ss3836619059 | Apr 25, 2020 (154) |
115 | EVA | ss3842028596 | Apr 25, 2020 (154) |
116 | SGDP_PRJ | ss3850100318 | Apr 25, 2020 (154) |
117 | KRGDB | ss3895324561 | Apr 25, 2020 (154) |
118 | KOGIC | ss3945748285 | Apr 25, 2020 (154) |
119 | EVA | ss3984465776 | Apr 25, 2021 (155) |
120 | EVA | ss3984828413 | Apr 25, 2021 (155) |
121 | EVA | ss4016940874 | Apr 25, 2021 (155) |
122 | TOPMED | ss4469956130 | Apr 25, 2021 (155) |
123 | TOMMO_GENOMICS | ss5146697371 | Apr 25, 2021 (155) |
124 | 1000G_HIGH_COVERAGE | ss5244453367 | Oct 12, 2022 (156) |
125 | EVA | ss5314654620 | Oct 12, 2022 (156) |
126 | EVA | ss5322343383 | Oct 12, 2022 (156) |
127 | HUGCELL_USP | ss5445026068 | Oct 12, 2022 (156) |
128 | EVA | ss5506044357 | Oct 12, 2022 (156) |
129 | 1000G_HIGH_COVERAGE | ss5517861924 | Oct 12, 2022 (156) |
130 | SANFORD_IMAGENETICS | ss5624219424 | Oct 12, 2022 (156) |
131 | SANFORD_IMAGENETICS | ss5626681697 | Oct 12, 2022 (156) |
132 | TOMMO_GENOMICS | ss5673959567 | Oct 12, 2022 (156) |
133 | EVA | ss5799500281 | Oct 12, 2022 (156) |
134 | YY_MCH | ss5801299647 | Oct 12, 2022 (156) |
135 | EVA | ss5832728769 | Oct 12, 2022 (156) |
136 | EVA | ss5847167733 | Oct 12, 2022 (156) |
137 | EVA | ss5847559950 | Oct 12, 2022 (156) |
138 | EVA | ss5849126608 | Oct 12, 2022 (156) |
139 | EVA | ss5910429520 | Oct 12, 2022 (156) |
140 | EVA | ss5938479522 | Oct 12, 2022 (156) |
141 | EVA | ss5979292133 | Oct 12, 2022 (156) |
142 | 1000Genomes | NC_000001.10 - 161193683 | Oct 11, 2018 (152) |
143 | 1000Genomes_30x | NC_000001.11 - 161223893 | Oct 12, 2022 (156) |
144 | The Avon Longitudinal Study of Parents and Children | NC_000001.10 - 161193683 | Oct 11, 2018 (152) |
145 | Genetic variation in the Estonian population | NC_000001.10 - 161193683 | Oct 11, 2018 (152) |
146 | The Danish reference pan genome | NC_000001.10 - 161193683 | Apr 25, 2020 (154) |
147 | gnomAD - Genomes | NC_000001.11 - 161223893 | Apr 25, 2021 (155) |
148 | Genome of the Netherlands Release 5 | NC_000001.10 - 161193683 | Apr 25, 2020 (154) |
149 | HapMap | NC_000001.11 - 161223893 | Apr 25, 2020 (154) |
150 | KOREAN population from KRGDB | NC_000001.10 - 161193683 | Apr 25, 2020 (154) |
151 | Korean Genome Project | NC_000001.11 - 161223893 | Apr 25, 2020 (154) |
152 | Northern Sweden | NC_000001.10 - 161193683 | Jul 12, 2019 (153) |
153 | The PAGE Study | NC_000001.11 - 161223893 | Jul 12, 2019 (153) |
154 | Ancient Sardinia genome-wide 1240k capture data generation and analysis | NC_000001.10 - 161193683 | Apr 25, 2021 (155) |
155 | CNV burdens in cranial meningiomas | NC_000001.10 - 161193683 | Apr 25, 2021 (155) |
156 | PharmGKB Aggregated | NC_000001.11 - 161223893 | Apr 25, 2020 (154) |
157 | Qatari | NC_000001.10 - 161193683 | Apr 25, 2020 (154) |
158 | SGDP_PRJ | NC_000001.10 - 161193683 | Apr 25, 2020 (154) |
159 | Siberian | NC_000001.10 - 161193683 | Apr 25, 2020 (154) |
160 | 8.3KJPN | NC_000001.10 - 161193683 | Apr 25, 2021 (155) |
161 | 14KJPN | NC_000001.11 - 161223893 | Oct 12, 2022 (156) |
162 | TopMed | NC_000001.11 - 161223893 | Apr 25, 2021 (155) |
163 | UK 10K study - Twins | NC_000001.10 - 161193683 | Oct 11, 2018 (152) |
164 | A Vietnamese Genetic Variation Database | NC_000001.10 - 161193683 | Jul 12, 2019 (153) |
165 | ALFA | NC_000001.11 - 161223893 | Apr 25, 2021 (155) |
166 | ClinVar | RCV000019529.2 | Oct 12, 2022 (156) |
History tab displays RefSNPs (Associated ID) from previous builds (Build) that now support the current RefSNP, and the dates, when the history was updated for each Associated ID (History Updated).
Associated ID | History Updated (Build) |
---|---|
rs3813626 | Oct 08, 2002 (108) |
rs17244495 | Mar 11, 2006 (126) |
rs17393523 | Oct 07, 2004 (123) |
rs59715439 | May 25, 2008 (130) |
Submission IDs | Observation SPDI | Canonical SPDI | Source RSIDs |
---|---|---|---|
ss78069002, ss81205194, ss84330846 | NC_000001.8:158006755:G:A | NC_000001.11:161223892:G:A | (self) |
ss87840389, ss108635231, ss111228459, ss119054029, ss164228302, ss165301504, ss167187765, ss199146133, ss205293218, ss253545564, ss276068980, ss284160608, ss290646321, ss481132029, ss1585114134, ss1712374609, ss2635003800, ss3642799668 | NC_000001.9:159460306:G:A | NC_000001.11:161223892:G:A | (self) |
3909687, 2129411, 1508202, 1726121, 924586, 2501955, 809612, 54340, 15092, 1008898, 2117298, 540462, 4666678, 2129411, 456089, ss218674992, ss230748755, ss238393332, ss481154066, ss482143581, ss485361046, ss537305360, ss554759448, ss648444606, ss778556333, ss783126207, ss784082815, ss832385049, ss834013135, ss975730726, ss1068303988, ss1293111711, ss1425992751, ss1574422307, ss1601312832, ss1644306865, ss1751876735, ss1795153609, ss1918966968, ss1946012624, ss1958324913, ss1966877813, ss2019997139, ss2148024108, ss2624507304, ss2632582306, ss2697998758, ss2710683996, ss2761848806, ss2985527143, ss2987827815, ss3021143595, ss3343730968, ss3625552175, ss3626221556, ss3630614795, ss3632911862, ss3633607303, ss3634354045, ss3635300711, ss3636032440, ss3637051205, ss3637790720, ss3640061399, ss3640987752, ss3641281789, ss3644508580, ss3651479451, ss3655769954, ss3727524747, ss3744054870, ss3744654941, ss3746864414, ss3772156019, ss3783579423, ss3789208659, ss3794080688, ss3826448208, ss3836619059, ss3850100318, ss3895324561, ss3984465776, ss3984828413, ss4016940874, ss5146697371, ss5314654620, ss5322343383, ss5506044357, ss5624219424, ss5626681697, ss5799500281, ss5832728769, ss5847167733, ss5847559950, ss5938479522, ss5979292133 | NC_000001.10:161193682:G:A | NC_000001.11:161223892:G:A | (self) |
RCV000019529.2, 5387859, 28410395, 185801, 2126286, 67957, 554, 7796671, 33562465, 9846309832, ss2166917797, ss3023755949, ss3646801362, ss3687874181, ss3725072064, ss3770846488, ss3799864442, ss3842028596, ss3945748285, ss4469956130, ss5244453367, ss5445026068, ss5517861924, ss5673959567, ss5801299647, ss5849126608, ss5910429520 | NC_000001.11:161223892:G:A | NC_000001.11:161223892:G:A | (self) |
ss6526, ss5000035, ss8819660, ss22886696, ss23144898, ss24241958, ss43878789, ss65752392, ss68781930, ss69365253, ss69369010, ss74987612, ss97978337, ss106604908, ss119337524, ss138090783, ss139196038, ss155817429, ss160737974, ss173909011, ss244302790 | NT_004487.19:12682324:G:A | NC_000001.11:161223892:G:A | (self) |
ss20592762 | NT_079484.1:7643514:G:A | NC_000001.11:161223892:G:A | (self) |
2501955, ss3895324561 | NC_000001.10:161193682:G:C | NC_000001.11:161223892:G:C | (self) |
2501955, ss3895324561 | NC_000001.10:161193682:G:T | NC_000001.11:161223892:G:T | (self) |
Publications tab displays PubMed articles citing the variation as a listing of PMID, Title, Author, Year, Journal, ordered by Year, descending.
PMID | Title | Author | Year | Journal |
---|---|---|---|---|
17709437 | An apolipoprotein A-II polymorphism (-265T/C, rs5082) regulates postprandial response to a saturated fat overload in healthy men. | Delgado-Lista J et al. | 2007 | The Journal of nutrition |
18179799 | The apolipoprotein AII rs5082 variant is associated with reduced risk of coronary artery disease in an Australian male population. | Xiao J et al. | 2008 | Atherosclerosis |
18304332 | No evidence for association between BMI and 10 candidate genes at ages 4, 7 and 10 in a large UK sample of twins. | Haworth CM et al. | 2008 | BMC medical genetics |
19216768 | Evaluating the association of common APOA2 variants with type 2 diabetes. | Duesing K et al. | 2009 | BMC medical genetics |
19592705 | Effects of variations in the APOA1/C3/A4/A5 gene cluster on different parameters of postprandial lipid metabolism in healthy young men. | Delgado-Lista J et al. | 2010 | Journal of lipid research |
20154611 | Adaptive genetic variation and heart disease risk. | Parnell LD et al. | 2010 | Current opinion in lipidology |
20185793 | ABCA1 gene variants regulate postprandial lipid metabolism in healthy men. | Delgado-Lista J et al. | 2010 | Arteriosclerosis, thrombosis, and vascular biology |
21773006 | Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: implications for a nutrigenetic approach. | Curti ML et al. | 2011 | Journal of obesity |
22043166 | Gene-diet interactions in childhood obesity. | Garver WS et al. | 2011 | Current genomics |
22328972 | A Database of Gene-Environment Interactions Pertaining to Blood Lipid Traits, Cardiovascular Disease and Type 2 Diabetes. | Lee YC et al. | 2011 | Journal of data mining in genomics & proteomics |
22916254 | Effects of rs7903146 variation in the Tcf7l2 gene in the lipid metabolism of three different populations. | Perez-Martinez P et al. | 2012 | PloS one |
24108135 | Apolipoprotein A2 polymorphism interacts with intakes of dairy foods to influence body weight in 2 U.S. populations. | Smith CE et al. | 2013 | The Journal of nutrition |
26210798 | APOA II genotypes frequency and their interaction with saturated fatty acids consumption on lipid profile of patients with type 2 diabetes. | Noorshahi N et al. | 2016 | Clinical nutrition (Edinburgh, Scotland) |
26365669 | Interaction of dietary fat intake with APOA2, APOA5 and LEPR polymorphisms and its relationship with obesity and dyslipidemia in young subjects. | Domínguez-Reyes T et al. | 2015 | Lipids in health and disease |
26590203 | Identification of Sequence Variation in the Apolipoprotein A2 Gene and Their Relationship with Serum High-Density Lipoprotein Cholesterol Levels. | Bandarian F et al. | 2016 | Iranian biomedical journal |
28464262 | A tale of agriculturalists and hunter-gatherers: Exploring the thrifty genotype hypothesis in native South Americans. | Reales G et al. | 2017 | American journal of physical anthropology |
29901700 | Epigenomics and metabolomics reveal the mechanism of the APOA2-saturated fat intake interaction affecting obesity. | Lai CQ et al. | 2018 | The American journal of clinical nutrition |
30584432 | Genetic Identification for Non-Communicable Disease: Findings from 20 Years of the Tehran Lipid and Glucose Study. | Daneshpour MS et al. | 2018 | International journal of endocrinology and metabolism |
31270413 | ||||
33170161 | Genetic test for the prescription of diets in support of physical activity. | Naureen Z et al. | 2020 | Acta bio-medica |
33763108 | Whole Genome Interpretation for a Family of Five. | Corpas M et al. | 2021 | Frontiers in genetics |
33889392 | Interaction between Apo A-II -265T>C polymorphism and dietary total antioxidant capacity on some anthropometric indices and serum lipid profile in patients with type 2 diabetes mellitus. | Jafari Azad B et al. | 2021 | Journal of nutritional science |
34131278 | Genetic polymorphisms associated with obesity in the Arab world: a systematic review. | Younes S et al. | 2021 | International journal of obesity (2005) |
34372957 | Interaction between Apo A-II -265T > C polymorphism and dietary total antioxidant capacity on some oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus. | Jafari Azad B et al. | 2022 | The British journal of nutrition |
35387194 | Personalized Dietary Recommendations Based on Lipid-Related Genetic Variants: A Systematic Review. | Pérez-Beltrán YE et al. | 2022 | Frontiers in nutrition |
35866398 | A Machine Learning Model Based on Genetic and Traditional Cardiovascular Risk Factors to Predict Premature Coronary Artery Disease. | Liu B et al. | 2022 | Frontiers in bioscience (Landmark edition) |
35883173 | Dietary acid load modifies the effects of ApoA2-265 T > C polymorphism on lipid profile and serum leptin and ghrelin levels among type 2 diabetic patients. | Abaj F et al. | 2022 | BMC endocrine disorders |
The Flanks tab provides retrieving flanking sequences of a SNP on all molecules that have placements.
Genomic regions, transcripts, and products
Top▲
Help
NCBI Graphical Sequence Viewer display of the genomic region, transcripts and protein products for the reported RefSNP (rs).
Use the zoom option to view the nucleotides around the RefSNP and find other neighboring RefSNPs.
Visit Sequence Viewer for help with navigating inside the display and modifying the selection of displayed data tracks.
NCBI Graphical Sequence Viewer display of the genomic region, transcripts and protein products for the reported RefSNP (rs).
Use the zoom option to view the nucleotides around the RefSNP and find other neighboring RefSNPs.
Visit Sequence Viewer for help with navigating inside the display and modifying the selection of displayed data tracks.