U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Lamin B1 Depletion in Senescent Cells Triggers Large-Scale Changes in Gene Expression and in the Chromatin Landscape [ expression array ]

(Submitter supplied) Cellular senescence is a stable proliferation arrest in response to stress, associated with an altered secretory pathway (Senescence Associated Secretory Phenotype (SASP)). Senescence-associated proliferation arrest and the SASP are thought to act in concert to promote tumor suppression and tissue aging. While chromatin regulation and down regulation of lamin B1 have been implicated as effectors of cell senescence, functional interactions between them are poorly understood. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
10 Samples
Download data: CEL
Series
Accession:
GSE36640
ID:
200036640
2.

Lamin B1 depletion in senescent cells leads to large-scale changes in the chromatin landscape

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL10999 GPL11154 GPL570
27 Samples
Download data: BW, CEL
Series
Accession:
GSE36641
ID:
200036641
3.

Lamin B1 depletion in senescent cells triggers large-Scale changes in gene expression and in the chromatin landscape[ChIP-seq]

(Submitter supplied) Cellular senescence is a stable proliferation arrest in response to stress, associated with an altered secretory pathway (Senescence Associated Secretory Phenotype (SASP)). Senescence-associated proliferation arrest and the SASP are thought to act in concert to promote tumor suppression and tissue aging. While chromatin regulation and down regulation of lamin B1 have been implicated as effectors of cell senescence, functional interactions between them are poorly understood. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL10999 GPL11154
17 Samples
Download data: BED, BW
Series
Accession:
GSE36616
ID:
200036616
4.

Redistribution of the Lamin B1 genomic binding profile affects spatial rearrangement of heterochromatic domains and gene expression during senescence

(Submitter supplied) Senescence is a stress responsive form of stable cell cycle exit. Senescent cells have a distinct gene expression profile, which is often accompanied by the spatial redistribution of heterochromatin into senescence-associated heterochromatic foci (SAHFs). Studying a key component of the nuclear lamina, lamin B1 (LMNB1), we report dynamic alterations in its genomic profile and their implications for SAHF formation and gene regulation during senescence. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
18 Samples
Download data: BED
Series
Accession:
GSE49341
ID:
200049341
5.

Correlated alterations in genome organization, histone methylation, and DNA-lamina interactions in Hutchinson-Gilford progeria syndrome

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL9115 GPL9052 GPL570
28 Samples
Download data: BED, CEL, TXT
Series
Accession:
GSE41764
ID:
200041764
6.

Correlated alterations in genome organization, histone methylation, and DNA-lamina interactions in Hutchinson-Gilford progeria syndrome (Hi-C)

(Submitter supplied) Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease that is frequently caused by a de novo point mutation at position 1824 in LMNA. This mutation activates a cryptic splice donor site in exon 11, and leads to an in-frame deletion within the prelamin A mRNA and the production of a dominant negative lamin A protein, known as progerin. Here we show that HGPS cells experience genome-wide alterations in patterns of H3K27me3 deposition, changes in the associations of genomic loci with nuclear lamin A/C, and, at late passages, genome-wide loss of spatial compartmentalization of active and inactive chromatin domains that characterizes chromosome folding in normal cells. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9115
4 Samples
Download data: TXT
Series
Accession:
GSE41763
ID:
200041763
7.

Correlated alterations in genome organization, histone methylation, and DNA-lamina interactions in Hutchinson-Gilford progeria syndrome (ChIP-seq)

(Submitter supplied) Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease that is frequently caused by a de novo point mutation at position 1824 in LMNA. This mutation activates a cryptic splice donor site in exon 11, and leads to an in-frame deletion within the prelamin A mRNA and the production of a dominant negative lamin A protein, known as progerin. Here we show that HGPS cells experience genome-wide alterations in patterns of H3K27me3 deposition, changes in the associations of genomic loci with nuclear lamin A/C, and, at late passages, genome-wide loss of spatial compartmentalization of active and inactive chromatin domains that characterizes chromosome folding in normal cells. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9052
18 Samples
Download data: BED
Series
Accession:
GSE41757
ID:
200041757
8.

Correlated alterations in genome organization, histone methylation, and DNA-lamina interactions in Hutchinson-Gilford progeria syndrome (expression)

(Submitter supplied) Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease that is frequently caused by a de novo point mutation at position 1824 in LMNA. This mutation activates a cryptic splice donor site in exon 11, and leads to an in-frame deletion within the prelamin A mRNA and the production of a dominant negative lamin A protein, known as progerin. Here we show that HGPS cells experience genome-wide alterations in patterns of H3K27me3 deposition, changes in the associations of genomic loci with nuclear lamin A/C, and, at late passages, genome-wide loss of spatial compartmentalization of active and inactive chromatin domains that characterizes chromosome folding in normal cells. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
6 Samples
Download data: CEL
Series
Accession:
GSE41751
ID:
200041751
9.

Pre-patterning of differentiation-driven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B

(Submitter supplied) Dynamic interactions of nuclear lamins with chromatin through so-called lamin-associated domains (LADs) contribute to spatial arrangements of the genome. Here, we provide evidence for pre-patterning of differentiation-driven formation of lamin A/C LADs by domains of histone H2B modified by the nutrient sensor O-linked N-acetylglucosamine (H2BGlcNAc), which we term GADs. We demonstrate a two-step process of lamin A/C LAD formation during in vitro adipogenesis, involving (i) a spreading of lamin A/C-chromatin interactions during the transition from progenitor cell proliferation to cell cycle arrest, and (ii) a genome-scale redistribution these interactions through a process of LAD ‘exchange’ within hours of adipogenic induction. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
12 Samples
Download data: BED, BW, CSV
10.

Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability.

(Submitter supplied) Histone modification H4K20me3 and its methyltransferase SUV420H2 have been implicated in suppression of tumorigenesis. The underlying mechanism is unclear, although abundance of H4K20me3 increases during cellular senescence. Cellular senescence is a stable proliferation arrest and tumor suppressor process, triggered by diverse molecular cues, including activated oncogenes. Here, we set out to better understand the function of H4K20me3 in senescence and tumor suppression.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
8 Samples
Download data: BED
Series
Accession:
GSE81969
ID:
200081969
11.

Genome-wide mapping of H4K20me3 in proliferating and senescent IMR90 cells.

(Submitter supplied) Cellular senescence is a stable proliferation arrest and tumor suppressor mechanism. Abundance of histone modification, H4K20me3, has been reported to increase in senescent cells. Generally, H4K20me3 promotes formation of compacted transcriptionally silent constitutive heterochromatin, but its specific role in senescence is unknown. Here, we show that in senescent cells H4K20me3 is enriched at specific families of gene repeats (ZNFs, Olfactory Receptors, Protocadherins), and DNA sequences contained within senescence-associated heterochromatin (senescence-associated heterochromatin (SAHF)). more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL10999
4 Samples
Download data: BED
Series
Accession:
GSE59316
ID:
200059316
12.

Histone chaperone HIRA orchestrates H4K16ac-decorated dynamic chromatin in senescent cells and is required for suppression of oncogene-induced neoplasia.

(Submitter supplied) Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Histone chaperone HIRA deposits nucleosome-destabilizing histone variant H3.3 into chromatin in a DNA replication-independent manner. Histone H3.3 and a subset of other typically “replication-dependent” core histones were expressed in non-proliferating senescent cells, the latter linked to alternative mRNA splicing and polyadenylation. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL10999
22 Samples
Download data: BED, BIGWIG, CSV
Series
Accession:
GSE56307
ID:
200056307
13.

Expression data from PD32 and PD88 IMR90

(Submitter supplied) IMR90 cells were passaged until replicative senescence and compared with proliferating cells.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL10999
4 Samples
Download data: BIGWIG
Series
Accession:
GSE53356
ID:
200053356
14.

Expression data from ER32 and ER32.40HT IMR90

(Submitter supplied) IMR90 cells were infected with pLNC-RAS:ER (from Jesus Gil lab) with retroviral gene transfer. Infected cells were drug selected G418. The cells were induced either with ethanol as control or with 100nM final conc 4-hydroxytamoxifen (sigma H7904) for ectopic expression of protein
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL10999
4 Samples
Download data: BIGWIG
Series
Accession:
GSE52848
ID:
200052848
15.

Genome-wide methylation maps for Proliferating and Senescent cells

(Submitter supplied) Altered DNA methylation and associated destabilization of genome integrity and function is a hallmark of cancer. Replicative senescence imposes a limit on proliferative potential that all cancer cells must bypass. Compared to proliferating cells, senescent cells exhibit marked chromatin re-organization. Here we show by whole-genome single-nucleotide bisulfite sequencing that replicative senescent human cells exhibit widespread alterations in their DNA methylome. more...
Organism:
Homo sapiens
Type:
Methylation profiling by high throughput sequencing
Platform:
GPL11154
9 Samples
Download data: BED, BIGWIG, TXT
Series
Accession:
GSE48580
ID:
200048580
16.

Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL18635 GPL19057
12 Samples
Download data: BW
Series
Accession:
GSE94681
ID:
200094681
17.

Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET [RNA-Seq]

(Submitter supplied) Although abnormal nuclear structure is an important criterion for cancer diagnostics, remarkably little is known about its relationship to tumor development. Here we report that loss of lamin B1, a determinant of nuclear architecture, plays a key role in lung cancer. We found that lamin B1 levels were reduced in lung cancer patients. Lamin B1 silencing in lung epithelial cells promoted epithelial-mesenchymal transition, cell migration, tumor growth and metastasis. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18635
4 Samples
Download data: BW, XLSX
Series
Accession:
GSE94680
ID:
200094680
18.

Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET [ChIP-Seq]

(Submitter supplied) Although abnormal nuclear structure is an important criterion for cancer diagnostics, remarkably little is known about its relationship to tumor development. Here we report that loss of lamin B1, a determinant of nuclear architecture, plays a key role in lung cancer. We found that lamin B1 levels were reduced in lung cancer patients. Lamin B1 silencing in lung epithelial cells promoted epithelial-mesenchymal transition, cell migration, tumor growth and metastasis. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
8 Samples
Download data: BW
Series
Accession:
GSE94679
ID:
200094679
19.

Genome-wide maps of nuclear lamina interactions in AML12 cells.

(Submitter supplied) We have used microarrays to identify LaminB1 occupancy signal in AML12 cell using the DamID protocol.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL10448
4 Samples
Download data: TXT
Series
Accession:
GSE73703
ID:
200073703
20.

DamID (LmnB1/Dam) Log2 ratios of C57Bl/6 fibroblasts and RAG2-/- pro-B cells.

(Submitter supplied) Comparison of DamID profiles and LAD patterning across cell types reveals regions of variable LADs
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL7525
4 Samples
Download data: BEDGRAPH, PAIR
Series
Accession:
GSE56990
ID:
200056990
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_674e93678c9ed417fb19e39b|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center