U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Wild type and Zbtb7b knockout mouse brown adipose tissue

(Submitter supplied) Zbtb7b is a zinc finger and BTB domain containing transcription factor that activates the thermogenic gene program during brown and beige adipocyte differentiation. Zbtb7b interacts with the long noncoding RNA Blnc1 and hnRNPU to form a ribonucleoprotein transcriptional complex We used microarray to determine how Zbtb7b regulates brown fat gene expression at ambient room temperature and following cold exposure
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL17400
12 Samples
Download data: CEL
Series
Accession:
GSE100924
ID:
200100924
2.

Gene expression Analysis of wild type (WT) and Blnc1 adipose specific transgenic mice (Tg) epididymal WAT (eWAT) Transcriptomes after 21 weeks high fat diet (HFD) feeding

(Submitter supplied) Long noncoding RNAs (lncRNAs) are emerging as powerful regulators of adipocyte differentiation and gene expression. However, their physiological role in adipose tissue biology and systemic energy metabolism has not been established. Here we show that adipose tissue expression of Blnc1, a conserved lncRNA regulator of thermogenic genes, is highly induced in obese mice. Fat-specific inactivation of Blnc1 impairs cold-induced thermogenesis and browning, exacerbates obesity-associated brown fat whitening, and worsens adipose tissue inflammation and fibrosis, leading to more severe insulin resistance and hepatic steatosis. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL17400
6 Samples
Download data: CEL
Series
Accession:
GSE111865
ID:
200111865
3.

LncRNAs expression profiling in adipose tissues and during brown adipocyte differentiation

(Submitter supplied) Brown and beige fats generate heat via uncoupled respiration to defend against cold, mechanistically, through the action of a network of transcription factors and cofactors. Here we globally profiled long noncoding RNAs (lncRNAs) gene expression during thermogenic adipocyte formation and identified Brown fat lncRNA 1 (Blnc1) as a novel nuclear lncRNA that promotes brown and beige adipocyte differentiation and function by forming a feedforward regulatory loop with EBF2 to drive adipogenesis toward thermogenic phenotype.
Organism:
Mus musculus
Type:
Non-coding RNA profiling by array
Platform:
GPL15691
10 Samples
Download data: TXT
Series
Accession:
GSE57643
ID:
200057643
4.

Scramble and Brown fat lncRNA 1 knockdown (shBlnc1) expressing differentiated brown adipocyte

(Submitter supplied) Blnc1 is a novel nuclear lncRNA that promotes brown and beige adipocyte differentiation and function. Blnc1 forms a ribonucleoprotein complex with transcription factor EBF2 to stimulate the thermogenic gene program. Further, Blnc1 itself is a target of EBF2, thereby forming a feedforward regulatory loop to drive adipogenesis toward thermogenic phenotype. We used microarrays to elucidate the role of Blnc1 on brown adipocyte differentiation and mitochondrial function.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL11180
4 Samples
Download data: CEL
Series
Accession:
GSE57540
ID:
200057540
5.

Vector and Brown fat lncRNA 1 (Blnc1) expressing differentiated brown adipocytes

(Submitter supplied) Blnc1 is a novel nuclear lncRNA that promotes brown and beige adipocyte differentiation and function. Blnc1 forms a ribonucleoprotein complex with transcription factor EBF2 to stimulate the thermogenic gene program. Further, Blnc1 itself is a target of EBF2, thereby forming a feedforward regulatory loop to drive adipogenesis toward thermogenic phenotype. We used microarrays to elucidate the role of Blnc1 on brown adipocyte differentiation and the induction of the thermogenic gene program.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL11180
4 Samples
Download data: CEL
Series
Accession:
GSE55551
ID:
200055551
6.

Cardiolipin Synthesis Governs Systemic Energy Homeostasis through Thermogenic Fat Mitochondria

(Submitter supplied) Here we show that synthesis of the mitochondrial phospholipid cardiolipin is an indispensable driver of thermogenic fat function. Cardiolipin biosynthesis is robustly induced in brown and beige adipose upon cold exposure. Mimicking this response by overexpressing cardiolipin synthase (Crls1) enhances energy consumption in mouse and human adipocytes. Crls1 deficiency diminishes mitochondrial uncoupling in brown and beige adipocytes and elicits a nuclear transcriptional response through ER stress-mediated retrograde communication. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18480
10 Samples
Download data: TXT
Series
Accession:
GSE110297
ID:
200110297
7.

Remodeling of white fat during browning involves YBX1 to drive thermogenic commitment

(Submitter supplied) Effects of YBX1 activation in PPARγ-indcuded C3H/10T1/2-SAM pre-adipocytes on the transcriptome of cells during early differentation stages
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
51 Samples
Download data: TSV
Series
Accession:
GSE149083
ID:
200149083
8.

Transcriptome analysis in adipose tissues of BAF60a knockout mice

(Submitter supplied) Brown and beige fat share a remarkably similar transcriptional program that supports fuel oxidation and thermogenesis. The chromatin-remodeling machinery that governs genome accessibility and renders adipocytes poised for thermogenic activation remains elusive. BAF60a serves an indispensable role in cold-induced thermogenesis in brown fat. Surprisingly, fat-specific BAF60a inactivation triggers more pronounced browning of inguinal white adipose tissue. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL17400
12 Samples
Download data: CEL
Series
Accession:
GSE145498
ID:
200145498
9.

BAF60a deficiency uncouples chromatin accessibility and cold sensitivity from white fat browning

(Submitter supplied) Brown and beige fat share a remarkably similar transcriptional program that supports fuel oxidation and thermogenesis. The chromatin-remodeling machinery that governs genome accessibility and renders adipocytes poised for thermogenic activation remains elusive. Here we found that BAF60a, a subunit of the SWI/SNF chromatin-remodeling complexes, serves an indispensible role in cold-induced thermogenesis in brown fat. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19057 GPL21103
12 Samples
Download data: BW, CSV
Series
Accession:
GSE128747
ID:
200128747
10.

Mouse Vascularized Adipose Spheroids: An Organotypic Model for Thermogenic Adipocytes

(Submitter supplied) Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues’ thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by factors like cold exposure, share mechanisms that drive non-shivering thermogenesis. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
12 Samples
Download data: TXT
Series
Accession:
GSE261267
ID:
200261267
11.

LncRNAs expression profiling in small extracellular vesicles derived from brown adipose tissue

(Submitter supplied) Brown adipose tissue (BAT) is considered as a main site of adaptive thermogenesis and the thermogenic activities of brown and beige adipocytes are also linked to generating heat and counteracting obesity. Recent studies revealed that BAT could secrete certain batokines-like factors especially small extracellular vesicles (sEV), which contributed to the systemic consequences of BAT activities. As a newly emerging class of mediators, some long non-coding RNAs (lncRNAs) have exhibited metabolic regulatory effects in adipocyte development. more...
Organism:
Mus musculus
Type:
Expression profiling by array; Non-coding RNA profiling by array
Platform:
GPL26962
6 Samples
Download data: TXT
Series
Accession:
GSE196468
ID:
200196468
12.

Expression data from human adipose tissue using an expanded patient cohort

(Submitter supplied) Obesity is a risk factor for numerous metabolic disorders; however, not all obese individuals are prone to insulin resistance. The central aim of this study was to identify molecular pathways directly related to insulin resistance independent of BMI in obesity. We sought to determine the gene expression signature of adipose tissue in a body mass index (BMI)-matched obese cohort of patients that are either insulin sensitive or insulin resistant.
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS3781
Platform:
GPL570
39 Samples
Download data: CEL
Series
Accession:
GSE20950
ID:
200020950
13.
Full record GDS3781

Morbidly obese insulin-resistant patients: omental and subcutaneous adipose tissue

Analysis of subcutaneous and visceral adipose tissue from body mass index (BMI)-matched, obese patients who were insulin-sensitive versus insulin-resistant, thereby eliminating obesity as a variable. Results provide insight into molecular mechanisms mediating obesity-related insulin resistance.
Organism:
Homo sapiens
Type:
Expression profiling by array, transformed count, 2 disease state, 2 gender, 2 tissue sets
Platform:
GPL570
Series:
GSE20950
39 Samples
Download data: CEL
14.

Remodeling of Brown and White Adipose Tissue by NT-PGC-1α-Mediated Gene Regulation

(Submitter supplied) The β-adrenergic receptor signaling pathway is a major component of adaptive thermogenesis in brown and white adipose tissue during cold acclimation. The β-AR activation highly induces transcriptional coactivator PGC-1α and its splice variant N-terminal (NT)-PGC-1α, promoting the transcription program of mitochondrial biogenesis and thermogenesis. In the present study, we evaluated the role of NT-PGC-1α in brown adipocyte energy metabolism by genome-wide profiling of NT-PGC-1α-responsive genes. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL2995
4 Samples
Download data: TXT
Series
Accession:
GSE71774
ID:
200071774
15.

Identification of Zfp423-dependent genes in adult inguinal white adipocytes

(Submitter supplied) We derived a model that allows for doxycycline-inducible deletion of Zfp423 in mature adipocytes of adult mice (Adiponectin-rtTA; TRE-CRE; Zfp423 loxP/loxP). In these animals deletion of Zfp423 results in a spontaneous conversion of white adipocytes into beige-like adipocytes at room temperature. The goal of this expression analysis was to 1) determine the gene programs dependent on adipocyte Zfp423 in inguinal WAT, and 2) determine the similarity between the converted beige-like cells to normal beige adipose tissue that accumulates upon cold exppsure.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL20775
9 Samples
Download data: CEL
Series
Accession:
GSE74899
ID:
200074899
16.

Naa10p Inhibits Beige Adipocyte-mediated Thermogenesis through N-α-acetylation of Pgc1α

(Submitter supplied) We reported that both conventional and adipose-specific Naa10p deletions in mice result in increased energy expenditure, thermogenesis, beige adipocyte differentiation and activation. Mechanistically, Naa10p acetylates the N-terminus of Pgc1α and prevents it from interacting with Ppar to activate key genes, such as Ucp1, involved in beige adipocyte function. We used microarrays to profile the gene expression changes by Naa10p KO in inguinal white adipose tissues (iWATs) derived from mice fed with high fat diet for 15 weeks.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE133865
ID:
200133865
17.

Naa10p Inhibits Beige Adipocyte-mediated Thermogenesis through N-alpha-acetylation of Pgc1-alpha

(Submitter supplied) We report that both conventional and adipose-specific Naa10p deletions in mice result in increased energy expenditure, thermogenesis, beige adipocyte differentiation and activation. Mechanistically, Naa10p acetylates the N-terminus of Pgc1-alpha and prevents it from interacting with Ppar[gamma] to activate key genes, such as Ucp1, involved in beige adipocyte function.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
6 Samples
Download data: TXT
Series
Accession:
GSE133726
ID:
200133726
18.

Vascular smooth muscle-derived TRPV1-expressing progenitors are a new source of cold induced thermogenic adipocytes

(Submitter supplied) Brown adipose tissue (BAT) functions in energy expenditure in part due its role in thermoregulation. The prominent capacity of BAT to enhance fuel utilization and energy expenditure makes it an attractive target for treating obesity and metabolic disorders. Prolonged cold exposure induces de novo recruitment of brown adipocytes and activates their thermogenic activity. However, the exact source of cold-induced brown adipocytes is not completely understood. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
16 Samples
Download data: CSV
Series
Accession:
GSE160585
ID:
200160585
19.

Gene expression signature of brown and inguinal white fat of mice kept at 30°C vs. 5°C

(Submitter supplied) Activation and recruitment of thermogenic cells in human white adipose tissues (“browning”) can counteract obesity and associated metabolic disorders. However, quantifying the effects of therapeutic interventions on browning remains enigmatic. Here, we devise a computational approach, profiling of fat tissue types (ProFAT), for the quantification of thermogenic potential of heterogeneous fat biopsies based on the prediction of white and brown adipocytes content from raw gene expression profiles. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
16 Samples
Download data: TXT
Series
Accession:
GSE112582
ID:
200112582
20.

Expression data from multiple mouse adipose depots

(Submitter supplied) Comparing gene expression profiles of murine subcutaneous vs. visceral adipose tissue. Gene expression was analyzed in two subcutaneous depots (inguinal and axillary) and two visceral depots (epididymal and mesenteric) from male C57Bl/6 mice.
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS5654
Platform:
GPL8321
12 Samples
Download data: CEL
Series
Accession:
GSE53307
ID:
200053307
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_67947d623ebf211704316b85|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center